
Data stream treatment using sliding windows
with MapReduce

Maŕıa José Basgall1,2, Waldo Hasperué2, and Marcelo Naiouf2

1UNLP, CONICET, III-LIDI, La Plata, Argentina
2Instituto de Investigación en Informática (III-LIDI), Facultad de Informática - Universidad Nacional de La Plata

{mjbasgall, whasperue, mnaiouf}@lidi.info.unlp.edu.ar

Abstract

Knowledge Discovery in Databases (KDD) tech-
niques present limitations when the volume of
data to process is very large. Any KDD algorithm
needs to do several iterations on the complete set
of data in order to carry out its work. For con-
tinuous data stream processing it is necessary to
store part of it in a temporal window.

In this paper, we present a technique that uses
the size of the temporal window in a dynamic way,
based on the frequency of the data arrival and
the response time of the KDD task. The obtained
results show that this technique reaches a great
size window where each example of the stream is
used in more than one iteration of the KDD task.

Keywords: Big Data, MapReduce, Stream Pro-
cessing.

1 Introduction

Stream processing (from now on SP) is an area
extensively studied in recent years. SP permits
carrying out certain works through the analysis of
a continuous and potentially infinite data stream
[1][2][3][4][5][6][7][8][9].

The aim of SP is to permit that the tasks ana-
lyze the data stream online, producing outputs at
appropriate times. The main characteristic of this
kind of processing is that the data of the stream
arrive so fast that it is not possible to store them
all and, if they can be stored, the data volume is
so large that it is difficult to analyze it in short
response times [10].

In order to carry out the analysis taking into
account great volumes of data, it is extremely
useful to use multiprocessor technologies, as well
as algorithms parallelization techniques that take
advantages of these technologies. Currently, it is
possible to find several contributions where High
Performance Computing (HPC) concepts are used
in the stream processing area [1][2][3], at the same
time, it is possible to find Cloud Computing pa-
pers. The latter introduces a new scope from the
high performance computing point of view, since
they give a “tailored” support for the use of ap-

plications without the need to purchase hardware
[11][12][13][14].

Most of the techniques proposed for SP use the
stream treatment model where each example is
processed only once [1][15][16][17]. Other tech-
niques implement a temporal and sliding window,
where they store the last n data received or the
most representative n [18][19][20][21][22].

The first approach has a great drawback: if the
stream data distribution changes through time, it
is very hard to build a model of the data that is
able to learn from the new and old characteristics.
This does not happen with those models that use
a temporal window, since they store part of the
stream and they can refeed the data model with
the last example collected from the stream plus
the n mentioned stored data.

For some problems, the goal is to find or adapt
to the changes of the stream data distribution
[8][18], therefore, the methods of the simple model
of collect-use-discard an example are useful. For
other situations, it is very interesting to build a
model using all stream data. Like it is usually
impossible due to the great volume of information,
it is desirable to get the data model using most
part of these. In this kind of cases, it is essential
to have techniques that allow to use a temporal
window as large as possible.

1.1 Data stream mining

Data stream mining area is in charge of processing
data stream so as to get useful knowledge, in most
of the cases, to make decisions. To get knowledge,
it is necessary to apply some technique from the
data stream mining area.

The traditional techniques used to get knowl-
edge from a data set show limitations when the
amount of data processed is very large, due to
the execution time they need to perform the task.
Any traditional algorithm, either clustering, clas-
sification, regression, learning by neural networks,
among others, needs to perform several iterations
on the complete data set to carry out its goal. It
is impossible to apply the traditional techniques
to a data stream since this cannot guarantee a

JCS&T Vol. 16 No. 2 November 2016

76

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296390321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

quick answer where data from a stream is still
being collected.

To avoid the problem pointed out in the previ-
ous paragraph, there exists two alternatives. The
first one consists in using a temporal window, the
second one tries to control the amount of itera-
tions of the algorithm that perform the knowledge
extraction task. The answer is to find a balance
between both alternatives, since by using a tem-
poral window of a large size, the response times
will be large, whereas with a small window, the
response times will be quicker, but the obtained
results will be based on a small amount of the
stream. Therefore, it is interesting to have a tech-
nique that permits the treatment of the largest
possible amount of data and short response times.

