
Computer Aided Verification of Relational Models

Claudia M. Necco1, José N. Oliveira2, Joost Visser3, and Roberto Uzal1

cnecco@gmail.com jno@di.uminho.pt j.visser@sig.eu ruzal@uolsinectis.com.ar

1 Dep. de Informática, Univ. Nacional de San Luis, San Luis, Argentina
2 HASLab/INESC TEC & University of Minho, Portugal

3 Software Improvement Group & CWI, Amsterdam, The Netherlands

Abstract. Binary relational algebra provides semantic foundations for major ar-
eas of computing, such as database design, state-based modeling and functional
programming. Remarkably, static checking support in these areas fails to exploit
the full semantic content of relations. In particular, properties such as the sim-
plicity or injectivity of relations are not statically enforced in operations such as
database queries, state transitions, or composition of functional components.
When data models, their constraints and operations are represented by point-free
binary relational expressions, proof obligations can be expressed as inclusions be-
tween relational expressions. We developed a type-directed, strategic term rewrit-
ing system that can be used to simplify relational proof obligations and ultimately
reduce them to tautologies. Such reductions can be used to provide extended static
checking for design contraints commonly found in software modeling and devel-
opment. .

Keywords: Models verification, Symbolic execution; Abstract model verifica-
tion; Extended static checking; Strategic term rewriting

1 Introduction

Software design is error-prone. The negative impact of programming errors on software
productivity can be limited by catching them early. Static checkers (e.g. syntax and type
checkers) are tools which catch errors at compile-time, i.e. before running the program.
Examples of such errors are unmatched parentheses (wrong syntax) and adding integers
to booleans (wrong typing). Errors such as null dereferencing, division by 0, and array
bound overflow, are not caught by standard static checking; detecting their presence
requires extensive testing, and if their presence can not be excluded with certainty, they
must be handled at run-time via exception mechanisms.

Software formalists will argue that error checking in the coding phase is too late:
first a formal model should be written, queried, reasoned about, and possibly animated
(using e.g. a symbolic interpreter). Formal modeling relies on “rich” datatypes such
as finite mappings, finite sequences, and recursive data structures, which abstract from
much of the complexity found in common imperative programming languages (e.g.
pointers, loop boundaries). However, such rich structures are not able to capture all
properties, meaning that additional constraints need to be added to models such as in-
variants (attached to types) and pre-conditions (attached to operations). Checking such

647647647

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296389817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

constraints is once again a process which falls outside standard static type-checking,
leading to a so-called dynamic type checking process, typical of model animation tools
such as the VDMTools system [8].

Static checking of formal models involving such constraints is a complex process,
relying on generation and discharge of proof obligations [11]. While proof obligations
can be generated mechanically, their discharge is in general above the decidability ceil-
ing in requiring full-fledged formal verification (theorem proving) [16]. Between these
two extremes of standard, cheap, decidable static checking and costly theorem proving,
extended static checking (ESC) [9] aims to catch more errors at compile-time at the rel-
atively moderate cost of adding annotations to the code which record design decisions
which were lost throughout the programming process (if ever explicitly recorded).

Extended static checking tools have been developed for imperative programming
languages such as Java (ESC/Java [9]). At the heart of these tools we find a verifica-
tion condition generator and the Simplify theorem prover [7]. Verification conditions
are predicates in first-order logic which are computed in weakest precondition style.
Theorem proving is performed by a combination of techniques, including SAT solvers,
matching algorithms, and heuristics to guide proof search.

In the current paper we follow the spirit of this approach but intend to apply it much
earlier in the design process: we wish to perform extended static checking at abstract
model level to catch errors higher on the semantic scale.

The main novelty of our approach resides in the chosen method of proof construc-
tion, whereby first-order proof obligations are subject to the PF-transform [18] before
they are reasoned about. (See reference [18] for the theory behind this blending of ESC
with the PF-transform, suggestively referred to as the ESC/PF proof obligation cal-
culus.) Such a transformation eliminates quantifiers and bound variables and reduces
complex formulæ to algebraic expressions which are more agile to calculate with (see
Fig. 1 for details). As shown in [18], ESC proof obligations can be discarged at PF-level,
leading to the so-called ESC/PF calculus. In the current paper we move from “paper and
pencil” ESC/PF reasoning to mechanical calculation using a Haskell implementation of
strategic term rewriting [20, 15, 14].

