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Abstract
Sensor Clouds have opened new possibilities for re-
searchers of disciplines such as environmental mon-
itoring, precision agriculture and flood prevention.
This technology uses Wireless Sensor Networks
(WSNs) to collect real world data and Cloud Com-
puting to store and process them. The remote
management of WSNs setup and data in Sensor
Clouds implies: real time access to collected data,
sensor setup reconfiguration and sensor battery
status monitoring. Currently there are different
platforms for WSNs data and setup management
in Sensor Clouds. Generally, these platforms re-
quire that scientists of the mentioned disciplines
must have knowledge of WSNs and web services
programming in order to reconfigure the sensors
setup. Hence, these sensing resources can not be
provided in a transparent way to end-users. In
this paper, we propose the use of standard Cloud
File Synchronization Services (CFSS) for carry-
ing out the full management of WSNs in Sensor
Clouds. In order to validate our proposal, we con-
duct experiments using a Sensor Cloud platform
based on CFSS called Sensor Cirrus.

Keywords: Cloud Computing, WSN, Cloud
File Synchronization Services, IoT, Sensor Cloud
Management

1 Introduction
In lately 90s a military technology called Wireless
Sensor Networks (WSNs) goes to academics field
thanks to a research program called “Berkeley
Wireless Research Center PicoRadio Project” [1].
This program consists in the development of wire-
less networks composed by tiny embedded systems
called sensor nodes. These devices are composed
by a microcontroller, memory, sensors, battery
and a radio.

WSNs are targeted to work in outdoors condi-
tions, therefore battery-life in sensor nodes must

be maximized. Communication protocols for
WSNs are specifically designed in order to re-
duce energy consumption in sensor nodes. Due to
WSNs protocols are not compatible with TCP/IP
stack, it is necessary to include a device called base
station which acts as a gateway between WSNs
protocols and TCP/IP.

Among others, the main advantages of WSNs
are free maintenance, coverage of large areas for
monitoring applications and programming “over
the air”. These particular features of WSNs have
opened new possibilities for researchers which need
the collection of real world data in wide areas. Cu-
rrently WSNs are applied to environmental moni-
toring [2], precision agriculture [3], healthcare [4],
flood prevention [5] and others.

Generally, these applications generate large vol-
umes of data. As an example, can be mentioned
an environmental monitoring application like [6],
where a sensor node can generate up to 8 GB of
data each day. Other applications generate less
data volumes per sensor node (such as the ones
for agricultural and home monitoring). However,
the number of sensor nodes of these applications
increases each day, generating large data volumes.

In order to store and process the data of the
mentioned applications, it is necessary the use
of high performance computing (HPC) resources
like mainframes, clusters, Grid or Cloud Com-
puting. The main advantage of Cloud Comput-
ing compared with other HPC technologies is the
scalability for the provision of high performance
computing resources.

The use of Cloud for storing and processing data
collected by WSNs has generated large-scale in-
frastructures called Sensor Clouds [7]. Currently,
remote WSNs data and setup management in
Sensor Clouds is performed by cloud services es-
pecially designed for this function. Among others
web services, SOAP-XML [8], REST-JSON [9],
and commercial cloud services [10] customized for
WSN remote management, can be used.

The WSNs data and setup management with
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these ad-hoc cloud services have two main draw-
backs. The first one is the implementation of these
services for people (meteorologists, agronomists
and environmental scientists) without experience
in sensor networks and web services programming.
In SOAP-XML and REST-JSON, users need to
know how to program web services and describe
data in specific formats such as XML or JSON.
The second is the incorporation of WSNs already
deployed and operating to Cloud Computing. This
is because the addition of new software compo-
nents (like the ones of XML and JSON) to these
WSNs could generate fails and other performance
problems.

