
Keyword Identification in Spanish Documents using Neural Networks
Germán O. Aquino

Instituto de Investigación en Informática LIDI
Facultad de Informática - Universidad Nacional de La Plata

CONICET– Consejo Nacional de Investigaciones Científicas y Técnicas
La Plata, Buenos Aires, Argentina

gaquino@lidi.info.unlp.edu.ar
and

Laura C. Lanzarini
Instituto de Investigación en Informática LIDI

Facultad de Informática - Universidad Nacional de La Plata
La Plata, Buenos Aires, Argentina

laural@lidi.info.unlp.edu.ar

ABSTRACT

The large amount of textual information digitally

available today gives rise to the need for effective means

of indexing, searching and retrieving this information.

Keywords are used to describe briefly and precisely the

contents of a textual document. In this paper we present

an algorithm for keyword extraction from documents

written in Spanish.This algorithm combines

autoencoders, which are adequate for highly unbalanced

classification problems, with the discriminative power of

conventional binary classifiers. In order to improve its

performance on larger and more diverse datasets, our

algorithm trains several models of each kind through

bagging.

Keywords: Keyword Extraction, Neural

Networks, Autoencoders.

1 INTRODUCTION

The large amount of textual information digitally

available today gives rise to the need for effective means

of indexing, searching and retrieving text documents

quickly and without having a user to read them entirely,

which in many cases is not feasible. Keywords are used

to describe briefly and precisely the contents of a text

document, so that a user can find documents relevant to

him/her without having to read them beforehand.

Keywords are widely used in search engines as they help

in the process of searching, indexing, and retrieving

information [1]. However, there are many documents

without keywords and the task of manually assigning

keywords to them is slow, difficult and highly subjective.

For this reason it is beneficial to have tools that assist

professional indexers by providing a list of terms

candidates to be keywords [2].

In this paper a new algorithm for keyword extraction

from text documents written in Spanish language is

presented. This algorithm is based on a classification

model capable of learning the structural features of the

terms considered keywords, and to recognize terms

having these features in unseen documents. A

combination of discriminant classifiers and autoencoders

is used to build a classification model that assigns a score

to each term of a document. This score is used to

construct a ranking of the terms considered most

informative for a given document.

This paper is organized as follows. Some algorithms

for keyword extraction are described in Section 2. The

proposed algorithm is explained in detail in Section 3.

The results of the experiments carried out are presented

in Section 4, and Section 5 summarizes the obtained

conclusions and future work.

2 RELATED WORK

The problem of keyword extraction has been treated

from the machine learning discipline since a few decades

ago [2][3][4]. This approach aims to transform text data

into a structured representation suitable for learning

algorithms. Such algorithms work with a feature set

computed for each term of a document and consider

keyword extraction as a classification problem,

determining whether each term is a keyword or not.

Supervised learning methods usually use the terms

designated as keywords by the authors of the training

documents as examples of one class, and the rest of the

terms as examples of the other class. The class of the

terms that are not keywords is naturally much more

numerous than the other class. This imbalance in the

number of elements of each class and the inherent

ambiguity of natural language makes keyword extraction

a very difficult problem to solve. Many of the mistakes

made by the keyword extraction algorithms, specially

those which apply supervised classification schemes, are

due to redundancy (in the case of several semantically-

equivalent terms are selected) and over-generalization (in

the case of selection of terms that contain important terms

but are not keywords themselves). The flexibility of the

vocabulary used and the ambiguity of the human

language makes very difficult for automatic classifiers to

distinguish between two seemingly equivalent terms, and

to see a relation between subtly related terms [5].

In order to find a suitable representation for learning

algorithms, many keyword extraction methods apply

stemming, which consists of reducing each term to its

morphological root, and filter terms using a stoplist,

which is a list of terms with low semantic value

(stopwords) such as articles, prepositions, conjunctions

and pronouns.

One of the first advances in considering keyword

extraction as a classification problem to be solved

through machine learning was reported by Peter Turney

[2]. Turney developed an algorithm called GenEx that

applies a set of rules whose parameters are tuned in a first

stage using a genetic algorithm. These rules are used to

rank terms and select the ones that have the highest score

JCS&T Vol. 15 No. 2 November 2015

55

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296383477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in the second stage. GenEx has a pre-processing step in

which stemming is applied to terms and stopwords are

filtered.

Among the most recent algorithms for keyword

extraction there is Maui, developed by Olena Medelyan

[6][7]. Maui is also a supervised classification algorithm

that computes a set of features for the candidate terms.