φ PF φ

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S

〈∀ a : : a R a〉 id ⊆ R
b R a ∧ c S a (b, c)〈R,S〉a
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a

b = a b id a
TRUE b > a
FALSE b ⊥ a

In analogy to the well-known Laplace
transform [12], the PF-transform takes ex-
pressions from a mathematical problem
space, in this case first order logic formulæ,
into a mathematical solution space, in this
case relational algebra expressions [2].
The PF-transform eliminates quantifiers
and bound variables (so-called points), re-
sulting in a pointfree notation which is more
agile to calculate with.

Fig. 1. The PF-transform.

In Section 2 we will motivate our extended static checking approach with a small
modeling example. In Section 3 we recapitulate binary relation theory which can be

648648648

used to capture the semantics of models with rich data structures and their operations.
In Sections 4 and 5 we will demonstrate how the algebraic laws of the theory can be
harnessed in a strategic term rewriting system, implemented in the functional program-
ming language Haskell. In Section 6 we revisit the model operations of our example to
show how our rewriting system is capable of generating the appropriate proof obliga-
tions and simplify or discharge them. Section 7 discusses related work and Section 8
concludes.

2 Motivating example

The UML class diagram in Fig. 2 depicts a simplified model of a system for trading
non-consumable (uniquely identifiable) items. A user can put an item for sale for a
given price, and other users can express their interest in these items for a price they are
willing to pay. If a match between a seller and a buyer is established, this leads to a deal
with an agreed price.

Name × Balance Uid
Useroo

Uid × Price Iid
ForSaleoo

Price Iid ×Uid
Wantedoo

Uid × Price Iid
Dealoo

Description Iid
Itemoo

Fig. 2. Simplied UML model of a trading system and the corresponding binary relational model.
The relations in this model are finite and simple (explained in Section 3). This is loosely based on
a formal model (written in Haskell) for a real estate exchange market, which has been developed
for a digital city consortium.

The specification of queries, predicates, and transformations on this model may
present some pitfalls. Suppose the following operations are desired:

listWantedItems :: Wanted → Map Iid Price
putBatchForSale :: (Uid ,Map Iid Price)→ ForSale → ForSale
settleDeal :: (Iid ,Uid ,Price)→ Deal → Deal

The listWantedItems query produces a map of item identifiers together with the price
that has been offered for them. The transformation putBatchForSale adds a batch of
items belonging to a given user to the ForSale relation. The settleDeal transformation
adds an entry to the Deal collection.

When specifying these operations, the designer could benefit from the feedback of
an extended static checker. For example, the checker should tell her/him that query
listWantedItems should only return a map if the Wanted collection contains no two
offers for the same item with different prices. Rather than adding a precondition to that
effect, he will likely decide to change the return type to a general relation Rel Iid Price
or, equivalently, to Set (Iid ,Price). In case of the settleDeal operation, to ensure that

649649649

pre-existing deals do not get lost the checker should indicate that a precondition is
needed that either no deal yet exists for the given item, or that it exists with the same
buyer identifier and price.

3 Overview of relation theory

In this section we provide a brief introduction to the theory of binary relations [2].

Relations. Let B A
Roo denote a binary relation R on data-types A (source) and B

(target). We write bRa to mean that pair (b, a) is in R. The underlying partial order on
relations is written R ⊆ S, with the usual semantics of the subset relation between sets
of pairs. In relational terms, it means that S is more defined or less deterministic than
R, that is, R ⊆ S ≡ bRa⇒ bSa for all a, b. R ∪ S denotes the union of two relations
and > is the largest relation of its type. Its dual is ⊥, the smallest such relation. The
identity id relates every element to itself. Equality on relations can be established by
⊆-antisymmetry: R = S ≡ R ⊆ S ∧ S ⊆ R.

Three more operators are introduced to combine relations: composition (R · S),
converse (R◦) and meet (R∩S).R◦ is such that a(R◦)b iff bRa holds. Meet corresponds
to set-theoretical intersection and composition is defined in the usual way: b(R · S)c
holds wherever there exists some mediating a such that bRa ∧ aSc.

