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ABSTRACT 

The large amount of textual information digitally 

available today gives rise to the need for effective means 

of indexing, searching and retrieving this information. 

Keywords are used to describe briefly and precisely the 

contents of a textual document. In this paper we present 

an algorithm for keyword extraction from documents 

written in Spanish.This algorithm combines 

autoencoders, which are adequate for highly unbalanced 

classification problems, with the discriminative power of 

conventional binary classifiers. In order to improve its 

performance on larger and more diverse datasets, our 

algorithm trains several models of each kind through 

bagging. 

Keywords: Keyword Extraction, Neural 

Networks, Autoencoders. 

1 INTRODUCTION 

The large amount of textual information digitally 

available today gives rise to the need for effective means 

of indexing, searching and retrieving text documents 

quickly and without having a user to read them entirely, 

which in many cases is not feasible. Keywords are used 

to describe briefly and precisely the contents of a text 

document, so that a user can find documents relevant to 

him/her without having to read them beforehand. 

Keywords are widely used in search engines as they help 

in the process of searching, indexing, and retrieving 

information [1]. However, there are many documents 

without keywords and the task of manually assigning 

keywords to them is slow, difficult and highly subjective. 

For this reason it is beneficial to have tools that assist 

professional indexers by providing a list of terms 

candidates to be keywords [2]. 

In this paper a new algorithm for keyword extraction 

from text documents written in Spanish language is 

presented. This algorithm is based on a classification 

model capable of learning the structural features of the 

terms considered keywords, and to recognize terms 

having these features in unseen documents. A 

combination of discriminant classifiers and autoencoders 

is used to build a classification model that assigns a score 

to each term of a document. This score is used to 

construct a ranking of the terms considered most 

informative for a given document.  

This paper is organized as follows. Some algorithms 

for keyword extraction are described in Section 2. The 

proposed algorithm is explained in detail in Section 3. 

The results of the experiments carried out are presented 

in Section 4, and Section 5 summarizes the obtained 

conclusions and future work. 

2 RELATED WORK 

The problem of keyword extraction has been treated 

from the machine learning discipline since a few decades 

ago [2][3][4]. This approach aims to transform text data 

into a structured representation suitable for learning 

algorithms. Such algorithms work with a feature set 

computed for each term of a document and consider 

keyword extraction as a classification problem, 

determining whether each term is a keyword or not. 

Supervised learning methods usually use the terms 

designated as keywords by the authors of the training 

documents as examples of one class, and the rest of the 

terms as examples of the other class. The class of the 

terms that are not keywords is naturally much more 

numerous than the other class. This imbalance in the 

number of elements of each class and the inherent 

ambiguity of natural language makes keyword extraction 

a very difficult problem to solve. Many of the mistakes 

made by the keyword extraction algorithms, specially 

those which apply supervised classification schemes, are 

due to redundancy (in the case of several semantically-

equivalent terms are selected) and over-generalization (in 

the case of selection of terms that contain important terms 

but are not keywords themselves). The flexibility of the 

vocabulary used and the ambiguity of the human 

language makes very difficult for automatic classifiers to 

distinguish between two seemingly equivalent terms, and 

to see a relation between subtly related terms [5]. 

In order to find a suitable representation for learning 

algorithms, many keyword extraction methods apply 

stemming, which consists of reducing each term to its 

morphological root, and filter terms using a stoplist, 

which is a list of terms with low semantic value 

(stopwords) such as articles, prepositions, conjunctions 

and pronouns. 

One of the first advances in considering keyword 

extraction as a classification problem to be solved 

through machine learning was reported by Peter Turney 

[2]. Turney developed an algorithm called GenEx that 

applies a set of rules whose parameters are tuned in a first 

stage using a genetic algorithm. These rules are used to 

rank terms and select the ones that have the highest score 
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in the second stage. GenEx has a pre-processing step in 

which stemming is applied to terms and stopwords are 

filtered. 