Maui uses a stemmer and a stoplist of the given language

and it is built on top of the machine learning platform

Weka [8] and uses bagged decision trees to classify

terms.

In a previous work [9] we introduced a keyword

extraction algorithm that relies on auto-associative neural

networks or autoencoders [10] to identify keywords. This

algorithm uses only the elements belonging to the

minority class, the class of the keywords, to build a

recognition model as opposed to discriminative models

obtained using conventional neural networks and other

machine learning algorithms. The autoencoder approach

has the advantage that it handles naturally the imbalance

inherently present in the keyword extraction problem,

and also it enables to control the number of keywords

extracted from each document and to rank them. Also, it

is much faster than other algorithms as it processes only

the examples of the minority class.

The algorithm presented in this paper is also a

supervised machine learning algorithm, and it is an

improvement over our previous approach as it combines

qualities of both discrimination-based (supervised) and

recognition-based (unsupervised) classifiers in order to

improve performance on larger and less regular datasets.

The potentially large variance present in the training and

testing examples is handled through the use of bagging

[11] in order to average the classification decisions of

different classifiers. As its predecessor, the proposed

algorithm does not use stoplists to rule out insignificant

or malformed terms but instead it applies part-of-speech

(POS) tagging to allow the correct identification of noun

phrases present in the text.

3 DESCRIPTION OF THE ALGORITHM

In this work autoencoders are used to classify terms in

two classes, ‘keyword’ and ‘non-keyword’. Autoencoders

are adequate for unbalanced classification problems and

one-class recognition problems [12]. To enhance their

recognition capabilities, several autoencoders are

combined by the use of bagging and also a set of

discriminant classifiers is used.

An autoencoder processes examples of only one class.

Autoencoders try to find an approximation of the training

set to itself, finding in the process an approximation to

the identity function of such training set. This allows

them to assign a reconstruction error that characterizes

the similarity between a new element and the training set.

On the other hand, discriminant classifiers attempt to find

a possibly non-linear boundary in the feature space of the

training examples in order to define regions in such space

for each class. Here, the decision of discriminant

classifiers is used to weight the reconstruction error

assigned to the examples by the autoencoders. Both kinds

of classifiers made decisions through a voting scheme,

which will be explained further in Section 3.3.

3.1 Pre-processing

The first step of the proposed algorithm consists in

splitting the text in sentences and words using two list of

delimiters provided as parameters. These delimiters can

be any character sequence and will not be part of

extracted terms. Once the sentences and words are

obtained the algorithm proceeds to compute the features

for the terms.

Terms are represented by N-grams, which are

sequences of N consecutive words in the same sentence,

and for each one we compute a set of features relative to

position and frequency of the term in the document. In

this work we will use ‘term’ and ‘N-gram’

interchangeably. In the N-grams extraction task the

Fürnkranz algorithm [13] is applied for avoiding the

generation of every possible N-gram from the text and

increasing the efficiency in the generation of N-grams.

This algorithm requires the specification of the maximum

length of the terms considered and the minimum

frequency such terms must have in a document to be

eligible as keywords.

In order to further reduce the number of terms to be

processed, after the feature calculation phase we apply a

filter which discards N-grams that do not start or end

with nouns or adjectives. This filtering discards

sequences of words that are not eligible as keywords, for

example ‘de forma que’. This process is similar to the

application of a stoplist, with the difference that we do

not use an exhaustive list of terms to rule out but instead

we assign POS tags to each word of the document based

on its use. To this end we apply a maximum entropy

model trained with the tool OpenNLP [14] using a tagged

corpus as training set. This filtering greatly reduces the

required processing time, since it discards an important

number of terms that should not be considered as

keywords.

The POS tagging model for Spanish was trained using

the tagged corpus Conll-2002 [15] and the grammatical

tags defined by the EAGLES group [16]. The corpus was

provided in the 2002 Conference on Computational

Natural Language Learning to be used to train and

evaluate algorithms of Named Entitity Recognition

(NER), which is the problem of finding person names,

places, organizations and similar information in the text.

3.2 Term characterization

The features computed for each N-gram consist of

several frequential and positional quantities extracted

from the text. Most of these features are computed using

only the information present in each document, but some

of them require the processing of the entire training

corpus for their computation. The features are:

1. Term length: the number of individual words

composing the N-gram.

2. Term Frequency (TF): the rate between the

frequency of the term and the number of words in a

document.

3. Inverse Document Frequency: it measures how

common is a given term by counting how different

documents in the corpus contain it.