In the last five years the appearance and popu-
larity of cloud file synchronization services (CFSS)
like Google Drive [11] and Dropbox [12] have
opened new possibilities for the remote manage-
ment of WSNs in Sensor Clouds. Considering that
WSNs resources can be expressed as files, they
can be exported to Cloud Computing using CFSS
in a easy and reliable way. In CFSS users only
need access to a folder provided by the CFSS, in
which WSN data are stored. Besides, WSN data
are stored in the same format in which they are
generated by the sensors (e.g XBee API frame for
Digi XBee sensors). Hence, there is no need to
express them in specifics formats such as XML or
JSON because standard frame parsers provided
by sensor vendors can be used.

In this work we discuss and validate the imple-
mentation of CFSS for WSN remote management
in sensor clouds. In order to validate the CFSS
performance, we carry out an experiment using a
Sensor Cloud platform called Sensor Cirrus [19]
and an experimental WSN.

This paper is organized as follows. Section 2,
discusses previous work on remote management
of WSNs in Sensor Clouds. Next, Section 3 de-
tails Sensor Cirrus and the experimental WSN.
In Section 4 an experiment to study the packet
loss rate in the communication process of Sensor
Cirrus is carried out. This experiment allows to
validate the efficiency of CFSS for WSN manage-
ment. Finally, Section 5 details the results of the
conducted experiment and Section 6 brings the
conclusions of this work.

2 Previous Works

Different authors have proposed solutions for the
management of WSNs in Sensor Clouds. Most
of the works reviewed in this section use SOAP -
XML or REST-JSON web services for solving
WSNs data and setup management in Sensor
Clouds. Otherwise, CFSS are still a novel ap-
proach for WSN data and setup management,
thus CFSS are currently less used than the other

ones.

2.1 SOAP - XML

In Tangible Cloud Computing [13] the authors
applied the main concepts of Cloud (virtualized
resources, SaaS and pay-per-use price model) to
create a platform for integrating devices with sens-
ing capabilities to Cloud Computing. Tangible
Cloud Computing exports WSN data to Cloud
Computing using Amazon web services. In addi-
tion, this platform process sensor nodes data [14]
with Amazon EC2 instances, which are provided
on demand according application processing re-
quirements. WSNs data are exported to Cloud
Computing using Amazon web services.

Other authors like Hori et al. [10] use commer-
cial Cloud Services to store and process WSNs
data. The used services solve the WSNs resources
management. In adittion, the platform developed
by Hori et al. allows the integration with other
Cloud Services like the ones for business manage-
ment, production history, traceability and good
agricultural practice systems.

Aneka [15], is a Cloud Computing platform
that allows the management of WSNs data in
Sensor Clouds. This platform uses hybrid Cloud
resources to process data gathered by sensors and
other embedded devices. These data are delivered
to Aneka by different providers in a XML, JSON
or CSV format.

Ahmed and Gregory [8], develop an integration
framework between WSNs and Cloud Computing
using web services. The authors suggest that
Sensor Clouds allow the storage of WSNs data in
publics domains, which implies an efficient data
usage policy.

In this subsection different platforms which use
XML for WSN data and setup management have
been reviewed. Authors like [13, 10], use XML
services on sensor nodes. While this allows in-
teroperability practically since data are acquired
on-field, the size of sensors data increases due to
XML format. Hence, radios must be on trans-
mit state more time when sensor nodes sent XML
data, increasing energy consumption. Other au-
thors [15, 8] avoid extra energy consumption on
sensor nodes using XML only on WSN base sta-
tion. However, this can be a several problem in
base stations based on embedded systems pow-
ered with batteries. In summary, XML services
are suitable for WSN management if they are em-
bedded only in WSN base stations connected to
the power grid.

2.2 REST - JSON

Xively [16] is a commercial platform for Internet of
Things, which expands the concept of “WSN share
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data in public Clouds”. Xively includes storage
and visualization of WSNs data for the interaction
of companies with their employees, products and
customers along all the production process. This
platform uses REST services implemented in the
Xively REST API.