Among the most recent algorithms for keyword 

extraction there is Maui, developed by Olena Medelyan 

[6][7]. Maui is also a supervised classification algorithm 

that computes a set of features for the candidate terms. 

Maui uses a stemmer and a stoplist of the given language 

and it is built on top of the machine learning platform 

Weka [8] and uses bagged decision trees to classify 

terms. 

In a previous work [9] we introduced a keyword 

extraction algorithm that relies on auto-associative neural 

networks or autoencoders [10] to identify keywords. This 

algorithm uses only the elements belonging to the 

minority class, the class of the keywords, to build a 

recognition model as opposed to discriminative models 

obtained using conventional neural networks and other 

machine learning algorithms. The autoencoder approach 

has the advantage that it handles naturally the imbalance 

inherently present in the keyword extraction problem, 

and also it enables to control the number of keywords 

extracted from each document and to rank them. Also, it 

is much faster than other algorithms as it processes only 

the examples of the minority class. 

The algorithm presented in this paper is also a 

supervised machine learning algorithm, and it is an 

improvement over our previous approach as it combines 

qualities of both discrimination-based (supervised) and 

recognition-based (unsupervised) classifiers in order to 

improve performance on larger and less regular datasets. 

The potentially large variance present in the training and 

testing examples is handled through the use of bagging 

[11] in order to average the classification decisions of 

different classifiers. As its predecessor, the proposed 

algorithm does not use stoplists to rule out insignificant 

or malformed terms but instead it applies part-of-speech 

(POS) tagging to allow the correct identification of noun 

phrases present in the text. 

3 DESCRIPTION OF THE ALGORITHM 

In this work autoencoders are used to classify terms in 

two classes, ‘keyword’ and ‘non-keyword’. Autoencoders 

are adequate for unbalanced classification problems and 

one-class recognition problems [12]. To enhance their 

recognition capabilities, several autoencoders are 

combined by the use of bagging and also a set of 

discriminant classifiers is used. 

An autoencoder processes examples of only one class. 

Autoencoders try to find an approximation of the training 

set to itself, finding in the process an approximation to 

the identity function of such training set. This allows 

them to assign a reconstruction error that characterizes 

the similarity between a new element and the training set. 

On the other hand, discriminant classifiers attempt to find 

a possibly non-linear boundary in the feature space of the 

training examples in order to define regions in such space 

for each class. Here, the decision of discriminant 

classifiers is used to weight the reconstruction error 

assigned to the examples by the autoencoders. Both kinds 

of classifiers made decisions through a voting scheme, 

which will be explained further in Section 3.3. 

3.1 Pre-processing 

The first step of the proposed algorithm consists in 

splitting the text in sentences and words using two list of 

delimiters provided as parameters. These delimiters can 

be any character sequence and will not be part of 

extracted terms. Once the sentences and words are 

obtained the algorithm proceeds to compute the features 

for the terms. 

Terms are represented by N-grams, which are 

sequences of N consecutive words in the same sentence, 

and for each one we compute a set of features relative to 

position and frequency of the term in the document. In 

this work we will use ‘term’ and ‘N-gram’ 

interchangeably. In the N-grams extraction task the 

Fürnkranz algorithm [13] is applied for avoiding the 

generation of every possible N-gram from the text and 

increasing the efficiency in the generation of N-grams. 

This algorithm requires the specification of the maximum 

length of the terms considered and the minimum 

frequency such terms must have in a document to be 

eligible as keywords. 

In order to further reduce the number of terms to be 

processed, after the feature calculation phase we apply a 

filter which discards N-grams that do not start or end 

with nouns or adjectives. This filtering discards 

sequences of words that are not eligible as keywords, for 

example ‘de forma que’. This process is similar to the 

application of a stoplist, with the difference that we do 

not use an exhaustive list of terms to rule out but instead 

we assign POS tags to each word of the document based 

on its use. To this end we apply a maximum entropy 

model trained with the tool OpenNLP [14] using a tagged 

corpus as training set. This filtering greatly reduces the 

required processing time, since it discards an important 

number of terms that should not be considered as 

keywords. 