Coreflexives. An endo-relation A A
Roo is referred to as reflexive iff id ⊆ R holds,

and as coreflexive iff R ⊆ id holds. Coreflexive relations, which we denote by Greek
letters (Φ, Ψ , etc.), are fragments of the identity relation that model predicates or sets.
A predicate p is modeled by the coreflexive [[p]] such that b[[p]]a ≡ (b = a) ∧ (p a)
holds, that is, the relation that maps every a which satisfies p onto itself. Negation
is modeled by ¬Φ = id − Φ. A set S ⊆ A is modeled by [[λa.a ∈ S]], that is
b[[S]]a ≡ (b = a) ∧ a ∈ S .

relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection
(isomorphism)

Reflexive Coreflexive
kerR entire R injective R
img R surjective R simple R

Figure 1: Binary relation taxonomy

1

Fig. 3. Binary relation taxonomy

Taxonomy. To establish a fundamental taxonomy of relations (illustrated in Fig. 3), let
us first define the kernel of a relation, kerR = R◦ ·R and its dual, imgR = ker (R◦) =
R · R◦, called the image of R. A relation R is said to be entire (or total) iff its kernel

650650650

Table 1. Some laws of the binary relational algebra.

comp assoc (R · S) · T = R · (S · T) inv comp (R · S)◦ = S◦ · R◦

comp id R · id = R ; id · R = R inv inv (R◦)◦ = R
comp empty R · ⊥ = ⊥ ; ⊥ · R = ⊥ inv union (R ∪ S)◦ = R◦ ∪ S◦

union fusion (R ∪ S) · T = (R · T) ∪ (S · T) corefl symm Φ◦ = Φ
T · (R ∪ S) = (T · R) ∪ (T · S) corefl trans Φ · Φ = Φ

dom elim R · δ R = R const fusion k · R = k · δ R
neg co comp ¬ Φ · Φ = ⊥ ; Φ · ¬ Φ = ⊥ not dom cancel R · ¬ (δ R) = ⊥

incl empty ⊥ ⊆ R ⇔ True incl refl R ⊆ R ⇔ True
monotonicity R · Φ · S ⊆ T ⇐ R · S ⊆ T

union univ R ∪ S ⊆ T ⇔ (R ⊆ T ∧ S ⊆ T)

shunt fun f · R ⊆ S ⇔ R ⊆ f ◦ · S
shunt fun inv R · f ◦ ⊆ S ⇔ R ⊆ S · f

shunt map inv R ·M ◦ ⊆ S ⇔ R · δ M ⊆ S ·M
shunt map M · R ⊆ S ⇔ δ M · R ⊆ M ◦ · S

img def img R = R · R◦ ker def ker R = R◦ · R

is reflexive; and simple (or functional) iff its image is coreflexive. Simple relations are
denoted with capital letters M , N , etc. Dually, R is surjective iff imgR is reflexive,
and R is injective iff kerR is coreflexive. This terminology is recorded in the summary
table in Fig. 3. The coreflexive fragments of kernel and image are named domain (δ)
and range (ρ).
Functions. As the taxonomy indicates, a relation is a function iff it is both simple and
entire. Functions will be denoted by lowercase letters (f , g, etc.) and are such that bfa
means b = f a. The constant function which maps every value of its domain to the
value k is denoted by k .
Algebraic properties. A rich set of algebraic properties is a-vailable for the various
operators of relational algebra [2], of which a small sample is listed in Table 1. Of
particular interest for the current paper are the various shunting laws. They allow the
‘shunting’ of relations (functions and simple relations in the listed cases) from one side
of the inclusion to the other, similar to the shunting rules we learned in high school,
such as x − y 6 z ⇔ x 6 z + y . The utility of such laws will become evident below.

4 Rewriting relational expressions and propositions

We developed a type-safe, type-directed rewriting system for normalization of relational
expressions that harnessed the various algebraic laws of binary relations presented in
Table 1 in the functional programming language Haskell. In this section and the next,
we will provide a high-level description independent of the programming language.
Terms. The terms to be rewriten by our term rewriting system will be the expression of
binary relational calculus with some additional annotations. The following outlines the
grammar:

P := R ⊆T R | True | P ∧ P
R := id | R ·T R | R◦ | VL | AT | ...

