
Comparison of Different Approaches for Adapting

Mutation Probabilities in Genetic Algorithms

Natalia Stark
1
, Gabriela Minetti

1
, Carolina Salto

1,2

1Laboratorio de Investigación en Sistemas Inteligentes

Facultad de Ingeniería – UNLPam
Calle 110 Nº 390 – General Pico, La Pampa

2CONICET
e-mail { nstark, minettig, saltoc }@ing.unlpam.edu.ar

Abstract- Traditionally in Genetic Algorithms, the mutation probability

parameter maintains a constant value during the search. However, an important

difficulty is to determine a priori which probability value is the best suited for a

given problem. In this paper we compare three different adaptive algorithms

that include strategies to modify the mutation probability without external

control. One adaptive strategy uses the genetic diversity present in the

population to update the mutation probability. Other strategy is based on the

ideas of reinforcement learning and the last one varies the probabilities of

mutation depending on the fitness values of the solution. All these strategies

eliminate a very expensive computational phase related to the pre-tuning of the

algorithmic parameters. The empirical comparisons show that if the genetic

algorithm uses the genetic diversity, as the strategy for adapting the mutation

probability outperforms the other two strategies.

1 Introduction
Adaptation is an alternative to determine the optimal value of the parameters to use in
a genetic algorithm (GA) during the search. This is a good option, because during the
design process, we need to instantiate several parameters to specific values before the
run of the algorithm, in order to obtain a robust search technique. Even for an expert
user, the parameter configuration for an optimal performance is hard to find.

The parameter control [9] manages information that influences the parameter
values during the search and defines a set of criteria to produce changes. In this way,
the user does not need to make non-trivial decisions beforehand, which are a very
expensive task. Many relevant approaches have been proposed for adjusting GA
parameters such as genetic operator probabilities [14,17,18,19], selection methods [5,
11], population size [4, 10, 21,23] during the search. The mutation probability (pm) is
one of the critical parameters in the GA performance. Large values of pm transform
the GA into a purely random search algorithm, while some mutation is required to
prevent the premature convergence of the GA to suboptimal solutions.

In this work, we compare the adaptive method proposed by Stark et al. [22] with

other two different methods, present in the literature, to adapt the pm during the GA
run. The aim of this comparison is to determine which of them allows to obtain good

757575

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296388868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

quality of results with a low computational effort. In the method proposed by Stark et
al. [22], the mutation probability varies depending on the genetic diversity present in
the population, by using a control strategy based on the current population entropy. In
the comparison the adaptive method proposed by Srinivas et al.[17] is considered,
where the probabilities of mutation are changed depending on the fitness values of the
solution. This proposal protects high fitness solutions, but solutions with subaverage
fitness are totally disrupted. These methods have been selected since they present
different ways to vary the pm and also exhibit good performance. The other method
included in the comparison is the one proposed by Riff et al. [14], which is based on
the ideas of reinforcement learning: an operator receives a reward in its probability of
application when the new generated individual is better than its parents. Analogously,
it receives a penalty when the offspring has a worse fitness value than its parents.
Both the rewards and the penalties strongly depend on the improvement/degradation
of the evaluation function value.

The outline of the paper is as follows. Section 2 details the adaptive algorithms
included in this work and a brief comparison among them. Section 3 addresses the
optimization problem and the parameter configuration. In the next section, we analyze
the results from a computational point of view. Finally, we summarize the
conclusions and discuss several lines for future research in Section 5.

2 Adaptive GAs
In this section, we present the characteristics of the adaptive algorithm proposed in

[22], denominated Adaptive Mutation Probability Genetic Algorithms (APmGA),

which dynamically adjusts the mutation probability (pm) during the evolutionary

process. To assess their behavior we considered two other algorithms from the

literature, which also include adaptive control strategies to change pm. They are: the

Adaptive Genetic Algorithms (AGA) proposed by Srinivas, et al. [17] and the

Adaptive Control strategy (AcGA) proposed by Riff et al. [14]. These algorithms are

the most representative in this area, showing a good performance.

All adaptive control strategies considered can be embedded as a procedure control

into a traditional GA, thus not requiring any change of the algorithm itself. The

generic structure of the GA used in this work is shown in Algorithm 1. The algorithm

creates an initial population P of μ solutions in a random way, and then evaluates

these solutions. The population goes into a cycle where it evolves by means of the

operator applications such as selection, recombination, and mutation to compute a

whole generation of new λ individuals. The new population is built up by selecting μ

individuals from the set of (μ+λ) existing ones. After that, each iteration ends with the

computation of the statistics of the current population and the application of the

adaptive mechanism to dynamically set the mutation probability. Finally, the best

solution is identified as the best individual ever found that maximizes the fitness

function.