The POS tagging model for Spanish was trained using 

the tagged corpus Conll-2002 [15] and the grammatical 

tags defined by the EAGLES group [16]. The corpus was 

provided in the 2002 Conference on Computational 

Natural Language Learning to be used to train and 

evaluate algorithms of Named Entitity Recognition 

(NER), which is the problem of finding person names, 

places, organizations and similar information in the text.  

3.2 Term characterization 

The features computed for each N-gram consist of 

several frequential and positional quantities extracted 

from the text. Most of these features are computed using 

only the information present in each document, but some 

of them require the processing of the entire training 

corpus for their computation. The features are: 

1. Term length: the number of individual words

composing the N-gram.

2. Term Frequency (TF): the rate between the

frequency of the term and the number of words in a

document.

3. Inverse Document Frequency: it measures how

common is a given term by counting how different

documents in the corpus contain it.

4. Term Frequency – Inverse Document Frequency

(TF-IDF) [17]: consists in weighting the term

frequency with the inverse document frequency. TF-

IDF favors terms that are infrequent in the corpus

but frequent in the given document.
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5. First Occurrence: the relative position of the first

occurrence of the term in the text. It is calculated as

the ratio between the number of words that appear

before the first occurrence of the given term and the

number of words of the document.

6. Position in Sentence: a measure of the relative

position of a term in the sentences it appears in. For

each sentence s that contains term t, we count the

number of words that appear in s before t, and we

average these values.

7. Occurrence in Title: this attribute is set to 1 if the

term appears literally in the document title and 0

otherwise. It represents the notion that terms

appearing in the title are important and hence are

candidates to be keywords.

8. Occurrence of Members in Title: this attribute,

like the previous one, relates the importance of a

term with its appearance in the title. The difference

is that this attribute considers occurrences in the title

of the individual words of the term. This allows

considering terms whose occurrences in the title are

not literal, such as when the words are in a different

order or that have more or less lexical words. It is

the ratio between the number of words of a term t

that appear in the title and the length of t.

9. Normalized Sentence Length: it is a measure of

the length of the sentences in which a given term

appears in, calculated by averaging the lengths of

these sentences. Such lengths are also normalized by

dividing them by the length of the longest sentence

in the document.

10. Normalized Frequency (Z-Score) [18]: consists in

normalizing the term frequency using its mean

frequency in the training corpus and its standard

deviation. It measures the difference between the

frequency of a term and its mean frequency in the

corpus.

11. Last occurrence: the last position in the text in

which the term appears.

12. Spread: the difference between first and last

occurrences.

13. Normalized frequency: the frequency of the term

normalized by the highest frequency of any term in

the document.

14. Lowest position in sentence: considering all the

positions a term occupied in each of its sentences,

this is the closest to the beginning of the sentence,

normalized using the sentence length.

15. Highest position in sentence: similar to the

previous one, but considering the position closest to

the end of the sentence.

16. Shortest sentence length: the length of the shortest

sentence a term appears in, normalized by the

highest length of any sentence.

17. Longest sentence length: similar to the previous

one, but considering the longest sentence a term

appears in.

18. Log frequency: a non-linear monotonic function is

applied to the term frequency in order to reduce the

impact of its absolute value but at the same time to

keep its magnitude.

19. Condition of being a named entity: this is a

boolean feature that indicates if the term is a named

entity or not. To identify named entities in the

document a NER OpenNLP model is applied.

20. Keyphraseness [3]: the number of times a given

term was chosen as a keyword in the training set. It

makes sense if the testing documents belong to the

same domain as the training documents, which

should be the case to obtain a reasonable

performance.