In [17], Sheng et al. Develop a lightweight
Framework for IoT device management. This
framework has two main components. The first
one is a CoAP (constrained Application Protocol)
component over 6lowPAN sensor nodes for com-
munication and device management. The second
one is a multiprotocol CoAP - REST gateway,
embedded in 6lowPAN border gateways. This
multiprotocol gateway allows WSN data and con-
figuration management from Cloud Computing.
Because, the REST service is embedded only in
the gateway of the WSN, the integration to Cloud
is performed conserving CoAP and 6lowPAN low
resources consumption on sensor nodes.

Hirafuji et al. [9], implement an Ambient Sensor
Cloud System for agricultural applications. This
platform uses Twitter Cloud services for WSNs
data storage and access. The main goal of this
platform is the simple and low cost concept proof
of Twitter usage for solving the management of
big data collected by large WSNs.

In conclusion, REST-JSON services allow inter-
operability and low energy consumption. This is
because data formated according JSON are less
verbose than the XML ones. Hence, the transmis-
sion of JSON data implies less energy consumption
in sensor nodes than XML data.

2.3 CFSS
In [18] the authors implement a platform based on
CFSS for accessing to environmental monitoring
WSNs using Dropbox. This platform uses Drop-
box for storaging WSNs data on Cloud Computing,
but not for sensor nodes setup management.

The main advantages of CFSS are reliability,
data ubiquity and easy data share. First, CFSS
brings reliability because provides data back-up
on both: Cloud and users devices. Second, syn-
chronized data are ubiquous, they can be accessed
by several users from different places through a
wide range of devices. Finally, CFSS allows easy
data share. WSN providers put both data: sen-
sors measurement and configuration parameters
on folders, which are synchronyzed with the Cloud
and clients get data from same folders. The main
problem of some popular CFSS clients like Drop-
box and Google Drive is the lack of compatibility
whith low-cost embedded systems like Arduino
(which are widely used as base stations in WSN).
This issue can be solved using a remote machine
(external to WSN) in which CFSS is running and
receiving data from WSN base station through

Figure 1: Sensor Cirrus Architecture Overview.

lightweight methods like TCP/IP sockets or REST
services.

Even though these services have been used for
WSN data share, to the best of our knowledge
there are no works oriented to implement the full
management of WSNs data and setup using CFSS.

3 Sensor Cirrus

In this section we present Sensor Cirrus, a plat-
form based on CFSS for WSNs management in
Sensor Clouds. This platform has been imple-
mented and used to manage a ZigBee WSN ap-
plied to frost monitoring in crops, in Mendoza
Province, Argentina. The ZigBee WSN is formed
by four sensor nodes and a base station. Sensor
nodes are composed by one Arduino Pro 328 [20]
embedded system, an XBee - ZigBee [21] radio
and a temperature and humidity Sensirion SHT15
sensor [22].

3.1 Architecture Overview

The architecture overview of Sensor Cirrus is
shown in Fig. 1. It is composed by two main
modules: WSN - TCP/IP and TCP/IP - Cloud,
together with a website that allows the access to
the platform.

The WSN - TCP/IP module of Sensor Cirrus,
acts as a gateway between the WSN native proto-
col (in our case ZigBee) and TCP/IP. The TCP/IP
- Cloud module, is composed of a CFSS service
plus a so called Integration Module. The Integra-
tion Module establish the connection between the
WSN - TCP/IP module and the CFSS in order to
manage the WSNs data and setup. Finally Sensor
Cirrus has a website deployed in a Cloud infras-
tructure. On the one hand, this website provides
access to scripts and applications that allow the in-
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Figure 2: WSN - TCP/IP Module.

teraction with CFSS in order to display, store and
process WSNs data. On the other hand, website
has forms that allow the management of WSNs
setup parameters like sample frequency.

