
Improving Real Time Search Performance using
Inverted Index Entries Invalidation Strategies

Esteban A. Ríssola and Gabriel H. Tolosa
Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina 

{earissola, tolosoft}@unlu.edu.ar

Abstract

The impressive rise of user-generated content on
the web in the hands of sites like Twitter imposes
new challenges to search systems. The concept
of real-time search emerges, increasing the role
that efficient indexing and retrieval algorithms
play in this scenario. Thousands of new updates
need to be processed in the very moment they are
generated and users expect content to be “search-
able” within seconds. This lead to the develop of
efficient data structures and algorithms that may
face this challenge efficiently.

In this work, we introduce the concept of in-
dex entry invalidator, a strategy responsible for
keeping track of the evolution of the underlying vo-
cabulary and selectively invalidate and evict those
inverted index entries that do not considerably
degrade retrieval effectiveness. Consequently, the
index becomes smaller and may increase overall
efficiency. We introduce and evaluate two ap-
proaches based on Time-to-Live and Sliding Win-
dows criteria. We also study the dynamics of the
vocabulary using a real dataset while the evalua-
tion is carry out using a search engine specifically
designed for real-time indexing and search.
Keywords: real time search, index entry inval-
idator, efficiency.

1 Introduction

The impressive rise of social media and other forms
of user-generated content during last decade in
the hands of sites like Twitter or Facebook [1, 2,
3, 4, 5, 6] reveals us the compelling challenge that
traditional search must face. This growth is not
only defined by the number of users who consumes
these services but also by the vast amount of
content they produce (i.e., eight tweets/second on
average [6]). The implications that the concept
of real-time introduces give us a hint about the
significant role that efficient indexing and retrieval
algorithms plays in this scenario.

Search and retrieval over this huge collections,
as well as the management of the involved data
structures exhibit some differences and introduce
new requirements in comparison to classical Web
search operations [7, 8]. On the one hand, both

queries and user behaviour differ from traditional
patterns [5, 9]. On the other hand, real-time
search service becomes very challenging in large-
scale microblogging systems where thousands of
new updates need to be processed in the very mo-
ment they are generated. Indexing can not be
considered as a batch operation any more as users
expect content to be available (searchable) within
seconds. Thereby, the indexer should be designed
to receive a continuous stream of documents (at
very high arrival rates, often with sudden spikes)
and to achieve both low latency and high through-
put. Finally, the nature of real-time search means
that temporal stamps are important for ranking,
beyond the application of other metrics aimed to
improve the quality of the result list.

Our particular focus is over microblog services,
like Twitter, where users are able to write brief
status messages called posts1 that can share with
their network of friends and, often, with the gen-
eral public at the very moment they are generated.
Increasingly, this kind of services grows in popu-
larity and therefore, the data volume they have
to deal with becomes larger every day. As far
as we know, the only practical strategy to cope
with the performance requirements cited above
consists in maintaining the inverted index and its
corresponding structures in main memory [7, 8].
This strategy primarily admit to significantly re-
duce reading and writing latencies as compared
to other devices, such as hard disks. Nevertheless,
memory remains today a scare resource [7] such
that becomes essential to ascertain the way to
store the index only the necessary information to
provide reasonable (or acceptable) effectiveness.

Thus, bearing in mind the context and its inher-
ent requirements we propose the development of a
component called index entries invalidator, respon-
sible for keeping track of the evolution that the
underlying vocabulary frequency patterns. It aims
to selectively invalidate and evict those inverted
index’s entries whose absence won’t considerably
degrade retrieval effectiveness. Consequently, the
index becomes smaller and may increase overall
efficiency. To the best of our knowledge, this is the
first work that faces this problem and proposes

1Throughout this work the terms post, document or
tweet are used interchangeable.

JCS&T Vol. 16 No. 1 April 2016

6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296385631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the concept of index entries invalidator for real
time systems.

In order to design an efficient invalidation al-
gorithm we conduct the analysis of a real sam-
ple of Twitter data to understand its growth dy-
namic. Specifically, we employ the Tweets2011
[10] dataset widely used by scientific community
in this field. Moreover, we select a sample of
queries from the well-known AOL Query Log [11].
Our experiments examine the performance of the
retrieval process and the effect on the quality of
the results. In this paper we extend a previous
work [12] where only a time-to-live based invali-
dation strategy is introduced.