651651651

T := 1 | Int | Bool | String | [T] | T × T | ...
L := entire | simple | injective | surjective | reflexive | coreflexive
V := variable names
A := values

Thus, some of the relation operators are annotated with type information (shown as
subscript). Relation variables are annotated with properties as they appear in the leafs
of the taxonomy of Figure 3. For example, a function f is an entire and simple relation
and is therefore annotated as f[entire,simple]. Also, endo-relations can be annotated to be
(co-)reflexive.
Predicates on relations. The first ingredient into our rewriting system are predicates for
testing the various properties that relations may have, such as simplicity, surjectivity,
etc. The various properties declared on relational variables propagate through relational
operators. For example, the composition of two surjective relations is surjective, and
the inverse of an injective relation is simple. This gives rise to predicates on relations
that inductively check their properties. For example:

isSimple(id) = True
isSimple(rl) = simple ∈ l
isSimple(r◦) = isInjective(r)
isSimple(s ·b r) = isSimple(r) ∧ isSimple(s)
...
isSimple(r) = False

Similar predicates are supplied for the remaining properties. These predicates test for
properties by induction over the structure of relational expressions, but do not attempt
to derive proofs for the properties. In this sense, they are approximations and may fail
to discover that a certain relational expression enjoys particular properties.
Type-directed and property-aware rewriting rules. The predicates above are used in the
definition of rewrite rules. Each rewrite rule encodes particular laws of the relational
calculus. Since our rewrite system is type-directed, rewrite rules are annotated with
types. Here is an encoding of the inv comp law, applied in the left-to-right direction:

inv comp : (r ·b s)◦ 7−→(c←a) s◦ ·b r◦

Pattern matching is performed on a relational expression and, on successful match, a
resulting expression is returned.

The const fusion rule provides an example of rewriting directed by properties:
const fusion : (s ·b r) 7−→(c←a) (sc)
if isConstant(s) ∧ ¬ (isCoreflexive(r)) ∧ isEntire(r)

const fusion : (s ·b r) 7−→(c←a) ((sc) ·a (δbr))
if isConstant(s) ∧ (¬ (isCoreflexive(r))

The rule works on a composition and, if the first argument s constant as required by the
guarding predicate, then it replaces the second argument r by its domain. If the second
argument r is entire, δ r = id then the rule return just the first (constant) argument.
When r is coreflexive, the rule does not trigger, because the domain of a coreflexive is
that relation itself.

An example of a rewrite rule on the level of relational propositions is offered by the
shunting rule for functions:

652652652

shunt fun inv : ((x ·b f ◦) ⊆(c←a) y) 7−→(c←a) (x ⊆(c←b) (y ·a f))
if isEntire(f) ∧ isSimple(f)

Note the use of a guarding predicate that tests whether the relation f is indeed a function
(entire and simple).

Combinators for strategic rewriting. To compose rewriting systems out of individual
rewrite rules, we employ the following set of rule combinators known from strategic
term rewriting 4:

nop :: Rule -- identity rule
(.) :: Rule → Rule → Rule -- sequential comp.
(⊕) :: Rule → Rule → Rule -- choice (based on mplus)
(�) :: Rule → Rule → Rule -- choice (bas. on mcatch)
all :: Rule → Rule -- map on all children
one :: Rule → Rule -- map on one child
run :: Rule → R r → (R r ,Derivation) -- top-level app.

The implementation of each of these combinators is straightforward, and omitted here
for brevity. The top-level application function run takes the result of rewriting and
the derivation (proof trace) out of the Rewrite monad; in case of failure it returns the
original term and an empty derivation.

Using the basic rule combinators, more sophisticated ones can be defined:
many r = (r . (many r))� nop -- repeat until failure
once r = r � one (once r) -- apply once, at any depth
innermost r = all (innermost r) . ((r . innermost r)� nop)

The derived combinator innermost performs exhaustive rewrite rule application ac-
cording to the leftmost innermost rewriting strategy.

5 Rewriting strategies

Having defined individual rules and rule combinators, we can proceed to the composi-
tion of rewrite systems for various purposes.

Normalization of relational expressions. The following definitions express that a rela-
tional expression can be normalized by exhaustive application of individual association,
desugaring, and normalization rules:

simplify = innermost simplify1

simplify1 = comp assocl � desugar1 � applylaw1
desugar1 = ker def � img def � ...
applylaw1 = inv comp � inv inv � comp id � comp empty � dom elim �

corefl symm � const fusion � not dom cancel � ...
We use the convention of postfixing the names of single-step rule combinations with
1 in order to distinguish them from rule combinations that rewrite repetitively until
a fixpoint is reached. Note that the comp assoc rule is employed to bring relational
compositions into left-associative form. Since the normalization rules together form a

4 These rules and our representation technique are inspired on the 2LT system [6].

653653653

confluent and terminating rewrite system, the left-catching combinator � is sufficient
to combine them — no need for backtracking.

