
Improving Artificial Bee Colony Algorithm with
Evolutionary Operators

Gabriela Minetti1 and Carolina Salto1,2

1 Facultad de Ingenieŕıa, Universidad Nacional de La Pampa
2 CONICET, Argentina

email: {minettig, saltoc}@ing.unlpam.edu.ar

Abstract. In this paper, we analyze the effect of replacing the method
to create new solutions in artificial bee colony algorithm by recombina-
tion operators. Since the original method is similar to the recombination
process used in evolutionary algorithms. For that purpose, we present a
systematic investigation of the effect of using six different recombination
operators for real-coded representations at the employed bee step. All
analysis is carried out using well known test problems. The experimen-
tal results suggest that the method to generate a new candidate food
position plays an important role in the performance of the algorithm.

Keywords: ABC algorithm - recombination - parameter tuning

1 Introduction

Swarm intelligence is the study of computational systems inspired by the co-
operation of large numbers of homogeneous agents in the environment. An ant
colony, a flock of birds, a honeybee or an immune system are typical examples of
swarm systems. Tereshko and Loengarov [1] consider a bee colony as a dynami-
cal system, where gathering information from an environment and adjusting its
behavior in accordance to it produce an intelligent decision-making from enhanc-
ing the level of communication among the individuals. Taking the Tereshko and
Loengarov’s ideas into account, Karaboga et al. [2, 3] propose an optimization
algorithm based on the intelligent behavior of honey bee swarm, called Artificial
Bee Colony (ABC) algorithm. Considering that it works with a set of solutions,
ABC is classified as a population-based metaheuristic.

In general, metaheuristics have a major drawback: they need some parameter
tuning that is not easy to perform in a thorough manner. Those parameters are
not only numerical values but may also involve the use of search components.
Those parameters may have a great influence on the efficiency and effectiveness
of the search. The ABC metaheuristic is not the exception [3].

Some works have deal with this problem, mainly by investigating value ranges
of parameters more suitable to the solution of problems with certain features [4,
5]. Regarding the search components, several ways to create the initial solutions
were presented in [6, 7] and local search methods to generate solutions at scout
bee step have been researched in [6–8]. In [9], the authors changed the way to

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

93

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296396156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

calculate the selection probability of a solution by introducing the Euclidean
distance between two solutions in the probability equation. Furthermore, differ-
ent approaches introducing partial changes in the method to generate new food
positions at each employed and onlooker bee step have been proposed [7, 9–11].

The cited proposals consider different solutions or add factors into the orig-
inal method to create a candidate food position, but no new entirely distinct
ways to generate it are presented. The mechanism used by ABC to produce a
new candidate solution is very similar to the procedure carried out by the recom-
bination operators for real-coded spaces in the evolutionary algorithm literature.
In this sense, we consider the application of other mechanisms to generate new
source positions using the recombination operators, whose effect on the ABC
performance has not yet been studied and their impact could be more signifi-
cant than the traditional approach. Consequently, the objective of this article is
to analyze the effect of using six different recombination operators to create new
food positions at the employed bee step of the ABC algorithm.With respect to
the methodology followed to analyze the results, we study the performance of
these ABC variants with respect to the traditional ABC version considering both
the solution quality and computational effort. Therefore, the effectiveness and
efficiency of three of the six proposed operators in comparison with the original
ABC version is shown.

The rest of this article is organized as follows. In Section 2 and 3, we de-
scribe ABC and the suggested recombination operators, respectively. Section 4
explains the experimental analysis and the methodology used. Then, we study
and analyze the results obtained by the different ABC variants in Section 5.
Finally, we present our principal conclusions and future lines of research.

2 Artificial Bee Colony Algorithm

The artificial bee colony is one of the several algorithms have been developed
depending on different intelligent behaviors of honey bee swarms. In the ABC
algorithm, the position of a food source represents a possible solution to the
optimization problem and the nectar amount in this source corresponds to the
quality (fitness) of the associated solution. Three kinds of artificial bees can act
on the food sources: (i) scout bees search new food sources in the environment
surrounding the nest in a random way; (ii) onlooker bees wait in the nest waggle
dances exerted by the other bees to establish food sources; and (iii) employed
bees are associated with a particular food source. The last kind of bees finds and
exploits new food sources, memorizes their locations, loads a portion of nectar
to the beehive, and unloads it to the food area in the hive.