3.2 WSN - TCP/IP Module

The WSN - TCP/IP module of Sensor Cirrus is
illustrated in Fig. 2. This module is programmed
in Python on the WSN base station, which is a
PC machine running Linux Debian 7. Although
WSN - TCP/IP module is programmed in python
it can be migrated to c languaje and programmed
on lowcost embedded systems such as Arduino
platform. This module of Sensor Cirrus has been
widely discussed on [19], therefore this section
provides a brief description of its main components
and functions.

The WSN - TCP/IP module is composed by
three main processes: ZigBee Coordinator Com-
munication, ZigBee Codification / Decodification
and TCP/IP Communication. The ZigBee Coor-
dinator Communication process connects Sensor
Cirrus with the WSN Coordinator. This connec-
tion allows the reception of data from WSN and
the performing of changes in sensor nodes setup.
The ZigBee Codification / Decodification process
extracts temperature and humidity data from the
ZigBee frames and generates ZigBee frames with
setup change requests.

Finally, TCP/IP Communication process estab-
lish two TCP/IP sockets with the TCP/IP Cloud
module of Sensor Cirrus. One of these sockets
is used to transmit the WSN data to TCP/IP -
Cloud module. The other one, allows to receive
setup change requests from TCP/IP - Cloud mod-
ule.

3.3 TCP/IP - Cloud Module

Fig. 3 shows the TCP/IP Cloud Module of Sensor
Cirrus. TCP/IP - Cloud module is programmed
in a machine different from the one which host

the WSN - TCP/IP module. This is because most
of the available CFSS clients (like Dropbox and
Google Drive) do not provide compatibility with
low-cost embedded system, which are currently
used as WSN base stations. Although in this
work our base station it’s a PC running Linux,
Sensor Cirrus must be prepared for working with
base stations composed by low cost embedded
systems. The TCP/IP - Cloud module has two
clearly differentiated components, the Integration
Module and a CFSS. In Sensor Cirrus, the CFSS
used is a Google Drive Client. This CFSS is used
instead Dropbox for two main reasons: the first
one is that Google Drive provides more storage
space than Dropbox in its no-cost version. The
second one is the compatibillity of Google Drive
with Google Cloud Platform [23].

It can be mentioned that the main drawback of
Google Drive is the lack of portability to Linux OS.
This problem can be solved using Google Drive
Clients for Linux developed by other providers.
However, this clients have economic costs or are
still in Beta version.

The Integration Module is composed by two
sub-modules (configuration and data access) and
a process so called TCP/IP Communication. The
Integration Module components were implemented
in Python and deployed on a remote Windows
PC, outside WSN. This PC contains the Google
Drive Client responsible for synchronizing data
and setup change request with the Cloud.

Figure 3: TCP/IP - Cloud Module.

Fig. 4 to 7 details how works the TCP/IP
- Cloud module of Sensor Cirrus. First, in
Fig. 4, TCP/IP Communication Process opens
two TCP/IP sockets with the WSN base station.
These sockets allow to receive data collected by
sensor nodes and carry out changes in sensor nodes
setup.
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Figure 4: TCP/IP Sockets

After these two sockets have established the
communication with WSN base station, the data
access sub-module receive WSN data through Base
Station and store them in files, as shown in Fig. 5.
When new data come from WSN, the data files
change and Google Drive synchronizes these ones
with the Cloud.

Figure 5: Sensor Data Acquisition.

Fig. 6 shows the management process of setup
changes requests. This process begins when
changes requests are performed by users through
Sensor Cirrus website. Requests are stored in a
WSN setup file located in a Public Cloud. This
setup file is synchronized via Google Drive with
the one hosted in the machine in which TCP/IP -
Cloud module is deployed.

Figure 6: Setup Change Request

Finally, the Configuration module (see Fig. 7)
through the Access process checks the last moment
in which has changed the configuration file of each
sensor node. If a change is registered, then a setup
change must be carried out. This is performed
sending the new setup value (entered by user in the
website) to the Base Station through the TCP/IP
Communication process.