A technique that handles the amount of itera-
tions made by the algorithm that performs the
tasks, along with the temporal window size as a
function of the stream frequency, the amount of
stored data for processing, and the time it takes
to obtain a partial result with the current data
set, keeping the largest possible amount of stream
available inside the window, is presented. In this
way, the algorithm that performs the knowledge
extraction uses each example during a meaningful
number of iterations.

In this paper, a clustering technique was used
to perform tests on a data stream. The algorithm
used was K-means [23], to which the necessary
modifications were performed in order to execute it
using Hadoop MapReduce (framework for parallel
and distributing processing) [24].

Hadoop MapReduce was chosen since it has a
great computing capacity, which offers the possi-
bility to use a wide data temporal window. It also
facilitates the algorithms parallelization task.

This paper is organized as follows. In section
2 MapReduce paradigm is mentioned, in section
3 the proposed method is presented. In section
4, the experiments performed and the results ob-
tained are shown. Finally, in section 5, conclusions
and future work are presented.

2 MapReduce

One of the most used tools for the processing
of large amounts of data is Hadoop MapReduce.
From a paradigm originally developed by Google
[25] and built on well-known principles of parallel
and distributed processing. It is a framework for
applications that processes large-scale data on
clusters of servers commodity, which works on the
HDFS file system.

Hadoop HDFS [24] offers efficiency, it is dis-
tributed, it gives fault tolerant storage and it is
appropriate for applications that use large amount
of data, since it gives a high performance access to

them. It keeps large files with data access patterns
in streaming. Its block size is much larger than
the traditional filesystems size; this is so to reduce
the number of disk searches.

The way a MapReduce works is based in two
phases. The first phase (Map) consists in associ-
ating each example read with a key, i.e, it takes a
group of input data and turns them into another
group of data where the elements are turned into
tuples (pair of key-value). When this phase ends,
the second phase (Reduce) starts to work, where
each reducer process receives all the values that
are associated with a common key to, in the end,
do the task, which solves specifically the problem
and is written by the programmer.

3 Technique for handling the data
temporal window

The proposed technique consists in two tasks. The
first one is based on the capture of the data stream
and its corresponding storage, that is executed
continuously. The stream is read online, and the
collected data is saved in the buffer. This buffer
has no logical limits and it is organized into files
which contain an amount of data (b); being b a
parameter of the algorithm.

The second task performs the processing of the
stream mining algorithm (in this particular case,
a clustering technique), being executed in the
MapReduce framework, using as input all the files
inside the work directory in the HDFS. When the
total size of the files is too big, the oldest files are
deleted, reducing in this way the data window.

As data are collected from the stream, these are
stored in a new file. The problem in accumulating
files inside the directory is that, the more
data there are, the longer time will need the
MapReduce process to treat them.

3.1 Clustering on MapReduce
During the MapReduce phase, the clustering pro-
cedure is carried out, which is based on the K-
means algorithm. The K number of clusters to
find is determined at the beginning of the process
and the initial centers are selected randomly.

The MapReduce job starts when the buffer
stores a predetermined quantity of data of the
stream. In that moment, all the accumulated data
are stored into a file inside the work directory in
the HDFS and its work starts. The algorithm pro-
posed (algorithm 1) performs an iterative process
which consists of stages. In each stage, the group
of K centroids is passed to the Map process which
looks for the closer c centroid, for each v input
vector. As output, it writes tuples (c, v). Figure
1 shows the DAG of the proposed algorithm.

JCS&T Vol. 16 No. 2 November 2016

77

Figure 1: DAG

Algorithm 1 Pseudocode algorithm
{ Kpre: previous centers, Kcur: current centers,
Wsize: window size, Sit: iterative stage}

while data stream do
update working directory
{ Begins iterative stage }

run MapReduce job
update Kpre

if Kcur do not change significantly from
Kpre then

activate cut Sit

end if
update Kpre with Kcur

if full buffer then
if not activated cut Sit then

decrease Wsize

if round <= m then
increase Wsize

else
activate cut Sit

end if
end if

else
if activated cut Sit then

increase Wsize

end if
end if

{ Ends iterative stage }
end while

To take full advantage of the parallel computing,
k reducers are created. Each one receives all the
corresponding vectors to a same cluster and, with
them, calculates the new centroid, that comes
from the calculation of the average vector among
all the received vectors. Each reducer writes as
output the new centroid that was calculated apart
from all the vectors that belong to the cluster.
This last permits to know how the clusters are
made up at the end of a MapReduce phase (this
information is not used in this paper, but it will

be useful in the future to study the own clustering
result).