In the Algorithm 1 a pseudo-code of the ABC [2, 3] is shown. At the first
step, an initial population of SN solutions is randomly generated. Each solution
xi (i = 1, 2, ..., SN) is a D-dimensional vector. Here, D is the dimension of the
function or problem to be optimized. Secondly, this population is iteratively
modified by the employed, onlooker and scouts bees.

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

94

Algorithm 1 ABC Algorithm
1: Initialize the population of solutions xi, i = 1, 2, ..., SN ;
2: Evaluate the population;
3: repeat
4: The employed bees generate the new solutions, vi, from each xi and evaluate them;
5: The employed bees apply the greedy selection mechanism;
6: The onlooker bees generate the new solutions, vi, from the selected xi and evaluate them;
7: The onlookers bees apply the greedy selection mechanism;
8: The scouts bees determine the abandoned solutions and replace them with new solutions, xi

9: Memorize the best solution found so far;
10: until the stop criterion is meet

11: return The best solution;

The employed bees generate a candidate food position, vi, from the old one
in memory, modifying only the parameter j as is shown in the Equation 1:

vij = xij + φij(xij − xkj), (1)

where k ∈ {1, 2, ..., SN} ∧ k �= i and j ∈ {1, 2, ..., D} are randomly chosen

indexes. The value φij is a random number between [-1, 1], which is used to
control the generation of food sources around xi and compare the two food
positions viewed by a bee. As the difference between the parameters xij and xkj

decreases, the perturbation on the position xij gets decreased, too. Thus, as the
search approaches the optimum solution in the search space, the step length is
adaptively reduced. If a parameter value produced by this operation exceeds its
predetermined limit, the parameter can be set to an acceptable value, e.g. to its
limit value.

An artificial onlooker bee chooses a food source, xk, depending on the proba-
bility value associated with that food source and, then it applies the Equation 1
to obtain the candidate food position. In other words, a solution is chosen using
the proportional selection method. But with this method a high pressure is ap-
plied to the selection. In order to avoid it in our experiments, the proportional
selection method is replaced by the binary tournament selection [12].

When a candidate source position, vi, is created and evaluated by an artificial
bee, its fitness is compared with the old xi one. If the new solution is equal or
better than the old one, the new one takes the place in the memory. In other
words a greedy selection mechanism is applied to select between vi and xi.

A food source is assumed to be abandoned when a position cannot be im-
proved further through a predetermined number of cycles, known as limit for
abandonment. When a food source is abandoned by the employed bees, it is
replaced with a new food source found by the scouts. This is simulated by gen-
erating a random new position to replace the abandoned one.

3 Recombination Operators

To produce a candidate food position from the old one in memory, the employed
bees uses a variation operator as the one presented in Equation 1. This tech-
nique, which generates one new candidate solution by combining the information

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

95

contained in two existing ones, is similar to the recombination operators from the
evolutionary algorithms. In consequence, this section presents the recombination
operators included in the experimental section. The most of them comes from
the real-coded genetic algorithms literature and has never been used with this
metaheuristic. The proposed ABC algorithms use the recombination operator to
create a single trial vector. In what follows we name the ABC algorithm using
the traditional variation operator as ABCTRAD.

Let us assume that xi and xk (i, k ∈ {1, 2, . . . , SN}) are the two solutions
considered to produce a candidate food position vi. For a randomly chosen pa-
rameter j (j ∈ (1, 2, . . . , D)) in the solution, the operators sketch in the following
description can be incorporated to the ABC instead of using Equation 1. The
resting parameters l (l ∈ (1, 2, . . . , D) ∧ l �= j) of vi come from xi.

