
Data Matching and Deduplication Over Big Data Using
Hadoop Framework

Pablo Adrián Albanese, Juan M. Ale
 palbanese@fi.uba.ar ale@acm.org

Facultad de Ingeniería, UBA

Abstract. Entity Resolution is the process of matching records from more than
one database that refer to the same entity. In case of a s ingle database the
process is called deduplication. This article proposes a method to solve entity
resolution and deduplication problem using MapReduce over Hadoop
framework. The proposed method includes data preprocessing, comparison and
classification tasks indexing by standard blocking method. Our method can
operate with one, two or more datasets and works with semi structured or
structured data.

Keywords: entity resolution, data matching, hadoop, mapreduce, standard
blocking, indexing

1 Introduction

The Entity Resolution problem, also known as Data Matching or Record Linkage
refers to identify, relate and merge records corresponding to the same entity stored in
different databases. A special case arises when we analyze duplicates of the same
database, this problem is known as duplicate detection. The Entity Resolution process
involves the following tasks: 1. Perform data preprocessing, 2. Index records by one
or more key fields, 3. Compare records 4. Establish a classification between them (i.e.
coincidence, coincidence or not possible match), and 5. Deliver results.

Comparing records is a task that grows exponentially because, for instance, if we
have 2 databases of 1,000 records each, the number of comparisons we have to do is
1.000² = 1,000,000. In recent decades, the community has developed indexing
algorithms order to reduce the number of comparisons.

In the last five years there have been several studies of MapReduce techniques to
compare large databases, especially in data matching. These solutions focus in
making a better use of parallelism by balancing the records and comparing them using
different computational nodes. This problem is called data skew and occurs when the
databases contain a non-uniform data distribution which hinders the distribution tasks
in different computational nodes used for MapReduce.

In [1] a method is proposed to distribute the load among different computing nodes
in order to solve the entity resolution problem with MapReduce using standard
blocking.

712712712

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296389839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

There are numerous articles where similar methods are proposed. However, most
of these articles focus on optimizing the blocking algorithm leaving important
questions related to the data matching problem unanswered, such as: How should the
preprocessing be included inside MapReduce? Is it possible to use this technique to
analyze duplicates of the same database or more than two database? How to perform
indexing if we have more than one key field?

This paper extends the proposed method [1] in order to include preprocessing tasks
indexed by more than one key field, and record comparison using one, two or more
data sets.

The structure of the paper is organized as follows. Related work with an outline of
original method is given in Section 2. In Section 3 we present our proposal: a
technique to include the preprocessing task and for indexing by more than one key
field. We explain where to include matching and classification tasks. Experimental
results are presented in Section 4. Conclusions and ideas for future extensions are
discussed in Section 5.

2 Related works

In [2] a method for entity resolution on Hadoop that works with semi structured data,
including preprocessing tasks, indexing, comparisons and ranking results. It explains
how to use different classification techniques and its results to improve future
comparisons. The authors in [3] created a method called multi-sig-er, which supports
structured and unstructured data type and the tasks contemplate preprocessing of data
and reducing comparisons. Another algorithm derived from standard blocking is
proposed in [4], however no pr actical results are provided. Different techniques
preprocessing of large amounts of data in MapReduce have been discussed and
testing in [5].

The method to extend in this presentation, was presented in [1]. Authors proposed
a simple, effective solution to efficiently distribute the calculation of similarity
between two entities in entity resolution over MapReduce using two Jobs which the
output of the first Job is the input of the second Job. For each Job we must define the
Map, Partitioner and Reducer processes. Job 1 is responsible for preparing the
information in order for Job 2 can evenly distribute comparisons avoiding the
problem of data skew, therefore obtaining a method that is not sensitive to
information distribution, so its performance depends only upon the size of the data
sets to compare.

3 Our proposal

Many databases contain information with poor quality, incomplete or erroneous
information. This problem results in high organizational cost. There are different
parameters to measure data quality, the most important are: accuracy, completeness,
consistency, timeliness and believability. Accuracy and consistency are the most
important in Data Matching. In addition, with Data Matching we face the problem

713713713

that data from different databases usually have different formats. When it comes to
large amounts of records, we must consider that preprocessing entire databases,
consume considerable time and resources. In [5] an experimented of 1 TB data set,
preprocessed with MapReduce with 8 nodes, took approximately 63 hours.

For this reason we need a unique method where the data preprocessing be
performed in a selectively and efficiently way, because it is not necessary to perform
preprocessing to all fields of all records as there are many records that may not need
to be compared. The technique proposed consists of reusing the same two Jobs to
perform preprocessing task of one field only when needed.

3.1 Distributed Preprocessing Between Job 1 and Job 2

In the proposed technique the task Map of Job 1 processes only key fields, while for
the rest of the fields we proceed to apply the acceptance rules. Followed by Job 2
Reducer task where non-key fields are pre-processed in two steps: Step 1. Comparing
only against involved fields. Step 2. Comparing against the rest of the fields in case
we need to generate that specific record.