Our contributions are as follows: (a) We look
into the vocabulary obtained from the tweets
dataset and study its underlying dynamics. Fur-
thermore, we identify tree types of tokens and
show that the size of the resulting vocabulary
can not be fitted by the Heaps’ law [13], as tra-
ditional collections; (b) We design and build up
index entries invalidators inspired by the concepts
of cache invalidators [14], based on the time that
the entries have persisted in the index without
been updated (besides the time-to-live strategy
introduced in [12], we design a new invalidator
based on a sliding window approach); (c) We per-
form the corresponding evaluations making use of
a self-modified version of Zambezi [15] in-memory
search engine for streaming documents by imple-
menting the proposed invalidators. We measure
both wall-clock time and effectiveness metrics on
a per-query basis.

The remainder of the work is organized as fol-
lows: Section 2 provides background concepts on
real-time index features. Section 3 describes the
employed collection and introduces vocabulary
dynamics analysis. Section 4 presents the index
entries invalidator approach. Section 5 details ex-
periments and results. Section 6 concludes and
introduces future work.

2 Background and Related Work

Information retrieval systems rely on efficient data
structures to support search, the so-called inverted
index [16]. Basically, it stores the set of all unique
terms in the document collection (vocabulary) as-
sociated to a set of entries that form a posting list.
Each entry represents the occurrence of a term t
within a document d and it consists of a document
identifier (DocID) and a payload that is used to
store information about the occurrence of t within
d. Each posting list is sorted in an order that
depends on the specific query resolution strategy
[17, 18, 16]. One of the key features of real-time
search resides in the fact that new contents should
be available for search immediately after their cre-

ation, while concurrently supporting low-latency,
high throughput query evaluation. This implies
that the index needs to be update incrementally as
new documents arrive to the system. For this rea-
son, the indexing process requires allocating space
for postings in a dynamic fashion, that results in
non-contiguous postings lists [19].

Nowadays, Twitter’s Earlybird retrieval engine
[7], built upon this large scale microblogging ser-
vice specific needs, represents a point in the space
of real-time search engines. According to its de-
sign guidelines, a general solution to the problem
of dynamically allocating postings for real-time
search is proposed in [8]. As Earlybird represents
a particular instantiation, they provide a general
framework for incremental indexing where all data
structures are stored completely in memory. Thus,
from a small number of memory pools, increas-
ingly larger slices for postings are allocate as more
term occurrences are encountered. This solution
is planned not only for indexing tweets but also
it is aligned to applications that have really tight
index latency requirements.

Likewise, several approaches have been pro-
posed in the literature to improve indexing and
ranking phases, in terms of efficiency and effec-
tiveness. Chen et al. [3] introduced an adaptive
indexing scheme aimed at reducing the update
cost by delaying indexing less useful tweets (i.e.,
tweets that may not appear in the search results).
Otherwise, they are grouped with other unimpor-
tant tweets and indexed later as part of an offline
batch process. In [20] an online topic modeling
framework for querying large microblog corpus is
presented. Such models were employed to identify
topics in the tweets and compare them with the
ones obtained from the incoming queries. Fur-
thermore, discovered topics are applied to rank
relevant tweets in the collection. This approach
is called online in the sense that corresponding
topic modeling was not only conducted over hourly
batches of captured tweets in an offline fashion,
but also for recent time intervals that has not yet
been included in the last batch.

Moreover, [21, 22] have also proposed strategies
to improve the overall effectiveness of microblog
retrieval systems. In the former, Choi & Croft sug-
gested to extend a previously defined time-based
model for pseudo-relevance feedback query expan-
sion, by incorporating the temporal factor into
ranking. In particular, they claim that selecting
relevant time period for a specific query based
on a user behaviour that can be collected easily,
like retweeting, and extracting expanded terms
by using weights derived from the relevant time
can improve retrieval performance. On the other
hand, Metzler et al. define a search task called
event retrieval, i.e., given a query that describes

JCS&T Vol. 16 No. 1 April 2016

7



a particular event the intention is to retrieve a
ranked list of structured event representations.
These correspond to a series of timespans dur-
ing which an instance of the event occurred. An
unsupervised methodology is proposed to extract
high quality event representations by applying a
temporal query expansion technique.

Most recently, Nepomnyachiy et al. [6] intro-
duce a search framework for geo-temporally tagged
data to support low-latency retrieval for queries
with spatial, temporal, and textual components.
Mainly, they define an efficient way to organize
index content based on the spatial distribution of
user-generated data and considering documents
timestamp.