Arithmetical Recombination (ABCAX). This operator [13] chooses the
parameter values of the candidate food position (vij) somewhere around and be-
tween the parameter values of xij and xkj . Let λ ∈ (0, 1) be an uniform random
value, which are chosen for each new candidate solution. Then, the j-th param-
eter value of the candidate solution vi is computed according to Equation 2.

vij = (1− λ)xij + λxkj (2)

Max-Min-Arithmetical Recombination (ABCMMAX). In this case, the
operator [13] generates four candidate solutions according to Equation 3. After
evaluating them, a greedy selection mechanism is considered. Thereupon, four
additional evaluations per new candidate solution are required. For the first two
candidates, a λ ∈ (0, 1) value is used that is an uniform random value.

vij1 = λxij + (1 − λ)xkj)

vij2 = (1− λ)xij + λxkj

vij3 = min(xij , xkj

vij4 = max(xij , xkj

(3)

Linear Recombination (ABCLX). This operator [14] is similar to the AX,
but the λ remains fix and can take two possible values 0.5 and 1.5. Three candi-
date solutions vi are generated according to Equation 4. After evaluating each
new candidate position, the best one is considered. Consequently, this method
requires three additional evaluations per new candidate solution.

vij1 = 0.5(xij + xkj)

vij2 = 1.5xij − 0.5xkj

vij3 = −0.5xij + 1.5xkj

(4)

Previous operators only change one parameter j ∈ {1, 2, . . . , D} in vi and the
other ones are copied from xi but, in what follows, more than one parameter j
in the solution vi is different than xi ones. Another change is that the value of
each parameter remains without any adjustment, i.e., it is only copied from xi or
xk, depending of the operator, but no combinations of values for this parameter
are made. The operators are the following.

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

96

Binomial Recombination (ABCBX). The parameter values of the can-
didate food position are chosen from xi or xk (see Equation 5), depending on a
random value u to be lower than the probability parameter ρ ∈ (0, 1), which is a
defined by the user [15]. For this work, the ρ value was set to 0.5. Moreover, BX
generates the candidate food position ensuring that it gets at least one variable
from the k-th food position, as indicated in Equation 6.

vij =

{
xkj if u ≤ ρ

xij otherwhise
(5) vij =

{
xkj if vij = xij

vij otherwhise
(6)

One-Point Recombination (ABC1PX). This operator randomly selects a
cut point p ∈ (1, D) and the tails of xi and xk are swapped to get the candidate
food position, as is seen in Equation 7.

vi = {xi1, . . . , xip, xk(p+1), . . . , xkD, } (7)

Multi-Point Recombination (ABCmPX). In this operator [16], m differ-
ent cut points (mp ∈ (1, D − 1)) are chosen at random with no duplicates and
sorted into ascending order. Then, the variables between successive cut points
are exchanged between xi and xk to produce a new candidate food position, as
is shown in Equation 8.

vi = {xi1, . . . , xim1 , xk(m1+1), . . . , xk(m2), xi(m2+1) . . . xiD, } (8)

4 Experimental Design

In this section we describe the experimental design used in this work to com-
pare ABCTRAD with the six different algorithmic variants: ABCAX , ABCBX ,
ABCLX , ABC1PX , ABCmPX , and ABCMMAX . Furthermore, the execution en-
vironment and the analysis methodology are detailed in this section.

A popular choice for evaluating the performance of algorithms in the liter-
ature is to use the IEEE CEC’2008 test suite [17]. This benchmark is specially
designed with large scale real-parameter minimization problems (i.e. of dimen-
sions D=100, 500, and 1000). The mean and standard deviation of the error value
are used to measure the performance of the algorithmic variants. The error is
calculated as the difference between the current value of the global optimum
and the best found value. Particularly, for function F7, the absolute value of
the obtained optimum is recorded and compared, because for that function, the
globally optimal function value is unknown.