3.3 Keyword Identification 

As mentioned earlier, the proposed method is a 

supervised classification algorithm. It uses the feature 

vectors of the terms of the training document set in order 

to build a classification model to be applied to the feature 

vectors of a testing document set. 

In the proposed method three ensembles of classifiers 

are used. The first ensemble is composed of conventional 

bagged multi-layer perceptrons, trained using sampling 

with replacement from the training set. In order to cope 

with the imbalance problem, the number of elements that 

are sampled from the majority class is proportional to the 

sampled number of elements in the minority class. As all 

of these sampled smaller training sets are different, the 

resulting classifiers will yield different views on the 

original feature space. Given the large variance present in 

the problem domain and the intrinsic non-deterministic 

nature of neural networks, bagging helps to improve the 

performance of the obtained models, giving more 

consistent and more robust predictions. These classifiers 

are trained to distinguish important terms from non-

important ones. 

The other two ensembles are composed of 

autoencoders. The first of these two ensembles attempts 

to characterize the set of elements belonging to the 

minority class (the positive set), which in our case are the 

feature vectors of the terms designed as keywords in the 

training set. The other ensemble attempts to characterize 

the set of elements belonging to the majority class (the 

negative set), which is naturally much more diverse. Both 

ensembles are also trained applying bagging, and the 

autoencoders of the majority class are trained with larger 

samples in order to provide more accurate estimates of 

the complete set. 

Autoencoders are neural networks that have as many 

output units as they have input units, so given an input 

vector X they can produce an approximate vector X’. The 

difference between the original vector and the 

approximate vector can be characterized by the 

reconstruction error, which is the sum of the squared 

differences between both vectors. As training is carried 

out using the elements of the class of interest it is 

expected that new elements that are similar to the ones in 

the training set have a lower reconstruction error than 

those that are not.  

The autoencoders are trained in the same way as 

conventional neural networks. In this work we used 

Resilient Backpropagation [19] as training algorithm, 

both for the autoencoders and the multi-layer 

perceptrons. This algorithm allows a faster convergence, 

providing better results, and at the same time it eliminates 

the need to specify a learning rate. 

As we mentioned earlier, the autoencoder assigns a 

reconstruction error to each element of a testing set, 

which represents the similarity between the element and 

those of the training set. Instead of determining a cutoff 

threshold to accept or reject a term as keyword we opted 

to select the R terms with lowest reconstruction error 
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from each document of the testing set. As we are using 

two sets of autoencoders, one for the positive class and 

one for the negative class, we have two scores for each 

term of the testing set. Let 𝑃𝑜𝑠𝑒be the reconstruction

error of the term in respect to the positive set, and 𝑁𝑒𝑔𝑒
the reconstruction error in respect to the negative set. An 

informative term should minimize Pose, as it should be 

similar to the elements in the positive set, and at the same 

time it should maximize Nege, its dissimilarity to the 

negative set. Hence, an informative term should minimize 

𝑃𝑜𝑠𝑒 −  𝑁𝑒𝑔𝑒 , and this is the score used to construct the

term ranking. The selection scheme employed gives 

preference to the terms chosen by the discriminant 

classifiers as informative terms, and then their 

reconstruction error is considered. 
The use of the reconstruction error as a selection 

mechanism provides two benefits: first, we obtain a 

ranking of the extracted terms, and second, it is 

guaranteed that each document of the testing set will have 

terms to represent it, which does not necessarily hold 

with the use of a global threshold or a discriminant 

classifier. Besides, R is a parameter of the algorithm 

which gives more control and allows the user to adjust 

the output of the algorithm when more precision or more 

recall is preferred. By default, the number of terms to 

extract is the average number of keywords of the 

documents of the training set. 