We obtain an efficient method that only performs preprocessing tasks as required
at each stage of the process.

Fig. 1. On map task Job 1 key fields are preprocessed and the necessary fields to define the
acceptance criteria of records. In the task reduces the Job 2, the required fields for comparison
and classification of records are preprocessed. Finally, only if it is necessary to issue the result,
the rest of the fields involved are preprocessed.

3.2 Indexing

The standard blocking method works with a single key field. If we need to search for
duplicates by comparing only the records that match on a single field then issues the
register in the Map of Job 1. Additionally if we want to find records that match in
several key fields, we must generate a common key between them and repeat the
same process.

 function map(key, value)
 fileName = get file name from job context
 fields = split value
 keyField = get key file from fields
 idRegister = get id field from fields
 write(keyField, fileName + idRegister + fields)

714714714

The traditional standard blocking method does not contemplate comparing records
that match any of the key fields but not necessarily all.

3.3 Indexing by More than One Key Field

We have adapted the task performed by the Map function of Job 1 such that it is able
to use more than one key field for comparison of records that may match in any of
them:

 function map(key, value)
 fileName = get file name from job context
 fields = split value
 idRegister = get id field from fields
 foreach keyField in fields
 write(keyField, fileName + idRegister + fields)

In this new scenario, N pairs (key, value) for each record will be generated, where

N is the number of key fields chosen. This modification may generates redundant
comparisons of records for cases where two records have similarities in more than one
key field. This effect is counterproductive since the performance of the algorithm
would begin to depend on the nature of the data and not only the volume.

One way to partially avoid this problem is to use the method Combiner
MapReduce. The combiner method runs on the output of the map phase and is used
as a filtering or an aggregating step to lessen the number of intermediate keys that are
being passed to the reducer. Using this option prevents that Map of Job 2 write
duplicate pairs (key, value) that are then being processed by Reducer of Job 2 causing
losses in the performance of the process.

function combiner(key, values, context)
 value = select first of values
 write(key, value)

715715715

Fig. 2. Pairs of records A1, B2, A1, B4 and A5, B5 have been issued by the Map of Job 1
twice, because they match in two key fields. The Combiner method of Job 2, before being
transferred to the reducer of Job 2, groups them into a single entry, preventing comparisons of
same records more than once.

As we can see the Map process along with the combiner in Job 2 did not send
duplicates to Reduce process values. However this may not always happen, being the
combiner just a way to reduce the impact of the records that match in more than one
key field.

3.4 Including Matching and Classification

The task of comparing and classifying records, run in the Reducer function of Job 2.
As shown in Figure 3, where two records to compare are received, they must obtain
the fields in each record, preprocess non-key fields as seen in section 4.2, compare the
records, determine the level of similarity between the two records, and if that level is
relevant then proceeds to issue the registration.

Fig. 3. Comparison and classification are performed in reducer of Job 2.

3.5 Final Method

In this section we summarize the full method when it has 2 data set. Then we explain
how to modify this approach for 1 dataset and finally how to apply it when we have
more than 1 data set.

1. Data Entry: The allocation of input data set.

716716716

2. Preprocessing + exchange key and id fields (Map of Job 1): The preprocessing
is performed only in key fields (section 3.1) and for each key field we write
pairs key field and id register (section 3.3).

3. Standard partitioner (Partitioner of Job 1): partitioner standard process that
distributes tasks in the Reducers available is used.

4. Generation of comparable pairs (Reduce of Job 1): For each key, we write
pairs of registers with different file source (entity resolution) or different id
(deduplication), pseudocode in section 3.6.

5. Assignment of reducer number (Map of Job 2): Reducer numbers assigned
according to the algorithm introduced in [1], the pair (Register 1 Register 2,
number of Reducer) is write. A pseudocode is provided:

 function map(key, value, context)
 reducer = 0
 reduceAsigned = false
 reducers = get number of reducers from context
 register1=key
 register2=value
 while (!reduceAsigned)
 do
 randomNumber = get random number(0, reducers)
 if randomNumber not in selectedReducers
 reducer = randomNumber
 add reducer to selectedReducers
 end
 write (register1 + register2, reducer)
 if quantity of selectedReducers = reducers
 selectedReducers = empty
6. Combiner (Combiner of Job 2): Verifies that pairs of matching records in

more than one key field are not generated more than once (section 3.3).
7. Mapping reducer with reducer number (Reducer of Job 2): sends pairs of

records to the reducer indicated by the number of reducer.
8. Comparison + Classification: we proceed to make the necessary preprocessing

of non-key fields for the comparison of records and its subsequent
classification (section 3.4).

3.6 Application for One Set of Data (deduplication)

To adapt the proposed method to a single database we only need to modify the
process 4:
function reduce(key, values) // values = registers
processedIds = new list
foreach i values
 foreach j values
 id_i = get id of values[i]
 id_j = get id of values[j]

717717717

 if (id_i <> id_j and id_j not in processedIds)
 write(register_i, register_j)
 Add id_i to processedIds
 End foreach
End foreach

3.7 Application for more than Two Databases.

In order to find entities that exist in more than 2 databases, the extended method
should be performed N-1 times, where N is the number of data set to be analyzed.