767676

Algorithm 1 Traditional GA()
t = 0; {current generation}

initialize(P(t));

evaluate(P(t));

while{(t < maxgenerations) do

P'(t) = selection(P(t));

P'(t) = recombinate(P'(t));

P'(t) = mutate(P'(t), pm);

evaluate (P'(t));

P(t+1) = Replace(P'(t) ∪ P(t));
statistics(P(t+1));

AdaptivePmControl(pm);

t = t + 1;

end while

return best_solution

2.1 APmGA
The objective of the adaptive strategy of APmGA is to increase pm if the genetic

diversity is gradually lost in order to maintain a population distributed in the search

space. Otherwise, the pm value is reduced when an increase in the population diversity

is observed. Therefore, these changes in the pm value are also an additional source for

a good balance between exploration and exploitation, intrinsic to the adaptive

criterion. Furthermore, this strategy monitors the genotypic diversity present in the

population using the Shannon entropy metric [20], following the ideas presented in

[2]. When the entropy value is closed to 0, the population contains identical

individuals; otherwise it is positive and maximal when all the individuals in the

population are different.

The control strategy calculates the population entropy at the end of each epoch (a
certain number of consecutive generations). Then, it computes the variation of the
current entropy at the k epoch (Hk) respect the entropy from the previous k-1 epoch
(Hk-1), denoted as ΔHk = Hk - Hk-1. This variation, ΔHk, is compared with the one
observed in the previous epoch (ΔHk-1 = Hk-1 - Hk-2), as shown in the Algorithm 2. In
this way, if the entropy variation decreases at least in a factor of ε, this indicates the
lost of diversity, in a consequence the mutation probability value will be changed by
adding a constant factor (α). Otherwise, the pm value is decreased by subtracting an α
value. In order to prevent the overshooting of pm, the strategy controls that pm belongs
to [pmLB, pmUB]; where the lower bound of pm is pmLB = 0.001 and the upper bound
is pmUB = 0.1. These bounds are selected considering the values suggested in
literature. We consider the factor as 0.001 and as 0.5. These values have been

“optimized” through a previous hand-tuning process comparing it versus other

different values.

Algorithm 2 AdaptivePmControl(ΔHk, ΔHk-1, pm) function

if Hk < (1+). Hk-1 then

pm = pm +
else

pm = pm -

777777

2.2 AGA
Srinivas et al. present an adaptive strategy to control the in order to prevent the
GA to be stuck at a local optimum. The value of varies depending on the value of
 (where is the average fitness value of the population and the
maximum fitness value of the population) and on the fitness value f of a solution. If
is close to , should be set to a smaller value in order to not disrupt good
solutions. Consequently, they proposed to use different values depending on the
solution quality, as shown in Algorithm 3. For the solution with the maximum fitness,
 is zero. For a solution with , . For solutions with sub average fitness
value (), might assume values larges to 1.0, so the authors impose the
following constraint: if , where k 1.0 The value has to be less than
1.0 to constrain to the range [0.0,1.0] [17]. In particular, we have set k equal to
0.5, taking into the account the value used in the original work.

2.3 AcGA
This strategy computes the mutation probability value for the next generation
() considering the performance of the operator, which is measured by the
average of the improvements/degradations () obtained after its application
considering the last l generations. The improvements/degradations are considered as a
proportional factor depending on the maximum improvement (max_imp) or
degradation (max_deg). The success measure for an operator () in its ith
application is computed as the difference between the fitness of the generated child
and the average fitness of its parents. This procedure is shown in Algorithm 4, where
r is included for providing smooth parameter adjustments, as it is required for any
effective dynamic parameter control strategy [14]. This value is fixed at 0.5.

2.4 Comparison between the adaptive GA approaches
Both APmGA and AcGA use control strategies at a population level. Thus, the
mutation probability values are the same for all of the individuals in the current

Algorithm 3: Adaptive Genetic Algorithms (,pm) function
if then

 –

else

Algorithm 4: AdaptiveControl(, ,) function

if then

else

787878

population. In the case of AGA, a different is computed for each solution
depending on its fitness value. Another difference is the way to update the : AcGA
and AGA consider the fitness values of individuals or population, but ApmGA uses
the genetic diversity of the population.