In the experiments, the seven ABC variants use the same parameter settings.
The colony size SN was set to 50. The control parameter limit is defined by
limit = SN × D [2]. The stop criterion is to achieve the maximum number
of function evaluations, computed as suggested in [17] (5000 ×D). Notice that
we are not using highly specialized ABC algorithms, since our goal is not to
outperform other algorithms, for the considered test suite, but to analyze the
influence of the different mechanisms to generate candidate food sources in the
behavior of the proposed algorithms.

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

97

Because of the stochastic nature of the algorithms, we performed 30 inde-
pendent runs of each test to gather meaningful experimental data and apply
statistical confidence metrics to validate our results and conclusions. Before per-
forming the statistical tests, we first checked whether the data followed a normal
distribution by applying the Shapiro-Wilks test. Since the results do not follow
a normal distribution, the non-parametric Kruskal-Wallis (KW) test is applied.
Then, the pair-wise Wilcoxon test is used, in order to assess individual differ-
ences in the performance of the algorithms. This pair-wise test must be adjusted
in order to compensate for the family-wise-error derived from the performance of
multiple comparisons, using the Holm’s method. Furthermore, multiple compar-
isons using the Tukeys range test are used. All tests are carried out considering
as significance value α = 0.01.

5 Analysis of results

In the following, we present an analysis of the results obtained by the six ABC
variants described in Section 3 and ABCTRAD to solve the CEC’2008 functions.
Our main goals are to offer different and efficient mechanisms that will be used
by the employed bees to generate candidate food positions. For that purposes,
we analyze the quality of results considering the error values obtained by ABC
for the functions from f1 to f6 and the objective values for f7. Additionally,
we study the hit rate and the distribution of the error values presented for
all algorithms. Moreover the computational effort to find the best solution is
evaluated.

In the Table 1, the mean error values found by the ABC variants are shown.
The best values are bold faced. From this table, two well differentiable groups of
algorithms can be observed when the quality of the solutions is considered, re-
gardless of the dimension. The first group, which consists of ABCTRAD, ABCAX ,
ABCLX , and ABCMMAX , obtains the lowest error values, and some of them find
the optimal values for the functions f1, f5, and f6 in all runs. In the second
group, which is composed of the remaining algorithms, their best solutions are
far from the optimum value (error values bigger than 1.28E+02). These differ-
ences among the algorithms is statistically supported by post-hoc tests after KW
test (p-values < 4.9E-10), as shown in the last column with the symbol +. The
poor performance of algorithms in the second group is due to the method to
generate the new candidate solution, which does not introduce any adjustment
to the parameters at the employed bee step through the search process. More-
over, multi-point and binomial operators reduce the representational bias at the
expense of increasing the disruption of parameters.

The ranking of the variants across the all dimensions is shown in Figure 1.
To obtain these ranks, the mean errors of all variants on a same function and
dimension were ranked from best (rank 1) to worst (rank 7). In the case of ties,
average ranks are computed. Additionally, the #func row on top of each bar
indicates the number of functions where each ABC variant finds the optimum
value. This figure empirically confirms the differences between the two above

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

98

Table 1. Mean error values from f1 to f6, and mean objective values for f7.

Func. Dim. ABCTRAD ABCAX ABCBX ABCLX ABC1PX ABCmPX ABCMMAX KW

f1

100 0.00E+00 0.00E+00 4.88E+05 2.09E-01 1.42E+05 5.30E+04 0.00E+00 +
500 0.00E+00 0.00E+00 3.03E+06 3.98E+00 1.80E+06 1.23E+06 0.00E+00 +
1000 0.00E+00 0.00E+00 6.20E+06 3.81E+00 4.28E+06 3.29E+06 1.03E-03 +

f2

100 6.35E+01 7.65E+01 1.58E+02 8.71E+01 1.38E+02 1.28E+02 8.05E+01 +
500 1.39E+02 1.01E+02 1.83E+02 1.14E+02 1.72E+02 1.64E+02 1.10E+02 +
1000 1.60E+02 1.10E+02 1.87E+02 1.25E+02 1.80E+02 1.76E+02 1.24E+02 +