When the MapReduce job ends, the new C
group of centroids is read from the work directory.
Then, a new MapReduce job is carried out to re-
fine the clustering procedure and, therefore, make
the centroids converge. This iterative process con-
tinues until one of the two options described below
occur.

The first one is when the job is executed a m
maximum number of times, while the second con-
dition happens when the clustering task reaches
an equilibrium point and the centroids do not
change meaningfully from one iteration to another,
which is defined by the t convergence determina-
tion threshold.

While the MapReduce job works in the clus-
tering algorithm, the streaming process continues
with the data capture by filling a new buffer. In a
new file, up to b data from this buffer, are stored.
This condition exists in order to prevent files with
a great amount of data from being written and to
avoid the entire replacement of the window, thus
achieving a slight displacement thereof.

During all this process, one of the parameters
that is modified in a dynamic way is the size of the
window that initially is proportional to the buffer
size with a proportionality factor called f. The
window increases when the algorithm reaches the
convergence and, at the same time, the amount
of data in the buffer is less than b. This means
that the algorithm achieves to complete the data
model and, therefore, the capacity of working with
a larger volume of data is now possible. Other-
wise, if the number of data in the buffer is larger
than b and the algorithm did not get a conver-
gence state, the size of the window is reduced in b,
by eliminating the corresponding amount of files
from the HDFS. When the amount of data in the
buffer are larger than b, it means that the data
stream speed increased, therefore, the b parameter
increases as well, to make larger the amount of

JCS&T Vol. 16 No. 2 November 2016

78

Figure 2: Data stream mining process applying an iterative task using MapReduce

data entered in the window. This implies a more
abrupt displacement of the window.

Figure 2 shows the data stream mining process
applying an iterative task using MapReduce.

4 Performed tests and results

The tests were performed using a data stream from
Twitter which has 830745 tweets. Figure 3 shows
the arrival frequency. Since the collected data
stream last more that five days, the data stream
was transformed reducing the duration between
the first and the last collected tweet, changing
just the duration of the entire stream, keeping the
relative frequency of the arriving tweets. All the
test were performed using the same data stream.

The text of the tweets were processed to convert
them into binary vectors of 90 dimensions, where
each element represents the absence or presence
of a particular topic. For all the tests the cosine
distance was used as a similarity measure for the
k-means algorithm execution, since is the most
used in this kind of problems [26]. Tests with K
from 4 to 11 have been performed. As an arbitrary
example, the results for K = 5 have been presented
in most cases. Bottlenecks have not been found.

Several tests were performed in which different
parameters were modified. They are described
below:

• Amount of data into a file (b): determines
the data size being written in each file inside
the work directory.

• Factor determining the initial window size (f):
this factor is linked with b, sets the size with
which the data window is initially defined.
The window capacity is modified at runtime.

• Buffer size extension factor (e): defines the
proportion with respect to the actual size of
the buffer in which it will be increased.

• Maximum iterations (m): sets the maximum
number of iterations to be carried out at each
stage of the process.

• Convergence determination threshold (t): it
is used to specify whether the centroids reach
convergence from an iteration to another.

From the different values taken by the parame-
ters detailed in table 1, the combination of them
(720 in total) that best fits the analyzed data
stream is empirically obtained, taking into ac-
count the number of interrupted stages and the
values given by the renewal coefficient (r). This
coefficient determines the proportion of data that
are renewed in the window at each stage, tak-
ing the value 0 for the case where the data in
the window are completely replaced, and value 1
otherwise. See equation 1.

r = tti−1 − rti

tti
(1)

Where tti is the total quantity of tweets in the
stage i and rti is the number of deleted tweets in
the stage i.

Tests show that the best results are obtained
from a large window size of 50000 (b x f = 1000
x 50 = 50000).