These methods can be implemented without adding any significant overhead and
without introducing any major changes to its original algorithm design. The decisions
made during the search are based on the current information available from a
monitoring process, allowing the algorithm to trigger changes when deemed
necessary, based on the potential advantages that such changes could bring.

3 Experimental Setup
In this section we present the necessary information to reproduce the experiments

that have been carried out in this work. First, we will introduce the problem used to
assess the performance of our proposals: the NK landscape, which has been the center
of several theoretical and empirical studies both for the statistical properties of the
generated landscapes and for their GA-hardness [1, 8]. Second, we will justify the
parameters that the adaptive GAs will use.

3.1 NK-Landscapes
An NK-landscape [12] is a fitness function f : { 0,1 }N → R on binary strings, where
N is the bit string length and K is the number of bits in the string that epistatically
interact with each bit, i.e., K stands for the number of other genes that epistatically
affect the contribution of each gene to the overall fitness value of the string. Each
gene xi, where 1 = xi = N, contributes to the total fitness of the genotype depending
on the value of its allele and on those of each of the K other genes to which it is
linked. Thus K must fall between 0 and N-1. For K = 0, there are no interaction among
genes and a single-peak landscape is obtained; in the other extreme (for K= N-1), all
genes interact each other in constructing the fitness landscape, so a completely
random landscape is obtained (a maximally rugged landscape). Varying K from 0 to
N-1 gives a family of increasingly rugged multi-peaked landscapes.

The fitness value for the entire genotype is the average of the fitness contribution
of each locus fi by Equation 1:

N

i iiii K
xxxf

N
xf

1
),,(1)(

1
 (1)

where
Kii xx ,

1
 Nxxx ii ,,,, 111 are the K genes interacting with gene xi in

the genotype x. The other K epistatic genes could be chosen in any number of ways
from the N genes in the genotype. Kauffman [13] investigated two possibilities:
adjacent neighbourhoods, where K genes nearest to gene xi on the chromosome are
chosen, particularly a gene interacts with K/2 left and K/2 right adjacent genes; and
random neighbourhoods, where these K other genes are chosen randomly on the
chromosome. In this work, we adopted the first type of neighbourhood and considered
circular genotypes to avoid boundary effects.

797979

3.2 Parameters
The parameter setting applied to the GAs is the following. The whole population

(µ) is composed of 32 individuals. By default, the initial population is randomly

generated. In each iteration, the number of created offsprings () is 64. The maximum

number of generations is fixed at 10000. Each parent is selected by binary tournament

selection. The uniform crossover operator is applied with a probability of 0.65. Bit-

flip mutation is used. Fitness proportional selection and elitism are used to build up

the next population from the set of (+) individuals. These parameters (population

size, stop criterion, probabilities, etc.) are chosen after an examination of some values

previously used with success in [1]. The initial probability mutation is 1/N for all

algorithms. In Table 1, we summarize the whole setting of parameters values used in

these experiments.

We conduct our study on NK instances with N=96 bits varying the epistatic

relations from K=0 to K=48 in increments of 4, adding up to 13 instances. We use

landscapes with adjacent epistatic patterns among genes. For each combination of N

and K we have generated 30 random problem instances.

Due to the stochastic nature of the algorithms, the final results are obtained after

averaging the running times of 30 independent runs. A statistical analysis has been

performed in order to provide the results with statistical confidence and, therefore,

obtain meaningful conclusions. We use the non-parametric Kruskal-Wallis test, to

distinguish meaningful differences between the mean results of all algorithms. We

have considered a level of significance of = 0.01, in order to indicate a 99%

confidence level in the results.

The algorithms are implemented inside MALLBA [3], a C++ software library

fostering rapid prototyping of hybrid and parallel algorithms. The strategy control

proposed by Riff [14] and Srinivas et al. [17] were implemented by replicating the

ideas and configurations proposed in their works. Our computing system is an Intel

CI7 2600 at 3.40GHZ and 4 G RAM, under SUSE Linux with 3.1.0-1.2 kernel

version.