4. Term Frequency – Inverse Document Frequency

(TF-IDF) [17]: consists in weighting the term

frequency with the inverse document frequency. TF-

IDF favors terms that are infrequent in the corpus

but frequent in the given document.

JCS&T Vol. 15 No. 2 November 2015

56

5. First Occurrence: the relative position of the first

occurrence of the term in the text. It is calculated as

the ratio between the number of words that appear

before the first occurrence of the given term and the

number of words of the document.

6. Position in Sentence: a measure of the relative

position of a term in the sentences it appears in. For

each sentence s that contains term t, we count the

number of words that appear in s before t, and we

average these values.

7. Occurrence in Title: this attribute is set to 1 if the

term appears literally in the document title and 0

otherwise. It represents the notion that terms

appearing in the title are important and hence are

candidates to be keywords.

8. Occurrence of Members in Title: this attribute,

like the previous one, relates the importance of a

term with its appearance in the title. The difference

is that this attribute considers occurrences in the title

of the individual words of the term. This allows

considering terms whose occurrences in the title are

not literal, such as when the words are in a different

order or that have more or less lexical words. It is

the ratio between the number of words of a term t

that appear in the title and the length of t.

9. Normalized Sentence Length: it is a measure of

the length of the sentences in which a given term

appears in, calculated by averaging the lengths of

these sentences. Such lengths are also normalized by

dividing them by the length of the longest sentence

in the document.

10. Normalized Frequency (Z-Score) [18]: consists in

normalizing the term frequency using its mean

frequency in the training corpus and its standard

deviation. It measures the difference between the

frequency of a term and its mean frequency in the

corpus.

11. Last occurrence: the last position in the text in

which the term appears.

12. Spread: the difference between first and last

occurrences.

13. Normalized frequency: the frequency of the term

normalized by the highest frequency of any term in

the document.

14. Lowest position in sentence: considering all the

positions a term occupied in each of its sentences,

this is the closest to the beginning of the sentence,

normalized using the sentence length.

15. Highest position in sentence: similar to the

previous one, but considering the position closest to

the end of the sentence.

16. Shortest sentence length: the length of the shortest

sentence a term appears in, normalized by the

highest length of any sentence.

17. Longest sentence length: similar to the previous

one, but considering the longest sentence a term

appears in.

18. Log frequency: a non-linear monotonic function is

applied to the term frequency in order to reduce the

impact of its absolute value but at the same time to

keep its magnitude.

19. Condition of being a named entity: this is a

boolean feature that indicates if the term is a named

entity or not. To identify named entities in the

document a NER OpenNLP model is applied.

20. Keyphraseness [3]: the number of times a given

term was chosen as a keyword in the training set. It

makes sense if the testing documents belong to the

same domain as the training documents, which

should be the case to obtain a reasonable

performance.

3.3 Keyword Identification

As mentioned earlier, the proposed method is a

supervised classification algorithm. It uses the feature

vectors of the terms of the training document set in order

to build a classification model to be applied to the feature

vectors of a testing document set.

In the proposed method three ensembles of classifiers

are used. The first ensemble is composed of conventional

bagged multi-layer perceptrons, trained using sampling

with replacement from the training set. In order to cope

with the imbalance problem, the number of elements that

are sampled from the majority class is proportional to the

sampled number of elements in the minority class. As all

of these sampled smaller training sets are different, the

resulting classifiers will yield different views on the

original feature space. Given the large variance present in

the problem domain and the intrinsic non-deterministic

nature of neural networks, bagging helps to improve the

performance of the obtained models, giving more

consistent and more robust predictions. These classifiers

are trained to distinguish important terms from non-

important ones.

The other two ensembles are composed of

autoencoders. The first of these two ensembles attempts

to characterize the set of elements belonging to the

minority class (the positive set), which in our case are the

feature vectors of the terms designed as keywords in the

training set. The other ensemble attempts to characterize

the set of elements belonging to the majority class (the

negative set), which is naturally much more diverse. Both

ensembles are also trained applying bagging, and the

autoencoders of the majority class are trained with larger

samples in order to provide more accurate estimates of

the complete set.

Autoencoders are neural networks that have as many

output units as they have input units, so given an input

vector X they can produce an approximate vector X’. The

difference between the original vector and the

approximate vector can be characterized by the

reconstruction error, which is the sum of the squared

differences between both vectors. As training is carried

out using the elements of the class of interest it is

expected that new elements that are similar to the ones in

the training set have a lower reconstruction error than

those that are not.