Figure 7: Communication with TCP/IP - Cloud
Module

3.4 Sensor Cirrus Website

Sensor Cirrus website is the user interface of the
entire platform. This website allows to visualize
WSN data and perform changes in sensor nodes
setup. It has been developed using the Google
Sites and Google Drive toolkits. In addition, Sen-
sor Cirrus website is hosted on Google Public
Cloud. This Cloud brings hosting and access
to high performance computing resources at low
prices, 24 hours a day, 365 days a year.

Fig. 8 details the three main sections of Sensor
Cirrus website: WSN Real Time Access, Frost
Alerts and WSN Setup.
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Figure 8: Sensor Cirrus Website.

WSN Real Time Access section allows the visu-
alization of WSN data through graphics, as shown
on Fig. 9.

Figure 9: Temperature and Humidity Graphics of
WSN Data.

Frost Alerts section provides frost alarms, wich
are emitted by a frost prediction service developed
specifically for Sensor Cirrus. This service uses
WSN data and Amazon EC2 instances for predict
the occurrence of frosts. The frost prediction
service has been widely discussed in [24].

Finally, WSN Setup section allows to perform
changes in sensor nodes setup. Fig. 10 illustrates
the setup change process.

First, the user accesses to Setup section in Sen-
sor Cirrus website. Next, the user fills the fol-
lowing fields in a Google Drive form embedded
in the website: Node in which will be performed
the setup change and the new value of setup pa-
rameter. In Fig. 10 the user changes the sampling
period of sensor node (this can be 1, 5, 10 or 15
minutes).

Once the form has been filled, it is sent and the
information is stored in a spreadsheet on Google
Public Cloud. The spreadsheet contains a script
which detect the new configuration value and gen-
erates a CSV file in Google Drive. This CSV file
is synchronized on the TCP/IP - Cloud module of
Sensor Cirrus via Google Drive. When a change
is detected in the WSN setup file, the new setup
value is sent (through TCP/IP socket) to the WSN

Figure 10: Setup Change through Website.

- TCP/IP module in the WSN Base Station.
Finally the WSN - TCP/IP module performs

the change in sensor node through ZigBee Coordi-
nator.

4 Experiments

This section details the experiment conducted in
order to both, evaluate the performance of CFSS
and determine it viability for WSN remote man-
agement. This experiment was performed using
Sensor Cirrus and a WSN for frost monitoring.

4.1 Experimental Methodology

The experiment performed consists in the mea-
surement of how many data collected by the WSN
are lost in the Sensor Cirrus communication pro-
cess. In order to perform the experiment, we use
a ZigBee experimental WSN, which is currently
applied to frost monitoring. This WSN is com-
posed by four sensor nodes and a Base Station.
Fig. 11 illustrates one of the sensor nodes of the
WSN.

Figure 11: Sensor Node used in the Experiment.

The experiment is performed in two different
cases. The first one is a middle-size WSN com-
posed by 42 sensor nodes. The second one is a
large-size WSN composed by 300 sensor nodes.
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Currently, our experimental WSN is composed
by four sensor nodes. These sensor nodes perform
one data acquisition every 10 minutes. Hence,
we need to use time multiplexing in data acqui-
sition, in order to generate the same number of
data frames than large-size and middle-size WSN.
The time multiplexing consists in the increase of
sampling rate in sensor nodes.

When data acquisition is performed in our WSN
every 10 minutes, each sensor node generates 6
data packets per hour. Then, the overall WSN
(composed by 4 sensor nodes) generates 24 packets
of real temperature and humidity data in one hour.

In the middle-size WSN case, time multiplexing
was implemented programming a sample rate of
one data acquisition each 57 seconds in each sensor
node. This sample rate allows the generation of
252 data frames in the overall WSN, in one hour.
This quantity of frames generated in one hour in
our experimental WSN is equal than the generated
in a WSN composed by 42 sensor nodes performing
one acquisition each 10 minutes.