4 Experimental Results
In this section, we analyze the performance of the three adaptive GA considered in

the comparison: APmGA [22], AGA [17] and AcGA [14]. Our aim is to offer an

analysis from the accuracy (quality) and performance points of view. For this

Table 1: Parametric values used for the different GAs
Parameter Value

Parents selection Binary tournament

 32

 64

Crossover Operator UX

Crossover Probability 0.65

Mutation Operator Bit-Flip

Replacement Selection The best
Stop conditions 10.000 generations

808080

purpose, this section consists of two parts. First, we analyze the solution quality

obtained by the studied algorithms. In the second part, we study the computational

effort of each algorithm.

Table 2 presents the solution quality that is measured by the percentage gap, i.e.,

the relative distance to the best solution obtained by APmGA (best_solAPmGA) and the

best solution of each of the other algorithms, as described in Equation 2.

 (2)

From the results, APmGA is better than the other two adaptive GAs, from low to

high levels of epistasis, which suggests that APmGA obtains solutions with higher

fitness than the other two approaches. The non-parametric tests suggest that there are

statistical differences between the APmGA and the rest of the algorithms (p-value less

than 2.2e-16). Boxplot summaries for each algorithm can be found in Figure 1, where

each boxplot contains the best found solutions from 30 different runs for all instances.

APmGA obtains a median value lower than the rest of the algorithm with an

interquartile amplitude smaller, indicating that the best solutions are not disperse

(homogeneity in the data set). Previous observations suggest that the adaptive strategy

used by APmGA improves the behaviour of the GA, avoiding the premature
convergence and the lost of genetic diversity.

Finally, Figure 2 shows boxplots corresponding to the evaluations to obtain the

best solution for the three adaptive approaches. AGA is the algorithm with the highest

numerical effort, in order to find their best solutions. The differences of the

computational effort between AcGA and APmGA are not statically significant.

Considering these results and the improvement in the solution quality shown by the

APmGA, we can conclude that this algorithm is the best strategy to adapt the

mutation probability.

Table 2: Average values of the best

found solution for each instance (the best

values are bolded).

Inst APmGA AGA AcGA

96-0 0,04 0,08 0,04

96-4 0,04 0,12 0,07

96-8 0,06 0,15 0,08

96-12 0,04 0,12 0,06

96-16 0,06 0,11 0,07

96-20 0,03 0,09 0,05

96-24 0,05 0,09 0,06

96-28 0,05 0,07 0,05

96-32 0,04 0,07 0,05

96-36 0,06 0,08 0,06

96-40 0,03 0,04 0,04

96-44 0,05 0,06 0,05

Fig. 1. Boxplot of the gap values

for each algorithm

818181

Fig. 2. Boxplot of the evaluations needed to obtain the best solution for each algorithm

Summarizing, the best results are obtained when the mutation probability

adaptation is based on the genotypic diversity, as implemented in APmGA. The
application of this strategy allows to increase or to keep the population diversity
according to the entropy value. Furthermore, no increments in the computational
effort are observed when this algorithm is run.

5 Conclusions
In this paper, we analyzed different adaptive evolutionary algorithms which add a
control strategy to modify the mutation probability value during the evolution without
external control. The control strategies considered differ on the information of the
search considered to update the probability value. The different proposals reduce the
pre-tuning time to determinate the most appropriate mutation probability value to
enhance the algorithm performance.

The results obtained by APmGA compared with AcGA and AGA are very
encouraging from low to high levels of epistasis, since it can obtain high quality
solutions with a competitive computational effort. Thus, the control strategy using the
genotypic diversity as the base to introduce chances in the mutation probability
outperforms the other two using the fitness solution.

As a future work, we propose to include the recombination probability in this
process. Furthermore, another extension to this work should be the analysis of the
effectiveness of this adaptive approach over other complex problems.

Acknowledgements
We acknowledge the Universidad Nacional de La Pampa and the ANPCYT

(Argentina) from which the authors receive continuous support. C. Salto thanks
CONICET of Argentina.

References
[1] H. Aguirre and K. Tanaka. Genetic algorithms on nk-landscapes: Effects of selection, drift,

mutation, and recombination, in EvoWorkshops 2003, LNCS 2611, pp. 131–142, 2003.

828282

[2]E. Alba and B. Dorronsoro. The Exploration/Exploitation Tradeoff in Dynamic Cellular

Genetic Algorithms, in Procedings of IEEE Transactions on Evolutionary Computation, vol.

9(2), pp. 126-142, 2005.