The autoencoders are trained in the same way as

conventional neural networks. In this work we used

Resilient Backpropagation [19] as training algorithm,

both for the autoencoders and the multi-layer

perceptrons. This algorithm allows a faster convergence,

providing better results, and at the same time it eliminates

the need to specify a learning rate.

As we mentioned earlier, the autoencoder assigns a

reconstruction error to each element of a testing set,

which represents the similarity between the element and

those of the training set. Instead of determining a cutoff

threshold to accept or reject a term as keyword we opted

to select the R terms with lowest reconstruction error

JCS&T Vol. 15 No. 2 November 2015

57

from each document of the testing set. As we are using

two sets of autoencoders, one for the positive class and

one for the negative class, we have two scores for each

term of the testing set. Let 𝑃𝑜𝑠𝑒be the reconstruction

error of the term in respect to the positive set, and 𝑁𝑒𝑔𝑒
the reconstruction error in respect to the negative set. An

informative term should minimize Pose, as it should be

similar to the elements in the positive set, and at the same

time it should maximize Nege, its dissimilarity to the

negative set. Hence, an informative term should minimize

𝑃𝑜𝑠𝑒 − 𝑁𝑒𝑔𝑒 , and this is the score used to construct the

term ranking. The selection scheme employed gives

preference to the terms chosen by the discriminant

classifiers as informative terms, and then their

reconstruction error is considered.
The use of the reconstruction error as a selection

mechanism provides two benefits: first, we obtain a

ranking of the extracted terms, and second, it is

guaranteed that each document of the testing set will have

terms to represent it, which does not necessarily hold

with the use of a global threshold or a discriminant

classifier. Besides, R is a parameter of the algorithm

which gives more control and allows the user to adjust

the output of the algorithm when more precision or more

recall is preferred. By default, the number of terms to

extract is the average number of keywords of the

documents of the training set.

4 EXPERIMENTAL RESULTS

Some experiments were carried out to assess the

performance of the proposed method. A dataset formed

by a set of scientific articles published between 2005 and

2013 in Argentine Congress of Computer Science

(CACIC) [20] was used in these experiments. The dataset

includes 888 documents written in Spanish language and

contains 130792 terms from which 1683 are labeled as

keywords, giving an imbalance rate of 1.28%, that is, less

than 2% of all terms belong to the minority class. We

also used a dataset composed of 166 scientific articles

from the Workshop of Researchers in Computer Science

(WICC) [21]. This dataset was used to measure the

performance of the previous version of our method [9],

and it is used here to assess that the new version is indeed

superior.

The metrics used were precision, recall and f1-

measure calculated for each of the four algorithms.These

metrics were applied considering as a hit the match

between a term selected by an algorithm and a term

designated as keyword by the authors of the given

document. Thus, a false positive occurs when a method

identifies as keyword a terms that is not included in the

list of keywords by the author, and a false negative when

the method fails to extract a keyword contained in that

list. In our case precision measures the proportion of

extracted terms that match assigned keywords, and

recallmeasures the proportion of keywords correctly

identified by the method. F1-measure is the harmonic

mean between precision and recall, and therefore it is a

good measure of the global performance of a given

method.

The evaluation methodology we applied is 10-fold

cross validation. This evaluation process was repeated 30

times to obtain a significative sample over which we can

average the results. We configured both algorithms to

extract 5 keywords as this is the average number of

keywords per document on the dataset.

In our experiments we used 15 multi-layer perceptrons

as discriminant classifiers, 5 autoencoders for the positive

set, and 10 autoencoders for the negative set. All these

neural networks were trained using 20 hidden neurons, a

maximum of 50 epochs, and the logistic function as

activation function in the hidden and output layers. The

implementation used of Maui is the one developed by its

authors. For Maui we applied the Spanish stemmers and

stoplists provided with the implementations. For the

previous version of our method, the autoencoder was

configured to use 15 hidden neurons, a maximum of 100

epochs, and the same activation functions as the new

version. In these experiments the terms extracted by all

methods have a maximum length of 4 words and a

minimum frequency of 3 occurrences in their respective

documents.

The results of the 30 runs of the cross-validation for

each algorithm on each dataset are shown in the Figure 1,

identifying the proposed algorithm as AE*, for

autoencoder. The previous version of our method is

simply denoted as AE.