From all the tests performed, the two best were:

• Case I uses the following parameters: s =
1000, f = 50 , e = 0.5, m = 4 and t = 0.01

• Case II has the following configuration: s =
1000, f = 50 , e = 0.5, m = 6 and t = 0.01

In figures 4 and 5 the renewal coefficient for each
stage of the cases I and II is shown. These charts
show that in the first four stages, the algorithm
is able to keep into the window more and more
data from the previous stage. Then, in stages 5,
6 and 7 the algorithm renews completely the data
in the window. Due to the nature of the data
source, a high peak of them causes the algorithm
to completely renew the data into the window.
After that, the algorithm manages to keep the
index greater than 0.6 in one case and 0.5 in
the other, acquiring some stability in the r value,
except in the stage 13 and stage 19, in each case.

For each stage, the window size and the runtime
of the MapReduce job in the cases I and II are

JCS&T Vol. 16 No. 2 November 2016

79

Figure 3: Tweets arrival frequency

Table 1: Parameters used for performing tests

Parameter Value

Amount of data into a file (b) {1000, 5000, 10000, 50000, 100000}

Factor determining the initial window size (f) {2, 5, 10, 50}

Buffer size extension factor (e) {0.1, 0.5, 1}

Maximum iterations (m) {4, 6, 10, 30}

Convergence determination threshold (t) {0.00001, 0.0001, 0.01}

described in figures 6 and 7. As to the size of the
window is observed that it grows till the end of
the experiment. This growth is possible because
each stage begins its execution with the centroids
of the previous stage. Upon achieving certain
equilibrium, each stage requires fewer iterations
to keep it, what causes that the following stages
have the capacity to work with larger windows.
In the same chart the runtime of the MapReduce
job is shown, from where it follows that it was less
than two minutes in all stages.

For experimentation, a sheet was used from a
Blade of 8 sheets, with two 2.0 GHz quad core
Intel Xeon e5405 processors, in each of them. Each
sheet has 10Gb of RAM (shared between both
processors) and L2 cache 2 x 6Mb between pairs
of cores.

5 Conclusions and future work

In this paper, a technique for the use of a sliding
window of data stream, where the main feature
is to maximize the size of such window, allowing
each collected example from the stream to be used
by the knowledge extraction algorithm as many
times as possible, is presented. From the obtained
results, it is possible to conclude that the proposed
technique can use windows of great size and still

fulfilling the aim of the work.
Although the tests were done with a clustering

task using a K-means algorithm [23] version in
the MapReduce paradigm [24], it is possible to
use the proposed technique with any iterative task
just by using its corresponding implementation in
MapReduce.

As a future work, the continuity of these tests
for different data streams is proposed to try get-
ting an intelligent handling of the window size
based on changes to the stream frequency, and re-
sponse time of the task being performed. Another
objective for the future is to implement this tech-
nique in specific environments for the treatment
of streaming such as Spark Streaming [27].

References

[1] N. Takahashi et al., “A parallelized data
stream processing system using dynamic time
warping distance,” in 2009 International Con-
ference on Complex, Intelligent and Software
Intensive Systems, Fukuoka, Japan, March
16-19, 2009, pp. 1100–1105.

[2] Y. Noh et al., “Real-time data stream pro-
cessing for ubiquitous home network systems,”
in 4th International Conference on Multime-

JCS&T Vol. 16 No. 2 November 2016

80

Figure 4: Renewal coefficient for each of the stages. Case I

Figure 5: Renewal coefficient for each of the stages. Case II

Figure 6: Window size and MapReduce job runtime for each of the stages. Case I

JCS&T Vol. 16 No. 2 November 2016

81

Figure 7: Window size and MapReduce job runtime for each of the stages. Case II

dia and Ubiquitous Engineering, MUE 2010,
Cebu, Philippines, 11-13 August, 2010.

[3] C. Kuka, “Processing the uncertainty:
Quality-aware data stream processing for dy-
namic context models,” in Pervasive Comput-
ing and Communications Workshops (PER-
COM Workshops), 2012 IEEE International
Conference on, pp. 560–561, March 2012.

[4] D. Bonino and F. Corno, “spchains: A declar-
ative framework for data stream processing in
pervasive applications,” Procedia Computer
Science, vol. 10, 2012.

[5] J. Stefanowski et al., “Processing and mining
complex data streams,” Inf. Sci., vol. 285,
pp. 63–65, 2014.