The experiment in the middle size WSN is con-
ducted during 9 days of WSN continuous function-
ing in laboratory conditions. Sensor nodes were
deployed on the same workbench and the base
station is located 1 meter from sensor nodes.

Regarding time multiplexing in large-size WSN
test case, sensor nodes were programed with a
sample rate of one data acquisition each 8 sec-
onds. This acquisition rate generates 1.800 data
frames in all the experimental WSN in one hour.
Hence, this frame quantity is equal than the one
generated by a large-size WSN, composed by 300
sensor nodes, performing one acquisition every 10
minutes.

In large-size WSN test case, the energy con-
sumption in sensor nodes is higher than the one of
the middle-size WSN. Then, the experiment only
can be performed during 3 days of WSN continu-
ous functioning because batteries were exhausted
after this time period.

Table 1 summarizes each case. The second
column indicates the number of sensor nodes ob-
tained by time multiplexing and the third column
the number of packets generated in one hour by
the experimental WSN in each case.

Test Case Sensor
Nodes

Frames
generated per

hour

Middle-size WSN 40 252
Large-size WSN 300 1.800

Table 1: Test Cases.

The metric used for determining how many data
collected by the WSN are lost in each link of
the Sensor Cirrus communication process is the

Figure 12: Sensor Cirrus Communication Process.

packet loss rate (or simply PLR). This metric is
complementary to the correct packet delivery rate
which was used in previous work [25] for studying
ZigBee communication performance in different
applications. We are going to target our studies
in WSNs applied to precision agriculture, because
this will be the main application of Sensor Cirrus.

Currently there is not an unified criteria for
determining the correct value of PLR in WSNs
applied to precision agriculture. In [26], Humber
et al. develop a reliable delivery data service
for WSNs. They perform studies of PLR using
two environmental WSNs. The first one, its a
laboratory WSN composed by 9 sensor nodes and
the second one its a simulated WSN composed by
18 sensor nodes. Results in [26], shown a PLR
of 7,21% in the laboratory WSN and a PLR of
11,19% in the simulated one.

In other work [27], Pierce et al. deploy in-field
a WSN composed by 21 sensor nodes and obtain
a PLR value between 3 and 7 %. Finally in [28]
Nadimi et al. get a PLR of 8% in a WSN composed
by 7 sensor nodes applied to cattle monitoring.

Based on previous works, in this paper we will
consider a PLR value up to 10% for determining
if the Sensor Cirrus communication process is
reliable.

Sensor Cirrus communication process starts
when sensor node acquires data and ends when
data arrives to Cloud. Fig. 12 details the Sensor
Cirrus communication process and its communica-
tion links. In Fig. 12, each Sensor Cirrus module
is identified with a number and the communica-
tion links with the numbers of the modules that
it connects.

Table 2 shows the extremes of each link of Sensor
Cirrus communication process, the communication
links and they corresponding nomenclature.

First, PLR is calculated in each link. Next, it
is computed in the entire Sensor Cirrus communi-
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Link
Extremes

Link
Nomenclature

TCP/IP - Cloud Module and Cloud E34
WSN - TCP/IP and TCP/IP - Cloud

Module
E23

WSN and WSN - TCP/IP Module E12

Table 2: Extremes and Nomenclature of Commu-
nication Links.

cation process. This is for determining how many
packets are lost in the communication process.

The PLR value is calculated using the Eq (1):

PLRtr = 100 − PDRtr , (1)

Where PDR is correct packet delivery rate and
is calculated with the Eq (2):

PDRtr =
3

Nr

Nt

4
· 100 , (2)

In Eq (2), t is the extreme of the link sending
packets, r is the link extreme receiving packets,
Nt the quantity of packets generated in t link
extreme and Nr the number of received packets
in link extreme r.

5 Results

This section discusses the results obtained in exper-
iments conducted in middle and large-size WSN
test cases.