These works tackle different ways to organize
index structures in order to boost retrieval perfor-
mance for real-time search systems. However, they
do not consider the possibility of invalidate en-
tries based on the idea of terms’ update frequency
reducing the index resulting size, thus allowing a
more efficient utilization of available computing
resources.

3 Vocabulary Dynamics

In this Section we introduce an specific analysis
of the vocabulary dynamics using the Tweets2011
dataset, that is employed in different works [21, 8,
15] related to real time search.
Data Characterization: Tweets2011 [10] is con-
stituted as the reference collection of the TREC-
2012 Microblog Track [23]. It comprises of approx-
imately 16 million tweets crawled between January
23rd and February 8th, 2011. This dataset is de-
signed to be a reusable, representative sample of
the twittersphere. We successfully downloaded
11,601,066 tweets, filtering out all non-English
posts. The tweets distribution over time is shown
in Figure 1, on average 9, 3 documents arrive per
hour. Each post is composed of roughly 13.39
useful words and 81.25 characters. As stated in
[6], the number of words in a tweet is considerably
small and tokens rarely repeat within a document.
Dynamics: Taking into account the context of
the proposed analysis, we decided to split each
post considering three types of tokens, namely:
mentions(“@”), hashtags(“#”), and general terms.
The reason for applying this convention lies behind
the fact that both mentions and hashtags have
a particular meaning and value inside Twitter
[4, 5]. According to traditional IR literature, a
practical way to describe how vocabulary and
collection size are related corresponds to Heaps’
law [13] expressed as v = k × nβ , where k and
β represent constant values related to the input
text while n is the total number of processed
tokens. The output, v, becomes the total number

23-01
24-01

25-01
26-01

27-01
28-01

29-01
30-01

31-01
01-02

02-02
03-02

04-02
05-02

06-02
07-02

08-02

Day

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Nu
m

be
r o

f t
w

ee
ts

 p
er

 h
ou

r

Tweets Sample Average

Figure 1: Tweets arrival rate

of unique tokens in the collection. In particular,
it enables to empirically estimate vocabulary size
(and its growth) as a function of the collection size.
Figure 2 shows that the considered tokens growth
faster than this law predictions, rather exhibiting
a linear growth (similarly, the whole vocabulary).
Despite the number of new encountered tokens
raises considerably fast (daily, about a 72% of the
vocabulary corresponds to new additions), mostly
of those tokens are hapax, i.e., they appear only
once within a context. They represent roughly
67.7% of the whole vocabulary.

As stated in [21, 22, 6], this phenomenon is
due to the informal essence that distinguish mi-
croblogging activity along with its character limit
(140 in Twitter’s case). Therefore, abbreviations,
elongated words, compound words hashtags, inter-
net slangs and misspellings are common, in many
cases deliberate.

0 10000000 20000000 30000000 40000000 50000000
Processed Tokens

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

Nu
m
be

r o
f U

ni
qu

e 
To
ke
ns

Hashtags

Fit :0.0035
x+17370

M
en
tio
ns

Fi
t :0
.02

01
x+

89
89
0

Te
rm

s

Fit
:0.
01
46
x+

11
91
00

W
ho
le
Vo
ca
bu
la
ry

F
it
:0
.0
38
2x

+
22
63
00

Figure 2: Vocabulary growth

In order to proceed with vocabulary dynam-
ics characterization, we classify tokens in three
groups by studying how their frequency evolves
across the days. To this extent, we apply a sliding
window approach of s slots. Each slot corresponds
to the observation of a token on a daily basis. We
set a boolean true value if a token is present in at
least one document of the corresponding day. Ev-

JCS&T Vol. 16 No. 1 April 2016

8



29
-01

30
-01

31
-01

01
-02

02
-02

03
-02

04
-02

05
-02

06
-02

07
-02

08
-02

Day

0

5

10

15

20

25

30

35

40

45

50

55

60
P
ro
p
o
rt
io
n
 (
%
)

Fit : 0. 99x+46

Fit :−0. 46x+42. 57

Fit : 14. 69x−0. 36

Stable Volatile Singular

Figure 3: Proportion of each type of token over
days with the corresponding fit model

ery day, tokens’ frequency information is updated
according to the ingested tweets. When a token
appears for the first time (i.e., it does not exist
in the current vocabulary) a new instance of the
window is assigned to it and the first slot activates.
Thus, as days move forward the window goes over
the remaining slots and these may activate (or
not) following token’s daily frequency behaviour.
When the window walks through s slots, a side
shift is applied maintaining the last observations.
Then, we classify each token according to the fol-
lowing criteria:

Let wi be the window of s slots that corresponds
to token ti, and wij be its value at slot j. Let
Si =

qs
j=1 wij and G(ti) a function that assigns

a category (or group) to each token according its
occurrence behaviour, defined as:

G(ti) =


stable, if Si = s

volatile, if 2 ≤ Si ≥ (s − 1)
singular, if Si = 1

In our study we apply a window s = 7 (a whole
week) that we consider as a reasonable number to
study how tokens behave. Figure 3 shows the dis-
tribution of the classified tokens across the sample.
Note that we are able to start with this labeling
on January 28th, because until then the window
has not reached the 7th slot.

Tokens categorized as “singular” grow practi-
cally in a linear fashion, as they present a slope
of 0.99. In addition, they exhibit a growth rate of
roughly 1%. “Volatile” tokens also show a linear
behaviour (dismissing the first observation), in
this case with a slope of −0.46 and a daily growth
close to 0.98%. Finally, “stable” tokens fit to a
power law with β = 0.36, as they decrease at a
daily rate of about 10%. In particular, this last
group shows that despite new tokens are continu-
ously appended to the vocabulary, a considerably
smaller subset of them prevails over days.

4 Index Entries Invalidators

According to the preceding analysis it is reason-
able to think about pruning some entries of the
inverted index. Specifically, those tokens whose
daily frequency behaviour give us a hint about its
scarce contribution to search results. Similarly to
Lin & Mishne [24] observation, there is a great
deal of “churn” in tweets content. To tackle this
issue we decide to prune the inverted index by
removing the full posting lists of those tokens that
sparsely appear over days. Therefore, we define
an index entries invalidator (IEI) by applying two
approaches:
TTL-based: The first one corresponds to a time-
to-live (TTL) strategy, as adopted in result caches
[25]. This IEI is based on the time that entries
have persisted in the index without been updated.
When a token exceeds a given threshold, the IEI
invalidates and evicts this one along with its post-
ing lists. In other words, an entry is dismissed
when the difference between the current time and
the last update time is larger than the TTL value.
Note that lower values might diminish effective-
ness, as the frequency in which tokens occur in
subsequent document should be enough to avoid
its TTL to expire. Hence, the chosen TTL thresh-
old should offer a tradeoff between index size (effi-
ciency) and effectiveness. This strategy guarantee
that all tokens live in the index for at least n hours
(the TTL value) in contrast to adopt a frequency
criterion pruning at certain time in the day.
SW-based: The other one is based on the sliding
window (SW) methodology described in Section 3.
Tokens categorized as “singular” are eliminated
from the index, while a tolerance threshold be-
tween 2 y (s−1) is defined for “volatile” ones. That
is, tokens whose G(ti) ≤ THRS are also pruned
from the vocabulary. To some extent, this setting
enables to determine the pruning aggressiveness,
as values closer to s suggest the elimination of
more entries. Recall that the classification pro-
cess is able to start once the window has walked
through s slots, triggering only if the token has
not appeared in the last day.

5 Experiments and Results

Methodology: In order to evaluate these ap-
proaches in a real time search scenario, we modify
Zambezi search engine, whose source code is pub-
licly available. We implement the index entries
invalidators to perform different experiments to
determine the efficiency and effectiveness of the
proposed strategies. For the TTL-based invalida-
tor we set the value to 24 hours in order to check
whether an index entry has expired. By taking
advantage of tweets timestamps, we are able to