For example, the following derivation is constructed when applying the simplify
strategy to (N · (¬ (δ N))◦ ·M ◦)◦, where N and M are simple relations:

(N · (¬ (δ N))◦ ·M ◦)◦

= {corefl symm }
(N · (¬ (δ N)) ·M ◦)◦

= {not dom cancel }
(⊥ ·M ◦)◦

= {comp empty }
⊥◦

= {corefl symm }
⊥

This normalization proof trace demonstrates that the original expression is equal to ⊥.
(Recall that proof traces are generated by our Rewrite monad.)

Deriving proofs and proof obligations. We define a more sophisticated strategy to sim-
plify or dispatch proof obligations:

derive = simplify . all and process conjunct . innermost and true
where

process conjunct = (shunt conjunct ⊕ strengthen conjunct)� nop
shunt conjunct = shunt . derive
strengthen conjunct = strengthen . derive . qed

shunt = (shunt fun inv � shunt map inv)⊕ (shunt fun � shunt map)
strengthen = corefl cancel

all and :: Rule → Rule -- apply arg. rule on all conjs
qed :: Rule -- test whether the current exp. is True

The initial application of simplify brings a given proposition into conjunctive normal
form, where each conjunct is a normalized relational inclusion. The all and combi-
nator applies process conjunct to all conjuncts. After processing each conjunct sep-
arately, and true (p ∧ True ⇔ True ∧ p ⇔ p) is applied to absorb the proposi-
tions that have been rewritten to True . The processing of each conjunct makes a non-
deterministic choice (using the backtracking operator⊕) between starting with a shunt-
ing step (shunt conjunct) or starting with a strengthening step (strengthen conjunct);
the conjunct is left unchanged if neither is possible (nop). When starting with shunt-
ing, the choice between shunting a left-composed relation or shunting a right-composed
converse of a relation is again made non-deterministically (shunt). After the shunting
step, a recursive call is made to the overal derive strategy. When starting with strength-
ening, the subsequent recursive call to derive is required to lead to a full proof (qed),
since we are interested in strengthened propositions only for the purpose of discharging
proof obligations.

The use of backtracking entails that several results may be obtained or the same
result through different derivations. In the implementation, lazy evaluation is employed
to ensure that only a single derivation is actually constructed.

654654654

6 Application scenarios

We now explain how our rewriting system can be used in concrete scenarios, such as
the ones in our motivation example (Section 2). The overall operation of the developed
tool is based on transforming and rewriting PF-relational expressions using the ESC/PF
calculus described in [18].

List wanted items. The operation listWantedItems can be specified in binary relational
terms as listWantedItems = Wanted · π◦1 , where π1 is the first projection on pairs,
i.e. π1 (a, b) = a . Note that we leave the argument Wanted implicit in the definition
of the operation. Regarding Wanted as a set of pairs, the definition converts to the
pointwise { (p, i) | (p, (i, u)) ∈ Wanted }, where p, i , u range over Price, Iid and
Uid , respectively. Clearly, this won’t be a simple relation in general, even if Wanted
is so, because dropping u from the input may lead to the same i related to different
p. Since this operation is specified to produce a finite map (thus simple), it gives rise
to the proof obligation img (Wanted · π◦1) ⊆ id , which in turn leads to the following
derivation when applying our derive strategy:

img (Wanted · π◦1) ⊆ id
⇔ {img def }

Wanted · π◦1 · (Wanted · π◦1)◦ ⊆ id
⇔ {inv comp}

Wanted · π◦1 · (π◦1)◦ ·Wanted◦ ⊆ id
⇔ {inv inv }

Wanted · π◦1 · π1 ·Wanted◦ ⊆ id
⇔ {shunt map inv }

Wanted · π◦1 · π1 · δ Wanted ⊆ id ·Wanted
⇔ {comp id }

Wanted · π◦1 · π1 · δ Wanted ⊆Wanted
⇔ {shunt map}
δ Wanted · π◦1 · π1 · δ Wanted ⊆Wanted◦ ·Wanted

What does the last line above mean? We simply have to apply the rules of the PF-
transform the other way round and find the corresponding, more descriptive logic ex-
pression:
∀x , y . x ∈ dom (Wanted) ∧ y ∈ dom (Wanted) ∧ π1 (x) = π1 (y)

⇒Wanted (x) = Wanted (y)

This formula expresses that query listWantedItems only returns a finite map if the
Wanted collection contains no two offers for the same item with different prices. This
feedback should lead the designer to broaden the output type of the operation to general
binary relations.