The tests results show that the proposed algorithm

outperforms Maui on these datasets. It can be seen also

that it handles properly larger and more diverse datasets

than its predecessor. One of the main goals of our

algorithm is to capture the largest possible number of

descriptive terms, and this goal is quantified by the recall

metric. A high recall is important because it allows

capturing the maximum possible of eligible terms, which

in turn gives the possibility of suggesting descriptive

terms that were not chosen by the authors. However,

getting a high recall at the expense of precision is not

beneficial, since the quality of the extracted terms will be

inferior. Therefore it is necessary to find a balance

between precision and recall.

In order to verify that these differences are statistically

significant, we ran a Kolmogorov-Smirnov test on the

results of the precision, recall and f-measure obtained

from the cross-validation procedure for both methods,

and we ran a t-test on the difference of the means of the

samples for the three metrics. The tests showed that the

mean for the three metrics obtained by our method are

higher than the ones obtained by Maui with a significance

level of 0.05, as the obtained p-values are 1.3669e-30,

3.7699e-40 and 4.2676e-35 respectively.

Figure 1. Average precision, recall and f1-measure of the

three methods on the CACIC dataset.

In the Table 1 there are shown the lists of keywords

extracted of both methods for a set of documents from

the CACIC dataset, and these keywords are compared to

JCS&T Vol. 15 No. 2 November 2015

58

the real keywords assigned by the authors of the

respective documents. The matches between an extracted

keyword and a real one are highlighted in bold marked

with an asterisk. It is important to notice that some of

these documents have fewer keywords than the specified

number of keywords to extract. This necessarily means

that the methods will have false positives errors, despite

the selected terms may be considered descriptive by a

human observer. It is also noteworthy that some terms are

semantically equivalent to the true keywords, but as they

are not exact matches are hence considered false

positives too. The high variability of the keyword

assignment criteria of the authors, combined with the

ambiguity of the human language contributes to the high

difficulty of the keyword extraction problem. These

issues could be addressed by the use of semantic

knowledge bases that could map related terms to the

same concept, and by the definition of more advanced

scoring criteria for performance assessment than exact

matching.

Table 1. Comparative results of the keyword

extraction methods performance on some sample cases.
Documents in

dataset

Keywords

assigned by

authors

Keywords

extracted by AE*

Keywords

extracted by

Maui

Una

implementación

paralela de las

Transformadas

DCT y DST en

GPU.

-procesamiento

paralelo

-transformadas -MPI

*GPU *GPU *DCT

*CUDA *CUDA -transformadas

*procesamiento

de señales

-GPU CUDA -DST

*DCT *procesamiento

de señales

*CUDA

Programación

híbrida en

clusters de

multicore.

-arquitecturas

paralelas

*cluster *jerarquía de

memoria

*programación

híbrida

*multicore *cluster

*cluster -programación *multicore

*multicore *programación

híbrida

-pasaje de

mensajes

*jerarquía de

memoria

*jerarquía de

memoria

-caso de estudio

Evaluación de

variantes en

modelo

destinado a

anticipar la

conveniencia de

trazar proyectos

de software.

*ingeniería de

software

-trazabilidad -ROC

*análisis ROC -métricas -trazabilidad

*trazabilidad de

requerimientos

*análisis ROC -métricas

*ingeniería de

software

-variantes

*trazabilidad de

requerimientos

-factores

Autorregulación

del aprendizaje

en entornos

mediados por

TIC.

*autorregulación *autorregulación *aprendizaje

*TIC *TIC *TIC

*aprendizaje *aprendizaje -propuesta de

intervención

-intervención *autorregulación

-autorregulación

del aprendizaje

-intervención

Integración

segura de

MANETs con

limitaciones de

energía a redes

de

infraestructura.

-MANET *bluetooth *seguridad

*bluetooth *IPSec *bluetooth

*IPSec -MANETs *IPSec

*energía *energía -consumo

*seguridad -ad hoc -consumo de

energía

5 CONCLUSIONS AND FUTURE WORK

In this paper we presented a new algorithm for

keyword extraction from Spanish documents. The main

feature of our proposal is the use of autoencoders to

capture the properties of important terms, yielding

comparable or even better results than other well known

keyword extraction algorithms. Autoencoders

classification decisions are further reinforced by the use

of discriminant classifiers. We consider important to

achieve a high recall so that the algorithm can capture

more terms eligible by different human observers, with

the goal to act as a recommendation system of possible

keywords. The only language-dependent of our method

are the POS tagging and NER models, thus replacing

these models with models trained with documents in

another language would allow us to apply our method in

such language.

Given that the number of terms to extract is a

parameter of the algorithm the user can adjust the

expected level of precision or recall from the terms

suggested by the system.