f3

100 7.87E+00 1.23E+01 4.39E+11 2.31E+01 5.92E+10 1.47E+10 1.70E+02 +
500 1.30E+01 3.03E+01 3.44E+12 6.84E+01 1.50E+12 8.13E+11 8.35E+02 +
1000 1.49E+01 5.51E+01 7.36E+12 1.81E+02 4.08E+12 2.68E+12 1.70E+03 +

f4

100 1.30E+00 4.46E-02 2.25E+03 3.35E+00 9.66E+02 5.42E+02 2.53E-01 +
500 1.81E+01 5.17E+00 1.24E+04 2.60E+01 8.50E+03 6.78E+03 1.30E+00 +
1000 4.10E+01 1.30E+01 2.52E+04 6.02E+01 1.97E+04 1.66E+04 2.54E+00 +

f5

100 0.00E+00 0.00E+00 4.15E+03 2.28E-02 1.11E+03 4.48E+02 0.00E+00 +
500 0.00E+00 0.00E+00 2.58E+04 2.35E-01 1.50E+04 1.02E+04 0.00E+00 +
1000 0.00E+00 0.00E+00 5.51E+04 2.04E-01 3.84E+04 2.97E+04 0.00E+00 +

f6

100 0.00E+00 0.00E+00 2.13E+01 3.79E-02 1.97E+01 1.80E+01 3.59E-02 +
500 0.00E+00 0.00E+00 2.15E+01 4.63E-01 2.10E+01 2.06E+01 1.29E-01 +
1000 0.00E+00 0.00E+00 2.15E+01 5.32E-01 2.12E+01 2.10E+01 1.56E-01 +

f7

100 -9.09E+02 -9.14E+02 -6.98E+02 -9.73E+02 -7.25E+02 -7.40E+02 -9.48E+02 +
500 -5.50E+03 -5.52E+03 -3.12E+03 -5.76E+03 -3.33E+03 -3.33E+03 -5.61E+03 +
1000 -1.16E+04 -1.15E+04 -6.03E+03 -1.19E+04 -6.37E+03 -6.34E+03 -1.16E+04 +

100D functions

ra
nk

0
1

2
3

4
5

6
7

#func 4 4 0 3 0 0 4
500D functions

ra
nk

0
1

2
3

4
5

6
7

#func 3 3 0 2 0 0 4
1000D functions

ra
nk

0
1

2
3

4
5

6

#func 3 3 0 2 0 0 3

A
B
C

T
R

A
D

A
B
C

T
R

A
D

A
B
C

T
R

A
D

A
B
C

A
X

A
B
C

A
X

A
B
C

A
X

A
B
C

L
X

A
B
C

L
X

A
B
C

L
X

A
B
C

B
X

A
B
C

B
X

A
B
C

B
X

A
B
C

m
P

X

A
B
C

m
P

X

A
B
C

m
P

X

A
B
C

1
P

X

A
B
C

1
P

X

A
B
C

1
P

X

A
B
C

M
M

A
X

A
B
C

M
M

A
X

A
B
C

M
M

A
X

Fig. 1. Performance comparison based on the average rank over 7 functions. The rank-
ing was computed using the average error value of each algorithm.

mentioned groups, since ABCAX , ABCTRAD, ABCMMAX , and ABCLX (in this
order) are the best ranked algorithms. Furthermore, the three first algorithms
solve optimally between three and four functions, while the all algorithms of
the second group are not able to find the optimal value for any function and
dimension (#func = 0).

Regarding the previous analysis, we continue the result study considering the
first group of algorithms. The Table 2 shows the minimum values obtained by
each algorithmic variant considering all functions and dimensions. Additionally,

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

99

Table 2. Minimum error values from f1 to f6, and minimum objective values for f7.