5.1 Middle-size WSN
Ideally middle-size WSN generates 252 packets
per hour, which represents 54.432 data packets
throughout the 9 days of the experiment. This
value corresponds to the 100% of packets trans-
mitted by the WSN, then the PLR will be zero if
the 54.432 data packets are received in the Cloud.
However, results show that data frame are lost in
some links of Sensor Cirrus communication pro-
cess. Table 3 details the quantity of emitted and
received packets by each component involved in
the communication process.

Component Emitted
Packets

Received
Packets

Cloud Only receives. 52.702
TCP/IP - Cloud

Module
52.702 52.702

WSN - TCP/IP
Module

52.702 52.702

WSN 54.432 Only emits.

Table 3: Emitted and Received Packets in middle-
size WSN case.

Link Components PLR

E34 Cloud and TCP/IP -
Cloud Module

0,000

E23 TCP/IP - Cloud and
WSN - TCP/IP

Modules

0,000

E12 WSN and WSN -
TCP/IP Module

3,178

Table 4: Middle-size WSN Results.

Results indicate that data lost occurs in the link
between the WSN and the WSN - TCP/IP module,
in this link 1.730 packets were lost. This problem
is because ZigBee coordinator is busy, attending
to much sensors requests. Hence, it can not send
the ZigBee acknowledgment frame to all the sensor
nodes. ZigBee acknowledgement frames confirm
the correct reception of data and setup packets
in the communication between sensor nodes and
WSN Coordinator. When a ZigBee sensor node
can not receive the coordinator acknowledgement
frame, it retries the data transmission three times.
If the acknowledgement frame from coordinator
is not received by the node, then sensor node
discards the data packet and enters in sleep-mode
for reducing energy consumption.

In the link between WSN - TCP/IP and
TCP/IP - Cloud modules all the received data
were correctly delivered. This is because commu-
nication is performed over a TCP socket. Likewise,
data losses were not observed in the link between
the TCP/IP - Cloud module and the Cloud. This
is due to CFSS (Google Drive) synchronizes all
data packet with the Cloud.

The PLR values in each communication links
are shown in Table 4.

It can be seen that PLR is 3,178 % in the link
E12 , the only one that register data lost. In
links E23 and E34 PLR is zero. Finally, using the
packets emitted by the WSN and the ones received
by the Cloud the PLR in the entire communication
process is calculated. The PLR is 3,178% in the
overall communication process. This PLR value
shows that packet loss rate is widely less than 10%
(3.178%). Therefore, we can conclude that Sensor
Cirrus and it CFSS manages efficiently middle-
size WSNs. It is noteworthy that our experiment
was conducted in laboratory conditions, then it
is expected that PLR value would be greater in
outdoors working conditions.

5.2 Large-size WSN

In this section we present the results obtained in
the experiments conducted in a large-size WSN.
Ideally, WSN generates 1.800 data packets in one
hour, which implies 129.600 data packets in the
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Component Emitted
Packets

Received
Packets

Cloud Only receives. 114.748
TCP/IP - Cloud

Module
114.748 114.748

WSN - TCP/IP
Module

114.748 114.748

WSN 129.600 Only emits.

Table 5: Emitted and Received Packets in large-
size WSN case.

Link Component PLR

E34 Cloud and TCP/IP - Cloud
Module

0,000

E23 TCP/IP - Cloud and WSN -
TCP/IP Modules

0,000

E12 WSN and WSN - TCP/IP
Modules

11,46

Table 6: Large-size WSN Results.

three days of all the experiment. Results show
packet losses only in the link E12 of communica-
tion process. Such as middle-size WSN case, losses
are due to packet traffic density on ZigBee coor-
dinator. Table 5 details the quantity of emitted
and received packets in the large-size WSN case.

In Table 5, it can be seen that packet are lost
only in the link between the WSN and WSN -
TCP/IP module. In this link the WSN generates
129.600 frames and the WSN - TCP/IP module re-
ceives 114.748 frames. Hence, 14.852 data frames
were lost.