4 EXPERIMENTAL RESULTS 

Some experiments were carried out to assess the 

performance of the proposed method. A dataset formed 

by a set of scientific articles published between 2005 and 

2013 in Argentine Congress of Computer Science 

(CACIC) [20] was used in these experiments. The dataset 

includes 888 documents written in Spanish language and 

contains 130792 terms from which 1683 are labeled as 

keywords, giving an imbalance rate of 1.28%, that is, less 

than 2% of all terms belong to the minority class. We 

also used a dataset composed of 166 scientific articles 

from the Workshop of Researchers in Computer Science 

(WICC) [21]. This dataset was used to measure the 

performance of the previous version of our method [9], 

and it is used here to assess that the new version is indeed 

superior. 

The metrics used were precision, recall and f1-

measure calculated for each of the four algorithms.These 

metrics were applied considering as a hit the match 

between a term selected by an algorithm and a term 

designated as keyword by the authors of the given 

document. Thus, a false positive occurs when a method 

identifies as keyword a terms that is not included in the 

list of keywords by the author, and a false negative when 

the method fails to extract a keyword contained in that 

list. In our case precision measures the proportion of 

extracted terms that match assigned keywords, and 

recallmeasures the proportion of keywords correctly 

identified by the method. F1-measure is the harmonic 

mean between precision and recall, and therefore it is a 

good measure of the global performance of a given 

method. 

The evaluation methodology we applied is 10-fold 

cross validation. This evaluation process was repeated 30 

times to obtain a significative sample over which we can 

average the results. We configured both algorithms to 

extract 5 keywords as this is the average number of 

keywords per document on the dataset.  

In our experiments we used 15 multi-layer perceptrons 

as discriminant classifiers, 5 autoencoders for the positive 

set, and 10 autoencoders for the negative set. All these 

neural networks were trained using 20 hidden neurons, a 

maximum of 50 epochs, and the logistic function as 

activation function in the hidden and output layers. The 

implementation used of Maui is the one developed by its 

authors. For Maui we applied the Spanish stemmers and 

stoplists provided with the implementations. For the 

previous version of our method, the autoencoder was 

configured to use 15 hidden neurons, a maximum of 100 

epochs, and the same activation functions as the new 

version. In these experiments the terms extracted by all 

methods have a maximum length of 4 words and a 

minimum frequency of 3 occurrences in their respective 

documents. 

The results of the 30 runs of the cross-validation for 

each algorithm on each dataset are shown in the Figure 1, 

identifying the proposed algorithm as AE*, for 

autoencoder. The previous version of our method is 

simply denoted as AE. 

The tests results show that the proposed algorithm 

outperforms Maui on these datasets. It can be seen also 

that it handles properly larger and more diverse datasets 

than its predecessor. One of the main goals of our 

algorithm is to capture the largest possible number of 

descriptive terms, and this goal is quantified by the recall 

metric. A high recall is important because it allows 

capturing the maximum possible of eligible terms, which 

in turn gives the possibility of suggesting descriptive 

terms that were not chosen by the authors. However, 

getting a high recall at the expense of precision is not 

beneficial, since the quality of the extracted terms will be 

inferior. Therefore it is necessary to find a balance 

between precision and recall. 

In order to verify that these differences are statistically 

significant, we ran a Kolmogorov-Smirnov test on the 

results of the precision, recall and f-measure obtained 

from the cross-validation procedure for both methods, 

and we ran a t-test on the difference of the means of the 

samples for the three metrics. The tests showed that the 

mean for the three metrics obtained by our method are 

higher than the ones obtained by Maui with a significance 

level of 0.05, as the obtained p-values are 1.3669e-30, 

3.7699e-40 and 4.2676e-35 respectively. 

Figure 1.  Average precision, recall and f1-measure of the 

three methods on the CACIC dataset.  