[3] E. Alba, F. Almeida, M.J. Blesa, J. Cabeza, C. Cotta, M. Díaz, I. Dorta, J. Gabarró, C. León,

J. Luna, L. Moreno, C. Pablos, J. Petit, A. Rojas, F. Xhafa. MALLBA: A Library of Skeletons

for Combinatorial Optimisation”, in Proceedings of the 8th International Euro-Par Conference

on Parallel, pp. 927–932, 2002.

[4] J. Arabas, Z. Michalewicz, and J. Mulawka. GAVaPS A genetic algorithm with varying

population size, in Proceedings of the First IEEE Conference on Evolutionary Computation, pp.

73-78, 1994.

[5] J. E. Baker. Adaptive selection methods for genetic algorithms, in Proceedings of the 1st

International Conference on Genetic Algorithms and Their Applications, pp. 101–111, 1985.

[6] M. Birattari, T. Stutzle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring

metaheuristics, in Proceedings of the 2002 Genetic and Evolutionary Computation Conference,

pp. 11–19, 2002.

[7] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems, Ph.D.

dissertation, Univ. of Michigan, Ann Arbor, MI, 1975.

[8] K.A De Jong, M.A. Potter, and W.M. Spears. Using problem generators to explore the

effects of epistasis, in Proceedings of 7th International Conference on Genetic Algorithms, pp.

338-345, 1997.

[9] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter Control in Evolutionary

Algorithms, in IEEE Transactions on Evolutionary Computation., vol. 3(2), pp. 124–141, 1999.

[10] A.E. Eiben E. Marchiori, and V.A. Valko. Evolutionary Algorithms with on-the-fly pop

size adjustment, in Proceedings of Parallel Problem Solving from Nature 2004 (PPSN 2004),

vol. 3242 of LNCS , pp. 41-50, 2004.

[11] A.E. Eiben, M.C. Schut, and A.R. de Wilde. Boosting Genetic Algorithms with Self-

Adaptive Selection, in Proceedings of the 2006 IEEE Congress on Evolutionary Computation,

pp. 16-21, 2006.

[12] S. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution. Oxford

University Press, 1993.

[13] S. A. Kauffman and S. Levin. Towards a general theory of adaptive walks on rugged

landscapes, in Journal of Theoretical Biology, vol. 128, pp. 11-45, 1987.

[14] E. Montero and M-C Riff. On-the-fly calibrating strategies for evolutionary algorithms, in

Information Sciences, vol. 181(3), pp. 552-566, 2011.

[15] V. Nannen and A. Eiben, Relevance estimation and value calibration of evolutionary

algorithm parameters, in Proceedings of the Joint International Conference for Artificial

Intelligence (IJCAI), pp. 975–980, 2006.

[16] E. Ridge and D. Kudenko. Tuning an algorithm using design of experiments, in

Experimental Methods for the Analysis of Optimization Algorithms, pp. 265 –286, 2010.

[17] M. Srinivas and L.M. Patnaik, Adaptive Probabilities of Crossover and Mutation in

Genetic Algorithms, in IEEE Transactions on Systems, Man and Cybernetics, vol. 24 (4), pp.

656-667, 1994.

[18] J.E. Smith and T.C. Fogarty. Operator and parameter adaptation in genetic algorithms, in

Soft Computing, vol. 1(2), pp. 81–87, 1997.

[19] D. Thierens. Adaptive strategies for operator allocation, in Parameter Setting in

Evolutionary Algorithms, Springer, pp. 77–90, 2007.

[20] C.E. Shannon. A mathematical theory of communication, in Bell System Technical

Journal, vol. 27, pp. 379–423 and 623–656, 1948.

[21] X.H. Shi, L.M. Wan, H. P. Lee, X. W. Yang, L. M. Wang, and Y. C. Liang. An Improved

Genetic Algorithm with Variable Population-Size and a PSO-GA Based Hybrid Evolutionary

Algorithm, in Proceedings of the Second International Conference on Machine Learning and

Cybernetics, pp. 1735-1740, 2003.

838383

[22] N. Stark, G. Minetti, and C. Salto. A New Strategy for Adapting the Mutation Probability

in Genetic Algorithms, in Proceedings of the Congreso Argentino de Ciencias de la

Computación (CACIC 2012), pp. 51-59, 2012.

[23] D. Voosen and H. Mülhenbein. Adaptation population size by competing subpopulations,

in Proceedings of the1996 IEEE Conference on Evolutionary Computation, pp. 330-335, 1996.

848484

	Comparison of Different Approaches