JCS&T Vol. 16 No. 1 April 2016

9



establish the beginning and end of the days, in
terms of hours. Thus, every 24 hours during the
2 weeks covered by the sample we browsed the in-
dex and evict the corresponding entries according
to the heuristic previously defined. After every
day, we processed 1 million queries measuring effi-
ciency and effectiveness by comparing the results
obtained from the original index without pruning
(our baseline), with those of the pruned one. We
run three series of experiments retrieving the top-
k documents that are most relevant to a query
(with k = {50, 10, 100}). We configure Zambezi
to use its WAND [26] algorithm adaptation for
microblogging. Essentially, it uses timestamps as
sorting criteria along with a simplified version of
the scoring BM25 function. Finally, to ensure
the consistency of the results, we perform five tri-
als of the experiment, and average the outcomes.
The same methodology is applied to evaluate the
performance of the sliding window strategy, em-
ploying three different threshold values ({2, 4, 6}).
Due to lack of a publicly available real-time query
set various works build up synthetic ones. Initially,
we evaluate our approaches with a shred of the
synthetic query log generated in [6]. However, the
number of queries in the set is not enough to run
a robust performance evaluation. For this reason,
we decide to use one million queries extracted from
the well-known AOL Query Log [11], employed in
other works involving real-time search [24, 8].
Metrics: To assess the overall performance of
the approaches we evaluate both efficiency (time
and space) and effectiveness. In the first case, the
execution time is measured in terms of wall-clock
time on a per query basis. We also evaluate the
number of invalidated entries per day and the in-
dex size reduction. To quantify the effectiveness,
we apply the result set intersection between the
baseline and our approaches. Remember that in a
real-time search scenario one of the primary search
task consist in presenting the most recent docu-
ments related to the query (recency or freshness
of the results) [27].
Results: The effectiveness evaluation shows that
the TTL-based IEI does not degrade the results
significantly. Figure 4 exhibits the intersection ra-
tio (averaged from 1M queries) for the three series
of experiments. In the case of top-10 retrieval, less
than one document (on average) is missing in the
pruned result set. This result is proportionally
similar in the remaining series (top-50 and 100).
A deep analysis of pruned tokens explains that
most of them correspond to rare ones that appear
sparsely in queries.

Regarding efficiency, this approach reduces the
overall execution time in all configurations up to
6% (best case). Figure 5 shows the results for
top-10 posts (we omit k = {50, 100} figures due to

23
-01

24
-01

25
-01

26
-01

27
-01

28
-01

29
-01

30
-01

31
-01

01
-02

02
-02

03
-02

04
-02

05
-02

06
-02

07
-02

08
-02

09
-02

Day

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

In
te
rs
e
ct
io
n
 (
P
ro
p
o
rt
io
n
)

10 50 100

Figure 4: Intersection proportion when retrieving
top 10, 50 and 100 documents.

lack of space but results perform similarly). The
increased execution time over days corresponds
to the vocabulary growth. The difference also
increases while tokens are added to the index,
thus more tokens are invalidated and pruned.

23
-01

24
-01

25
-01

26
-01

27
-01

28
-01

29
-01

30
-01

31
-01

01
-02

02
-02

03
-02

04
-02

05
-02

06
-02

07
-02

08
-02

09
-02

Day

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o
rm

a
liz

e
d
 E
x
e
cu

ti
o
n
 T
im

e
 (
se

c)

Baseline Pruned-TTL

Figure 5: Normalized Execution Time for TTL-
based Invalidator (Top-10 configuration)

The space consumed by the inverted index in
both baseline and pruned versions is also ana-
lyzed. Table 1 shows the number of entries in
the vocabulary. The number of valid entries de-
creases dramatically over days (up to 88%). This
enables faster lookups into the vocabulary. How-
ever, the total number of DocIDs that accounts for
the resulting posting lists decreases much slower
(Table 2), up to 9.1% in the last day. Again, this
happens due to the pruned tokens correspond to
infrequent ones whose document frequency is very
low (typically, one). This result suggests that a
more aggressive pruning strategy that considers
the posting list lengths of the tokens that remain
into the vocabulary may lead to greater benefits.

Concerning the sliding window approach we ob-
serve that the effectiveness is not practically hurt.
The results for SW-THRS=2 perform similarly
than the baseline (we omit the details) so a larger
threshold is required. Figure 6 depicts the in-
tersection ratio for the different values of k and
thresholds {4, 6}. For k = 10 one document (on
average) is missing from the retrieved set. Simi-