Fig. 3. A, B and C are data sets within which we want to find common entities. First, we run
out method between A and B, and then between AB and C .

4 Evaluation

In this section we evaluate the method proposed in the previous section. We use a
data set of 250,000 records which keep information about people in a SQL Server
database. We generate synthetic records to reach a dataset of 1 million records. Then
we divide it into 2 different files.

Table 1. Partial view data set used.

id first_name last_name email_personal phone_mobile01 country
101 juan carlos vaccaro jcvaccaro327@gmail.com Argentina
102 pablo salerno pablos@hotmail.com +56-1-415449 Chile
103 daniel ruiz druiz@yahoo.com +54-11-12487459 Argentina
105 carolina Collado caro_collado@gmail.com +54-11-25415448 Argentina
110 Magdalena Gauna mgauna1979@outlook.com +54-11-12416446 Argentina

Similar procedures in Transact-SQL language were performed in order to assess that
the results are correct. The data set is then exported to two plain text files, to finally
upload to an Azure Blob Container which will use our instance of Hadoop for

718718718

obtaining and write results. We use Apache Hadoop 1 2.7.0 with different amounts of
nodes (1, 2, 4 and 8) where each node has 4 processors, 7 GB of RAM and 8 hard
drives. The provider was Microsoft Azure2 and Microsoft Blob Service Storage was
used to upload the input files.

We use a data set of 500,000 records as the key fields email_personal and
phone_personal. For preprocessing we performed the following task:

1. Disposal of records containing invalid data in either of the two key fields and
in the field firts_name. (map of job 1)

2. Turn email_personal into lowercase (map of job 1)
3. Normalize phone_personal to format [country] - [area] - [number] - [internal],

if that is not possible, we continue with the formatting of the original field.
(map of job 1)

4. Turn first_name into lowercase. (reduce of job 2)
5. Encode first_name with DobleMethaPhone algorithm. (reduce of job 2)
For record comparison, we consider as a match those records that contain the same

email_person or phone_personal and in both cases the same first_name.

Fig. 4. Execution time according to number of nodes used.

As we increase the number of nodes, runtime decreases, but there is no noticeable
difference between the configuration of 4-node and 8-node. This is because it reached
its stabilization in 4 nodes.

1 http://hadoop.apache.org/
2 https://azure.microsoft.com

719719719

Fig. 5. Shows entry and output records processed for each phase. With 1 million input registers
finally a little over 1.2 million compare. We can also see how the Combiner avoids comparing
0.5 million records that match the email_personal and phone_personal field.

In figure 5 we can see how the number of records that are transferred between one
phase and the other increase in large quantities in relation to the total of records that
were entered to compare. Since 1.5 million records (job entry map 1) are entered and
finished making 116 million comparisons (entry job reducer 2).

5 Conclusions and Further Research

In this presentation a method for solving entity resolution and deduplication problem
using Hadoop Framework is proposed. The proposed method includes preprocessing
tasks, indexed by more than one key field, comparison and classification results. We
introduce alternatives to work with one and more than 2 data set. The main strengths
of our method are: its ease for implementation, its ability to include different
preprocessing and classification techniques according to each particular problem, and
the possibility of using the method of standard blocking, together with the Combiner
of Hadoop, with the use of more than one key field avoiding large number of multiple
comparisons of the same records. The proposed solution is scalable and can be used
both for structured data as well as for semi-structured data.

Future research could incorporate the use of non-relational and distributed
databases such as HBase3 with the aim of re use the results of comparisons in future
comparisons within the same process, as the authors in [2].

References

1. D. Karapiperis and V.S. Verykios. LoadBalancing the Distance Computations in Record
Linkage, ACM SIGKDD Explorations Newsletter, Volume 17 Issue 1 (2015)

2. S. Prabhakar Bennya, S. Vasavi, P. Anupriya: Hadoop Framework For Entity Resolution
Within High Velocity Streams in CMS 2016, Volume 85, 2016, Pages 550–557 (2016)

3. C. Yan, Y. Song, J. Wang and W. Guo: Eliminating the Redundancy in MapReduce-Based
Entity Resolution Cluster, Cloud and Grid Computing (CCGrid)15th IEEE/ACM
International Symposium on, Shenzhen, pp. 1233-1236. (2015)

4. Aye Chan Mon, Mie Mie, Su Thwin: Effective Blocking for Combining Multiple Entity
Resolution Systems. International Journal of Computer Science Engineering, Vol. 2, No.4,
pp 126-136 (2013)

5. Qing He, Qing Tan, Xudong Ma, Zhongzhi Shi: The High-Activity Parallel Implementation
of Data Preprocessing Based on MapReduce in Lecture Notes in Computer Science, Volume
6401, pp 646-654 (2015)

3 https://hbase.apache.org/

720720720

http://link.springer.com/bookseries/558
http://www.ijcse.net/issue.php?file=vol02issue4

	Data Matching and Deduplication