Settle deal. Using singleton relation notation as decribed in Section 3, we can define
settleDeal (i , u, p) = Deal ∪ (u, p) · i ◦. (Again we leave the old value of Deal im-
plicit in the definition.) Checking the simplicity of its output gives rise to the following
derivation (condensed):

img (Deal ∪ (u, p) · i ◦) ⊆ id

⇔ {img def , various union laws }

655655655

Deal ·Deal◦ ⊆ id ∧ Deal · i · (u, p) ◦ ⊆ id ∧
(u, p) · i ◦ ·Deal◦ ⊆ id ∧ (u, p) · > · (u, p) ◦ ⊆ id

⇔ {various shunting laws, dom elim }
δ Deal · i ⊆ Deal◦ · (u, p) ∧
i ◦ · δ Deal ⊆ (u, p) ◦ ·Deal

Thus, the simplification of this proof obligation leads to an intermediate conjunction
of four proof obligations, of which two are subsequently discharged. The remaining
two obligations actually express the same property (they can be converted into each
other by taking their inverse). Conversion back to pointwise notation gives the following
precondition:

i ∈ dom (Deal)⇒ (u, p) = Deal (i)

Note that the proof obligation we derived is weaker than the over-defensive precondition
that is typically added to an operation such as settleDeal , namely that i /∈ dom(Deal).

Batch addition of items to sell. Once PF-transformed, our last function is defined by
putBatchForSale (u,m) = ForSale † x ,
where x = withUser u m and withUser u m = 〈u,m〉. This model illustrates the use
of two other useful binary operators on relations, override (· † ·) and split (〈·, ·〉) [19].
The latter pairs the outputs of two relations (recall Fig. 1) and the former overrides one
relation by another. Checking the simplicity of the output of putBatchForSale leads
to a 32-step derivation of which we show only the starting and closing steps, the latter
condensed for space economy:

img (n † x) ⊆ id
⇔ {override def }
img (n ∪ x · ¬ (δ x)) ⊆ id
⇔ {img def }
(n ∪ (x · ¬ (δ (n)))) · (n ∪ (x · ¬ (δ (n))))◦ ⊆ id
...
((True ∧ True) ∧ (True ∧ x · ¬ (δ (n)) ⊆ x))
⇔ {and true,monotonicity }
(True ∧ x · id ⊆ x))
⇔ {and true, comp id }

x ⊆ x
⇔ {incl refl }

True

Thus the proof obligation is discharged completely. In this case extended static checking
validates the user model and no changes are needed. The 32-step derivation took 0.14
seconds to run with version 6.8.2 of the Haskell interpreter (GHCi) on a MacBook Pro
(1.83 GHz Intel Core Duo processor).

7 Related work
Extended static checking. Extensive progress has been achieved on extended static
checking (for review see [16]), resulting in practical tools for imperative languages [9].

656656656

These tools rely on theorem provers to find counter examples of verification condi-
tions [7], using a combination of techniques such as backtracking search, matching
algorithms for universally quantified formulæ, and heuristics. As alternative or supple-
mental technique, we have explored proof construction through rewriting of pointfree
relational expressions. The absence of quantifiers and variables in these expressions
promises to allow a more effective proof search and to enlarge the scope of properties
that can be practically checked for, such as those arising in software modeling using
rich data structures.

Relational programming (symbolic). MacLennan pioneered relational programming
and proposed it as a more general substitute for functional programming [17]. He keeps
a separation between finite relations representing data structures, and infinite relations
representing operations. Cattrall and Runciman built on his work to develop compila-
tion support for relational programming, where finite and infinite relations are mixed,
and where relational expressions are made compilable by rewriting them according to
algebraic properties [3].

Relation-algebraic analysis (finite). Modeling and analysis of systems based on finite
relational representations is supported by systems such as Grok [10] and RelView [1]
which are, however, very different from our approach: Grok is a calculator for finite
relational algebra expressions and RelView uses BDDs to implement relations in an
efficient way.