Func. Dim. ABCTRAD ABCAX ABCLX ABCMMAX

f1

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 1.06E-01 0.00E+00
1000 0.00E+00 0.00E+00 2.94E-01 0.00E+00

f2

100 5.74E+01 6.84E+01 7.67E+01 7.24E+01
500 1.33E+02 9.62E+01 1.05E+02 1.04E+02
1000 1.55E+02 1.02E+02 1.17E+02 1.19E+02

f3

100 9.23E-01 2.49E+00 1.63E+00 1.34E+02
500 3.80E+00 2.02E+01 1.20E+00 7.55E+02
1000 8.64E+00 4.62E+01 5.34E+01 1.57E+03

f4

100 0.00E+00 0.00E+00 1.90E+00 0.00E+00
500 1.30E+01 2.00E+00 2.11E+01 0.00E+00
1000 3.32E+01 1.02E+01 5.10E+01 7.00E-03

f5

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1000 0.00E+00 0.00E+00 2.00E-03 0.00E+00

f6

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00
500 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1000 0.00E+00 0.00E+00 0.00E+00 3.00E-03

f7

100 -9.74E+02 -1.00E+03 -1.06E+03 -1.04E+03
500 -5.71E+03 -5.70E+03 -5.88E+03 -5.83E+03
1000 -1.19E+04 -1.22E+04 -1.20E+04 -1.23E+04

evaluations

2 × 105 3.5 × 105 5 × 105

100D functions

evaluations

1.4 × 106 1.95 × 106 2.5 × 106

500D functions

evaluations

3.5 × 106 4.25 × 106 5 × 106

1000D functions

A
B
C

T
R

A
D

A
B
C

T
R

A
D

A
B
C

T
R

A
D

A
B
C

A
X

A
B
C

A
X

A
B
C

A
X

A
B
C

L
X

A
B
C

L
X

A
B
C

L
X

A
B
C

M
M

A
X

A
B
C

M
M

A
X

A
B
C

M
M

A
X

Fig. 2. Boxplot of number of evaluations to find the best solutions for each dimension.

the Figure 2 presents box-plots that show the distribution of the evaluations to
find the best solution observed for each studied ABC variant on the 7 bench-
mark functions. On the basis of the results shown in the Figure 2, an important
difference between ABCLX and the rest of the algorithms is observed. ABCLX

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

100

needs a small computational effort, i.e. the lowest number of evaluations to
find its best solution. But when the error values from Table 2 are considered,
ABCLX presents a poor performance to solve the CEC’ 2008 benchmark func-
tions in comparison with the result quality obtained by ABCAX , ABCTRAD, and
ABCMMAX . Following with the analysis of the number of evaluations to find the
best solutions, the results of the post-hoc tests remark statistically significant
differences between ABCTRAD and both ABCLX and ABCMMAX , and between
ABCAX and ABCLX for 100D and 500D. In the case of 1000D, the difference
between ABCLX and ABCMMAX is also presented.

Summarizing, the ABCAX algorithm obtains the best tradeoff between the
solution quality and the effort to find the best result. As a consequence, these
results suggest that practitioners developing ABC-based solutions for applied
optimization could adopt more efficient choices to generate new food positions,
at the employed bee step. These choices can be based on standard recombination
operators, such us the AX operator.

6 Conclusions

This article analysis the effect of considering other methods to generate a can-
didate food position in the artificial bee colony algorithm. For that purpose, an
experimental evaluation of six recombination operators used to generate new
solutions is carried out to solve the CEC’ 2008 benchmark functions. These op-
erators are taken from the real-coded genetic algorithm literature and they are
used for the first time in the ABC framework.

The results obtained in these experiments suggest the use of the Arithmeti-
cal recombination as an interesting alternative for the traditional method to
create new food positions. Since this operator presents a very good performance
in terms of the average quality rank and the computational effort for all con-
sidered functions and dimensions. Furthermore, the performance of the use of
the remaining operators that adjust variables in the solutions (Linear and and
Max-Min-Arithmetical recombination operators) is similar to the behavior of the
traditional algorithm. Instead the ABC algorithms, which apply Binomial, One-
Point, and Multi-Point recombination operators and only copy parts of other
solutions to create a new one, seems no good alternatives to be used in the ABC
framework because of the low quality of their solutions for any function and
dimension.