JCS&T Vol. 16 No. 1 April 2016

10



Day Baseline Pruned-TTL Diff. %

1 217,044 209,379 3.53

2 390,863 231,976 40.65

3 540,456 238,330 55.90

4 692,677 259,240 62.57

5 833,499 250,156 69.99

6 970,939 256,852 73.55

7 1,081,271 223,664 79.31

8 1,186,153 228,312 80.75

9 1,295,470 239,079 81.54

10 1,407,580 258,560 81.63

11 1,519,236 254,509 83.25

12 1,627,904 258,206 84.14

13 1,736,197 259,738 85.04

14 1,827,029 227,970 87.52

15 1,916,499 230,474 87.97

16 2,012,312 245,609 87.79

17 2,105,807 249,280 88.16

Table 1: Number of entries in the inverted index
for TTL-based invalidator

Day Baseline Pruned-TTL Diff. %

1 2,392,099 2,384,262 0.33

2 5,174,584 4,992,039 3.53

3 7,864,478 7,467,306 5.05

4 10,919,587 10,294,900 5.72

5 13,892,852 12,991,206 6.49

6 16,859,239 15,678,477 7.00

7 19,413,681 17,914,817 7.72

8 22,037,617 20,270,901 8.02

9 24,934,503 22,903,479 8.15

10 27,976,632 25,684,408 8.19

11 31,168,827 28,576,005 8.32

12 34,215,991 31,326,117 8.45

13 37,198,345 33,998,347 8.60

14 39,793,764 36,240,415 8.93

15 42,532,978 38,669,507 9.08

16 45,659,362 41,508,202 9.09

17 48,608,362 44,153,772 9.16

Table 2: Sum of DocIDs in the posting lists (all
terms) for TTL-based invalidator

larly, the remaining configurations (k = {50, 100})
are not substantially affected by the invalidation
process, highlighting that a more strict threshold
does not degrade significantly the final ranking.

The efficiency evaluation reveals that this strat-
egy improves the overall execution time in all
configurations, reaching almost a 10 % for SW-
THRS=6. For SW-THRS=4 the performance is
close to the TTL approach (6,41%). Figure 7
shows these results (again, due to space constraints
we omit k = {50, 100} figures, nonetheless results
perform similarly). Table 3 shows that about
69.7% and 70.5% of space could be saved by prun-
ing the index entries by applying this methodology
(THRS={4, 6}, respectively). On the other hand,
the total number of DocIDs can be reduced on
about 7.26% and 8.7% (Table 4). As we afore-
mentioned for TTL invalidator, a supplementary
strategy considering posting lists pruning of the
remaining tokens will be adequate to deal with
the vocabulary growth.

29
-01

30
-01

31
-01

01
-02

02
-02

03
-02

04
-02

05
-02

06
-02

07
-02

08
-02

09
-02

Day

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

In
te
rs
e
ct
io
n
 (

P
ro

p
o
rt

io
n
)

SW-THRS=4 SW-THRS=6

(a) Top-10 results

29
-01

30
-01

31
-01

01
-02

02
-02

03
-02

04
-02

05
-02

06
-02

07
-02

08
-02

09
-02

Day

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

In
te
rs
e
ct
io
n
 (

P
ro

p
o
rt

io
n
)

SW-THRS=4 SW-THRS=6

(b) Top-50 results

29
-01

30
-01

31
-01

01
-02

02
-02

03
-02

04
-02

05
-02

06
-02

07
-02

08
-02

09
-02

Day

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

In
te
rs
e
ct
io
n
 (

P
ro

p
o
rt

io
n
)

SW-THRS=4 SW-THRS=6

(c) Top-100 results
Figure 6: Intersection proportion when retrieving
top 10, 50 and 100 documents.

29
-01

30
-01

31
-01

01
-02

02
-02

03
-02

04
-02

05
-02

06
-02

07
-02

08
-02

09
-02

Day

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o
rm

a
liz
e
d
 E
x
e
cu
ti
o
n
 T
im
e
 (
se
c)

Baseline SW-THRS=4 SW-THRS=6

Figure 7: Normalized Execution Time for SW-
based Invalidator (Top-10 configuration)

6 Conclusions and Future Work

In this work we introduced the concept of index
entries invalidator, an strategy for real time search
scenarios, that aims to selectively invalidate and

JCS&T Vol. 16 No. 1 April 2016

11



Day Baseline SW-THRS=4 SW-THRS=6

7 1,081,271 934,260 (-13.60%) 928,040 (-14.17%)

8 1,186,153 873,004 (-26.40%) 861,738 (-27.35%)

9 1,295,470 830,676 (-35.88%) 816,633 (-36.96%)

10 1,407,580 788,382 (-43.99%) 772,451 (-45.12%)

11 1,519,236 754,785 (-50.32%) 737,668 (-51.44%)

12 1,627,904 722,069 (-55.64%) 704,236 (-56.74%)

13 1,736,197 715,801 (-58.77%) 697,567 (-59.82%)

14 1,827,029 698,237 (-61.78%) 679,515 (-62.81%)