[6] R. Agerri et al., “Big data for natural lan-
guage processing: A streaming approach,”
Knowledge-Based Systems, vol. 79, 2015.

[7] Y. Ma et al., “Remote sensing big data
computing,” Future Gener. Comput. Syst.,
vol. 51, pp. 47–60, Oct. 2015.

[8] P. ZareMoodi et al., “Novel class detection
in data streams using local patterns and
neighborhood graph,” Neurocomput., vol. 158,
pp. 234–245, June 2015.

[9] D. Desai and A. Joshi, “A deviant load shed-
ding system for data stream mining,” Proce-
dia Computer Science, vol. 45, 2015. Interna-
tional Conference on Advanced Computing
Technologies and Applications (ICACTA).

[10] A. Rajaraman and J. D. Ullman, Mining of
Massive Datasets. New York, NY, USA: Cam-
bridge University Press, 2011.

[11] G. Hager and G. Wellein, Introduction to
High Performance Computing for Scientists
and Engineers. (”Chapman and Hall/CRC”
Computational Science), CRC Press, 2010.

[12] P. Pacheco, An Introduction to Parallel Pro-
gramming. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1st ed., 2011.

[13] S. Zhang et al., “Cloud computing research
and development trend,” in Future Networks,
2010. ICFN ’10. Second International Con-
ference on, Jan 2010.

[14] S. S. Saurabh Bilgaiyan and S. S. Sahu,
“Cloud computing: Concept, terminologies,
issues, recent technologies,” Research Jour-
nal of Applied Sciences, vol. 9, pp. 614–618,
2014.

[15] S.-S. Kim and H.-K. Ahn, “An improved data
stream algorithm for clustering,” Computa-
tional Geometry, vol. 48, no. 9, 2015.

[16] E. Lughofer and M. Sayed-Mouchaweh, “Au-
tonomous data stream clustering implement-
ing split-and-merge concepts - towards a plug-
and-play approach,” Inf. Sci., vol. 304, May
2015.

[17] A. S. Asensio et al., “Improving data par-
tition schemes in smart grids via clustering
data streams,” Expert Systems with Applica-
tions, vol. 41, no. 13, pp. 5832 – 5842, 2014.

[18] Y. Li, D. Li, S. Wang, and Y. Zhai, “Incre-
mental entropy-based clustering on categori-
cal data streams with concept drift,” Know.-
Based Syst., vol. 59, Mar. 2014.

[19] Z. Miller et al., “Twitter spammer detection
using data stream clustering,” Information
Sciences, vol. 260, pp. 64 – 73, 2014.

JCS&T Vol. 16 No. 2 November 2016

82

[20] R. Mythily et al., “Clustering models for data
stream mining,” Procedia Computer Science,
vol. 46. Proceedings of the International Con-
ference on Information and Communication
Technologies, December 2014, Kochi, India.

[21] PhridviRaj et al., “Clustering text data
streams - a tree based approach with ternary
function and ternary feature vector,” Procedia
Computer Science, vol. 31, 2014. 2nd Interna-
tional Conference on Information Technology
and Quantitative Management, {ITQM}.

[22] M. Z. ur Rehman et al., “Hyper-ellipsoidal
clustering technique for evolving data stream,”
Knowledge-Based Systems, vol. 70, 2014.

[23] J. MacQueen et al., “Some methods for clas-
sification and analysis of multivariate obser-
vations,” in Proceedings of the fifth Berkeley

symposium on mathematical statistics and
probability, vol. 1, pp. 281–297, Oakland, CA,
USA., 1967.

[24] Apache Hadoop. https://hadoop.apache.
org/. Accessed 08/2016.

[25] J. Dean and S. Ghemawat, “MapReduce:
Simplified Data Processing on Large Clus-
ters,” Commun. ACM, vol. 51, Jan. 2008.

[26] E. Rasmussen, “Information retrieval,”
ch. Clustering Algorithms, pp. 419–442, Up-
per Saddle River, NJ, USA: Prentice-Hall,
Inc., 1992.

[27] Spark Streaming. http://spark-project.
org/. Accessed 08/2016.

JCS&T Vol. 16 No. 2 November 2016

83