In the Table 1 there are shown the lists of keywords 

extracted of both methods for a set of documents from 

the CACIC dataset, and these keywords are compared to 
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the real keywords assigned by the authors of the 

respective documents. The matches between an extracted 

keyword and a real one are highlighted in bold marked 

with an asterisk. It is important to notice that some of 

these documents have fewer keywords than the specified 

number of keywords to extract. This necessarily means 

that the methods will have false positives errors, despite 

the selected terms may be considered descriptive by a 

human observer. It is also noteworthy that some terms are 

semantically equivalent to the true keywords, but as they 

are not exact matches are hence considered false 

positives too. The high variability of the keyword 

assignment criteria of the authors, combined with the 

ambiguity of the human language contributes to the high 

difficulty of the keyword extraction problem. These 

issues could be addressed by the use of semantic 

knowledge bases that could map related terms to the 

same concept, and by the definition of more advanced 

scoring criteria for performance assessment than exact 

matching. 

Table 1. Comparative results of the keyword 

extraction methods performance on some sample cases. 
Documents in 

dataset 

Keywords 

assigned by 

authors 

Keywords 

extracted by AE* 

Keywords 

extracted by 

Maui 

Una 

implementación 

paralela de las 

Transformadas 

DCT y DST en 

GPU. 

-procesamiento 

paralelo 

-transformadas -MPI 

*GPU *GPU *DCT

*CUDA *CUDA -transformadas

*procesamiento 

de señales

-GPU CUDA -DST 

*DCT *procesamiento 

de señales 

*CUDA 

Programación 

híbrida en 

clusters de 

multicore. 

-arquitecturas 

paralelas 

*cluster *jerarquía de 

memoria

*programación

híbrida

*multicore *cluster 

*cluster -programación *multicore

*multicore *programación

híbrida 

-pasaje de 

mensajes

*jerarquía de 

memoria

*jerarquía de 

memoria 

-caso de estudio

Evaluación de 

variantes en 

modelo 

destinado a 

anticipar la 

conveniencia de 

trazar proyectos 

de software. 

*ingeniería de 

software

-trazabilidad -ROC 

*análisis ROC -métricas -trazabilidad 

*trazabilidad de 

requerimientos

*análisis ROC -métricas 

*ingeniería de 

software 

-variantes 

*trazabilidad de 

requerimientos 

-factores 

Autorregulación 

del aprendizaje 

en entornos 

mediados por 

TIC. 

*autorregulación *autorregulación *aprendizaje

*TIC *TIC *TIC

*aprendizaje *aprendizaje -propuesta de 

intervención

-intervención *autorregulación

-autorregulación 

del aprendizaje 

-intervención

Integración 

segura de 

MANETs con 

limitaciones de 

energía a redes 

de 

infraestructura. 

-MANET *bluetooth *seguridad

*bluetooth *IPSec *bluetooth

*IPSec -MANETs *IPSec

*energía *energía -consumo

*seguridad -ad hoc -consumo de 

energía

5 CONCLUSIONS AND FUTURE WORK 

In this paper we presented a new algorithm for 

keyword extraction from Spanish documents. The main 

feature of our proposal is the use of autoencoders to 

capture the properties of important terms, yielding 

comparable or even better results than other well known 

keyword extraction algorithms. Autoencoders 

classification decisions are further reinforced by the use 

of discriminant classifiers. We consider important to 

achieve a high recall so that the algorithm can capture 

more terms eligible by different human observers, with 

the goal to act as a recommendation system of possible 

keywords. The only language-dependent of our method 

are the POS tagging and NER models, thus replacing 

these models with models trained with documents in 

another language would allow us to apply our method in 

such language. 

Given that the number of terms to extract is a 

parameter of the algorithm the user can adjust the 

expected level of precision or recall from the terms 

suggested by the system. 

We are currently working on the term representation 

to include features related to the grammatical structure of 

a given language, as the use of parsing trees in order to 

find head noun phrases in sentences. We are also 

interested in incorporating the use of knowledge bases in 

order to find semantic relations between pairs of terms 

and to identify their degree of generality or specificity in 

a given domain. 
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