15 1,916,499 676,089 (-64.72%) 657,298 (-65.70%)

16 2,012,312 658,136 (-67.29%) 639,921 (-68.20%)

17 2,105,809 638,118 (-69.70%) 620,422 (-70.54%)

Table 3: Number of entries in the inverted index
for SW-based invalidator

Day Baseline SW-THRS=4 SW-THRS=6

7 19,413,681 19,152,954 (-1.34%) 19,080,321 (-1.72%)

8 22,037,617 21,432,916 (-2.74%) 21,278,217 (-3.45%)

9 24,934,503 23,990,685 (-3.79%) 23,771,701 (-4.66%)

10 27,976,632 26,685,536 (-4.61%) 26,400,001 (-5.64%)

11 31,168,827 29,534,438 (-5.24%) 29,181,683 (-6.38%)

12 34,215,991 32,239,236 (-5.78%) 31,825,493 (-6.99%)

13 37,198,345 34,905,933 (-6.16%) 34,435,359 (-7.43%)

14 39,793,764 37,209,193 (-6.49%) 36,671,148 (-7.85%)

16 42,532,978 39,643,331 (-6.79%) 39,040,825 (-8.21%)

16 45,659,362 42,447,901 (-7.03%) 41,800,241 (-8.45%)

17 48,608,362 45,077,120 (-7.26%) 44,380,423 (-8.70%)

Table 4: Sum of DocIDs in the posting lists (all
terms) for SW-based invalidator

evict those inverted index entries that do not con-
siderably degrade retrieval effectiveness. Conse-
quently, the index becomes smaller thus increasing
the overall efficiency. Our experimental results
showed that the proposed approaches reduce the
number of entries in the vocabulary up to an 88%
(TTL-based), enabling faster lookups. The overall
execution time for our query-set is also reduced
up to 10% (SW-based).

However, the resulting size of the index de-
creases much slower. In order to deal with this
issue, we plan to extend the IEI by pruning at
both entry and posting list levels. To this extent,
it will be necessary to consider the posting list
lengths of the tokens that remain into the vocab-
ulary and to study how they evolve over time.
Moreover, we are interested to expand the family
of invalidators improving them by the application
of different pruning techniques adapted to this
problem.

Acknowledgements

We give special thanks to the CIDETIC (Centro
de Investigación Docencia y Extensión en TIC,
UNLu. http://cidetic.unlu.edu.ar/) for pro-
viding us the necessary computational resources in
order to conduct the corresponding experiments.

References

[1] B. A. Huberman, D. M. Romero, and F. Wu,
“Social networks that matter: Twitter under
the microscope,” CoRR, vol. abs/0812.1045,
2008.

[2] H. Kwak, C. Lee, H. Park, and S. Moon,
“What is twitter, a social network or a news
media?,” in Proceedings of the 19th Inter-
national Conference on World Wide Web,
WWW ’10, 2010.

[3] C. Chen, F. Li, B. C. Ooi, and S. Wu, “Ti:
An efficient indexing mechanism for real-time
search on tweets,” in Proceedings of the 2011
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, 2011.

[4] M. Efron, “Information search and retrieval
in microblogs,” J. Am. Soc. Inf. Sci. Technol.,
vol. 62, no. 6, 2011.

[5] J. Teevan, D. Ramage, and M. R. Morris,
“#twittersearch: A comparison of microblog
search and web search,” in Proceedings of
the Fourth ACM International Conference on
Web Search and Data Mining, WSDM ’11,
2011.

[6] S. Nepomnyachiy, B. Gelley, W. Jiang, and
T. Minkus, “What, where, and when: Key-
word search with spatio-temporal ranges,”
in Proceedings of the 8th Workshop on Geo-
graphic Information Retrieval, GIR ’14, 2014.

[7] M. Busch, K. Gade, B. Larson, P. Lok,
S. Luckenbill, and J. Lin, “Earlybird: Real-
time search at twitter,” in Proceedings of the
2012 IEEE 28th International Conference on
Data Engineering, ICDE ’12, 2012.

[8] N. Asadi, J. Lin, and M. Busch, “Dynamic
memory allocation policies for postings in
real-time twitter search,” in Proceedings of
the 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data
Mining, KDD ’13, 2013.

[9] A. Java, X. Song, T. Finin, and B. Tseng,
“Why we twitter: Understanding microblog-
ging usage and communities,” in Proceedings
of the 9th WebKDD and 1st SNA-KDD 2007
Workshop on Web Mining and Social Network
Analysis, WebKDD/SNA-KDD ’07, 2007.