As future research line, we will experiment with combinatorial problems to
extend the study presented in this work. These kind of problems has different
solution representations, imposing new methods to generate food positions. An-
other future line is related with the parallelization of the ABC algorithm using
the current parallel programming models.
Acknowledgments
The authors acknowledge the support of Universidad Nacional de La Pampa
and the Incentive Program from MINCyT. The second author is also funded by
CONICET.

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

101

References

1. V. Tereshko and A. Loengarov, “Collective decision-making in honey bee foraging
dynamics,” Computing and Information Systems Journal, ISSN 1352-9404, 2005.

2. D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical
function optimization: Artificial bee colony (abc) algorithm,” J. of Global Opti-

mization, vol. 39, no. 3, pp. 459–471, Nov. 2007.
3. D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,”

Applied Mathematics and Computation, vol. 214, no. 1, pp. 108 – 132, 2009.
4. S. Kockanat and N. Karaboga, “Parameter tuning of artificial bee colony algorithm

for gaussian noise elimination on digital images,” in 2013 IEEE INISTA, 2013, pp.
1–4.

5. B. Akay and D. Karaboga, “Parameter tuning for the artificial bee colony al-
gorithm,” in Proceedings of the 1st International Conference on Computational

Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems,
ser. ICCCI ’09. Springer-Verlag, 2009, pp. 608–619.

6. B. Alatas, “Chaotic bee colony algorithms for global numerical optimization,” Ex-

pert Systems with Applications, vol. 37, no. 8, pp. 5682 – 5687, 2010.
7. W. Gao, S. Liu, and L. Huang, “A global best artificial bee colony algorithm for

global optimization,” Journal of Computational and Applied Mathematics, vol. 236,
no. 11, pp. 2741 – 2753, 2012.

8. D. Aydın, T. Liao, M. A. Montes de Oca, and T. Stützle, Improving Performance

via Population Growth and Local Search: The Case of the Artificial Bee Colony

Algorithm. Springer Berlin Heidelberg, 2012, pp. 85–96.
9. K. Diwold, A. Aderhold, A. Scheidler, and M. Middendorf, “Performance evalu-

ation of artificial bee colony optimization and new selection schemes,” Memetic

Computing, vol. 3, no. 3, p. 149, 2011.
10. B. Akay and D. Karaboga, “A modified artificial bee colony algorithm for real-

parameter optimization,” Information Science, vol. 192, pp. 120–142, 2012.
11. A. Banharnsakun, T. Achalakul, and B. Sirinaovakul, “The best-so-far selection in

artificial bee colony algorithm,” Applied Soft Computing, vol. 11, no. 2, pp. 2888 –
2901, 2011, the Impact of Soft Computing for the Progress of Artificial Intelligence.

12. M.-D. Zhang, Z.-H. Zhan, J.-J. Li, and J. Zhang, Tournament Selection Based Ar-

tificial Bee Colony Algorithm with Elitist Strategy. Cham: Springer International
Publishing, 2014, pp. 387–396.

13. F. Herrera, M. Lozano, and A. Sánchez, “A taxonomy for the crossover operator
for real-coded genetic algorithms: An experimental study,” International Journal

of Intelligent Systems, vol. 18, no. 3, pp. 309–338, 2003.
14. A. H. Wright, “Genetic algorithms for real parameter optimization,” in Founda-

tions of Genetic Algorithms. Morgan Kaufmann, 1991, pp. 205–218.
15. G. Syswerda, “Uniform crossover in genetic algorithms,” in Proceedings of the 3rd

International Conference on Genetic Algorithms. Morgan Kaufmann Publishers
Inc., 1989, pp. 2–9.

16. L. J. Eshelman, R. A. Caruana, and J. D. Schaffer, “Biases in the crossover land-
scape,” in Proceedings of the Third International Conference on Genetic Algo-

rithms. Morgan Kaufmann Publishers Inc., 1989, pp. 10–19.
17. K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen, , and

Z. Yang, “Benchmark functions for the CEC’2008 special session and competition
on large scale global optimization,” Nature Inspired Computation and Applications
Laboratory, USTC, China, Technical Report, 2007.

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

102