We are currently working on the term representation

to include features related to the grammatical structure of

a given language, as the use of parsing trees in order to

find head noun phrases in sentences. We are also

interested in incorporating the use of knowledge bases in

order to find semantic relations between pairs of terms

and to identify their degree of generality or specificity in

a given domain.

REFERENCES

[1] Gutwin, C., Paynter, G., Witten, I., Nevill-

Manning, C., Frank, E.: Improving Browsing in

Digital Libraries with Keyphrase Indexes.

Journal of Decision Support Systems, Vol.27,

no 1-2, pp.81--104. (1999)

[2] Turney, P.D.: Learning Algorithms for

Keyphrase Extraction. Information Retrieval,

vol. 2,303--336 (2000).

[3] Witten, I. H., Paynter, G. W., Frank, E., Gutwin

C., Neville-Manning, C. G.: KEA: Practical

Automatic Keyphrase Extraction. In

Proceedings of the 4th ACM Conference on

Digital Libraries, pp. 254--255 (1998).

[4] Hulth, A.: Improved automatic keyword

extraction given more linguistic knowledge. In

Proceedings of the 2003 Conference on

Empirical Methods in NLP, pp. 216--223

(2003).

[5] Hasan, K. S., Ng V.: Automatic Keyphrase

Extraction: A Survey of the State of the Art. In

Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics

(Volume 1: Long Papers), pp. 1262--1273

(2014).

[6] Medelyan, O.: Human-competitive automatic

topic indexing. Proceedings of the 2009

Conference on Empirical Methods in Natural

Language Processing, vol. 3, pp. 1318--1327,

Association for Computational Linguistics

(2009).

[7] Kim, S. N., Medelyan, O., Kan, M., Baldwin,

T. SemEval-2010 Task 5: Automatic

Keyphrase Extraction from Scientific Articles.

In Proceedings of the 5th International

Workshop on Semantic Evaluation. pp. 21--26

(2010).

[8] WEKA, http://www.cs.waikato.ac.nz/ml/weka/,

accessed in July 2015.

[9] Aquino, G, Hasperué, W, Lanzarini, L.

Keyword Extraction using Auto-associative

Neural Networks. XX CongresoArgentino en

Ciencias de la Computación (2014).

[10] Japkowicz, N, Myers, C, Gluck, M.: A Novelty

Detection Approach to Classification.

JCS&T Vol. 15 No. 2 November 2015

59

http://www.cs.waikato.ac.nz/ml/weka/

Proceedings of the Fourteenth Joint Conference

on Artificial Intelligence, pp. 518--523 (1995).

[11] Breiman, L.: Bagging Predictors. Machine

Learning, pp. 123--140 (1996).

[12] Japkowicz, N.: The Class Imbalance Problem:

Significance and Strategies. Proceedings of the

2000 International Conference on Artificial

Intelligence (ICAI), pp. 111--117 (2000).

[13] Fürnkranz, J.: A Study Using n-gram Features

for Text Categorization (1998).

[14] OpenNLP, http://opennlp.apache.org/, accessed

in July 2015.

[15] Conference on Computational Natural

Language Learning (CoNLL-2002),

http://www.clips.ua.ac.be/conll2002/ner/,

accessed in July 2015.

[16] Expert Advisory Group on Language

Engineering Standards (EAGLES),

http://www.ilc.cnr.it/EAGLES96/home.html,

accessed in July 2015.

[17] Salton, G., Buckley, C.: Term-weighting

approaches in automatic text retrieval.

Information Processing and Management, pp.

513--523 (1988).

[18] Andrade, M.A., Valencia, A.: Automatic

extraction of keywords from scientific text:

application to the knowledge domain of protein

families. Bioinformatics, vol. 14, no. 7, pp.

600--607 (1998).

[19] Riedmiller, M.: Advanced Supervised Learning

in Multi-layer Perceptrons - From

Backpropagation to Adaptive Learning

Algorithms (1994).

[20] Congreso Argentino en Ciencias de la

Computación,

http://redunci.info.unlp.edu.ar/cacic.html,

accessed in July 2015.

[21] Workshop de Investigadores en Ciencia de la

Computación,

http://redunci.info.unlp.edu.ar/wicc.html,

accessed in July 2015.

JCS&T Vol. 15 No. 2 November 2015

60

http://opennlp.apache.org/
http://www.clips.ua.ac.be/conll2002/ner/
http://www.ilc.cnr.it/EAGLES96/home.html