In the other links of communication process (E23
and E34 ) all the emitted data are delivered. Like
the middle-size WSN case, CFSS delivers correctly
all the received data from WSN - TCP/IP module
to the Cloud.

Table 6 shows the PLR values obtained on each
link of Sensor Cirrus communication process in
the large-size WSN case.

The PLR value for the entire communication
process can be computed considering emitted pack-
ets by WSN and the ones received by the Cloud.
This PLR value is 11,46% and is greater than
PLR target value (10%). Obtained PLR indicates
that WSN - TCP/IP Module presents problems to
manage WSN composed by more than 300 sensor
nodes. However, this problems could be solved
decreasing the quantity of sensor nodes managed
by each base station. Hence, for managing 300
sensor nodes it is recommended the use of two
base stations (with 150 sensor nodes connected to
each one), instead one base station per 300 sensor
nodes. Another possible solution is to add more
ZigBee coordinators per base station. Neverthe-
less, this solution should be validated experimen-

tally, studying the behavior of the USB bus or
UART interfaces for the case of embedded systems
used as base stations and other issues.

6 Conclusions

Currently, CFSS have opened new possibilities
for the remote management of WSNs in Sensor
Clouds. These services provides an easy and reli-
able way for WSN resources management. Among
other benefits, CFSS allows reliable file synchro-
nization, easy deployments and no specifics WSN
and web services programming competences for
Sensor Clouds users.

In this work we validate the use of CFSS using a
platform for WSN management in Sensor Clouds
called Sensor Cirrus. This platform uses a Google
Drive client for file synchronization. Compared
with other CFSS like Dropbox, the main advan-
tages of Google Drive are the storage space in its
no-cost version and the interoperability with other
Google Cloud Services.

In order to validate the performance of CFSS for
WSN management, an experiment for studying the
Packet Loss Rate (PLR) in Sensor Cirrus commu-
nication process has been conducted. We studied
different related works for determinate which is
the PLR value of an efficient communication pro-
cess in management platforms of environmental
WSN. According related works, the targeted PLR
value in environmental WSN communication pro-
cess must be less or equal to 10% for considering
the process efficient and reliable.

In the middle-size WSN case the PLR value was
of 3,178%. This one is less than the targeted value.
In the large-size WSN case PLR was of 11,46%.
In this case, PLR value is greater than the target
one. Then the platform presents drawbacks for
the management of WSNs composed by 300 sensor
nodes or more.

To solve the drawbacks encountered in the large-
size case, there are two possible solutions. First,
the quantity of sensor nodes managed by one base
station must be reduced. Second, more ZigBee
coordinators must be added in each base station.
Hence, almost two base stations or ZigBee coordi-
nators are necessary in a WSN composed by 300
sensor nodes or more.

Regarding frame losses in each Sensor Cirrus
communication links, these ones were registered
only in the link between the WSN and the WSN-
TCP/IP module. This losses are due to ZigBee
coordinator is busy, attending to much sensors
requests. Hence, it can not send the ZigBee ac-
knowledgment frame to all the sensor nodes. If
sensor nodes did not receive this frames, after
three retries discard data packets. This effect is
notorious on the large-size WSNs.
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The link between WSN - TCP/IP module and
TCP/IP - Cloud module of Sensor Cirrus did not
shows data lost. Likewise, in the link between
TCP/IP - Cloud module and the Cloud all the
emitted data were delivered. Hence, results show
that CFSS synchronize all the data frames received
in the TCP/IP - Cloud module with the Cloud.

In conclusion, from the experiments carried out
and the obtained results, can be expressed that
cloud file synchronization services are a reliable
and efficient technology for the remote manage-
ment of WSNs in Sensor Clouds.

Finally, in future works we will (i) test others
CFSS like ownCloud [31], (ii) compare Sensor Cir-
rus with other IoT platforms and (iii) conduct
experiments with the experimental WSN and Sen-
sor Cirrus in real outdoors conditions.
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