Typed strategic rewriting. Strategic programming [14] was first supported in the non-
typed setting of the Stratego language [20]. A strongly-typed combinator suite was
introduced as a Haskell library by the Strafunski system [15] and later generalized
into the so-called ‘scrap-your-boilerplate’ generic programming library [13]. We de-
veloped GADT-based strategic combinator suites, similar to the one presented here,
for two-level data transformation [5] and transformation of pointfree and structure-shy
functions [4].

8 Concluding remarks

We have implemented a type-directed strategic rewrite system for normalization of
pointfree relational expressions and simplification or discharge of relational proposi-
tions. We have demonstrated the utility of the system in the context of extended static
checking of common model and program properties.

So far, we have limited ourselves to rewriting of pointfree expressions, relying on
manual transformation of logic formulæ into relational algebra expressions and back.
We intend to also automate this pointfree transform.

The suite of operators and laws implemented in the system is currently under study
with respect to minimality, confluence and termination.

The strategy for proof search is likely to further evolve as well, for instance to in-
clude short cut derivations for special common cases or to eliminate duplication of proof
obligations due to converse inclusions. A thorough analysis of the formal properties of
the rewriting system we are building is one of our current concerns.

657657657

When achieving a good degree of maturity, an assessment will be needed as to
whether this approach can indeed be an alternative or supplement to existing ESC ap-
proaches based on theorem proving. A good test will be to try and discharge complex
ESC/PF proof obligations such as those arising from the Verified File System project
[18]. Besides ESC, we envision to apply our relational algebra rewriting system to areas
such as program optimization, program verification, relational programming, and more.

References

1. Rudolf Berghammer and Frank Neumann. RelView – An OBDD-Based Computer Algebra
System for Relations, pages 40–51. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

2. R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-
Hall International, 1997. C.A.R. Hoare, series editor.

3. D. Cattrall and C. Runciman. Widening the representation bottleneck: a functional imple-
mentation of relational programming. In Proc. Func. Prog. Lang. and Comp. Arch., pages
191–200. ACM Press, 1993.

4. A. Cunha and J. Visser. Transformation of structure-shy programs, applied to XPath queries
and strategic functions. In PEPM’07, ACM SIGPLAN, 2007.

5. Alcino Cunha, José Nuno Oliveira, and Joost Visser. Type-Safe Two-Level Data Transfor-
mation, pages 284–299. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

6. Alcino Cunha and Joost Visser. Strongly typed rewriting for coupled software transforma-
tion. Electron. Notes Theor. Comput. Sci., 174(1):17–34, 2007.

7. D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for program checking. J.
ACM, 52(3):365–473, 2005.

8. J. Fitzgerald and P.G. Larsen. Modelling Systems: Practical Tools and Techniques for Soft-
ware Development . Cambridge University Press, 1st edition, 1998.

9. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended
static checking for Java. In PLDI, pages 234–245, 2002.

10. R.C. Holt. Structural manipulations of software architecture using Tarski relational algebra.
In WCRE ’98, page 210. IEEE Comp. Soc., 1998.

11. C.B. Jones. Systematic Software Development Using VDM. Series in Computer Science.
Prentice-Hall International, 1986. C.A. R. Hoare.

12. E. Kreyszig. Advanced Engineering Mathematics. J.Wiley & Sons, Inc., 1988.
13. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern for generic

programming. ACM SIGPLAN Notices, 38(3):26–37, March 2003.
14. R. Lämmel, E. Visser, and J. Visser. The Essence of Strategic Programming. Available at

http://www.cwi.nl/˜ralf, 2003.
15. R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl et al., editors, PADL’03,

volume 2562 of LNCS, pages 357–375. Springer, 2003.
16. K.R.M. Leino. Extended static checking: A ten-year perspective. In Informatics - 10 Years

Back. 10 Years Ahead., pages 157–175. Springer-Verlag, 2001.
17. B.J. MacLennan. Overview of relational programming. SIGPLAN Not., 18(3):36–45, 1983.
18. J.N. Oliveira. Extended static checking by calculation using the PF-transform, Jul. 2008.

LerNET’08 post-workshop tutorial paper submitted for publication.
19. J.N. Oliveira and C.J. Rodrigues. Transposing relations: from Maybe functions to hash tables.

In MPC’04, volume 3125 of LNCS, pages 334–356. Springer, 2004.
20. Eelco Visser. Stratego: A Language for Program Transformation Based on Rewriting Strate-

gies System Description of Stratego 0.5, pages 357–361. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

658658658

	Computer Aided Verification