[10] R. McCreadie, I. Soboroff, J. Lin, C. Macdon-
ald, I. Ounis, and D. McCullough, “On build-
ing a reusable twitter corpus,” in Proceed-
ings of the 35th International ACM SIGIR
Conference on Research and Development in
Information Retrieval, SIGIR ’12, 2012.

JCS&T Vol. 16 No. 1 April 2016

12



[11] G. Pass, A. Chowdhury, and C. Torgeson, “A
picture of search,” in Proceedings of the 1st
International Conference on Scalable Infor-
mation Systems, InfoScale ’06, 2006.

[12] E. Ŕıssola and G. Tolosa, “Inverted index en-
try invalidation strategy for real time search,”
in Proceedings of the XXI Congreso Argentino
de Ciencias de la Computación, CACIC ’15,
2015.

[13] C. D. Manning, P. Raghavan, and H. Schütze,
Introduction to Information Retrieval. Cam-
bridge University Press, 2008.

[14] R. Blanco, E. Bortnikov, F. Junqueira,
R. Lempel, L. Telloli, and H. Zaragoza,
“Caching search engine results over incremen-
tal indices,” in Proceedings of the 33rd Inter-
national ACM SIGIR Conference on Research
and Development in Information Retrieval,
SIGIR ’10, 2010.

[15] N. Asadi and J. Lin, “Fast candidate gener-
ation for real-time tweet search with bloom
filter chains,” ACM Trans. Inf. Syst., vol. 31,
no. 3, 2013.

[16] J. Zobel and A. Moffat, “Inverted files for
text search engines,” ACM Comput. Surv.,
vol. 38, no. 2, 2006.

[17] R. A. Baeza-Yates and B. A. Ribeiro-Neto,
Modern Information Retrieval - the concepts
and technology behind search, Second edition.
Pearson Education Ltd., Harlow, England,
2011.

[18] I. H. Witten, A. Moffat, and T. C. Bell, Man-
aging Gigabytes (2Nd Ed.): Compressing and
Indexing Documents and Images. Morgan
Kaufmann Publishers Inc., 1999.

[19] N. Asadi and J. Lin, “An exploration of post-
ings list contiguity in main-memory incremen-
tal indexing,” LSDS-IR ’14, 2014.

[20] C. E. Grant, C. P. George, C. Jenneisch, and
J. N. Wilson, “Online topic modeling for real-
time twitter search,” in Proceedings of The

Twentieth Text REtrieval Conference, TREC
2011, Gaithersburg, Maryland, USA, Novem-
ber 15-18, 2011, 2011.

[21] J. Choi and W. B. Croft, “Temporal models
for microblogs,” in Proceedings of the 21st
ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’12,
2012.

[22] D. Metzler, C. Cai, and E. Hovy, “Structured
event retrieval over microblog archives,” in
Proceedings of the 2012 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies, NAACL HLT ’12, 2012.

[23] I. Soboroff, I. Ounis, C. Macdonald, and
J. Lin, “Overview of the trec-2012 microblog
track,” in In Proceedings of TREC 2012,
2012.

[24] J. Lin and G. Mishne, “A study of ”churn”
in tweets and real-time search queries,” in
Proceedings of the Sixth International Con-
ference on Weblogs and Social Media, Dublin,
Ireland, June 4-7, 2012, 2012.

[25] B. B. Cambazoglu, F. P. Junqueira, V. Pla-
chouras, S. Banachowski, B. Cui, S. Lim, and
B. Bridge, “A refreshing perspective of search
engine caching,” in Proceedings of the 19th In-
ternational Conference on World Wide Web,
WWW ’10, 2010.

[26] A. Z. Broder, D. Carmel, M. Herscovici,
A. Soffer, and J. Zien, “Efficient query eval-
uation using a two-level retrieval process,”
in Proceedings of the Twelfth International
Conference on Information and Knowledge
Management, CIKM ’03, 2003.

[27] D. McCullough, J. Lin, C. Macdonald, I. Ou-
nis, and R. McCreadie, “Evaluating real-time
search over tweets,” in Proceedings of the
Sixth International Conference on Weblogs
and Social Media, Dublin, Ireland, June 4-7,

2012, 2012.

JCS&T Vol. 16 No. 1 April 2016

13




