
Discussing a new Divisive Hierarchical

Clustering algorithm

Erica Vidal, Pablo M. Granitto, and Ariel E. Bayá⋆

CIFASIS, French Argentine International Center for Information and Systems
Sciences, UAM (France) / UNR-CONICET (Argentina)
Bv. 27 de Febrero 210 Bis, 2000, Rosario, Argentina

{granitto,baya}@cifasis-conicet.gov.ar

{ericavidal}@gmail.com

Abstract. We present DHClus, a new Divisive Hierarchical Clustering
algorithm developed to detect clusters with arbitrary shapes. Our al-
gorithm is able to solve clustering problems defined by different scales,
i.e. clusters with arbitrarily dissimilar densities, connectivity or between
cluster distances. The algorithm not only works under this difficult con-
ditions but it is also able to find the number of clusters automatically.
This paper describes this new algorithm and then present results on
real gene expression data. We compare the results of DHClus with other
algorithms to provide a reference frame.

1 Introduction

In this work we describe a new clustering algorithm which we named DHClus
(Divisive Hierarchical Clustering). The algorithm presented here connects a
some interesting ideas from the clustering literature with the aim to solve a
number of relevant clustering problems. The clustering problems that we con-
sidered include clusters with arbitrary shapes defined by multiple scales. Also
these clusters might be embedded in a high dimensional space. An example of
multiple scales can be thought as a dataset containing a number of clusters but
where each of the clusters is defined by a different density. In the case of three
Gaussian components defined as {N(µ1, σ1), N(µ2, σ2), N(µ3, σ3)}, where µi is
the cluster centroid and σ2

i is the the cluster variance, the parameters (σ1, σ2, σ3)
represent scales in terms of the density of each clusters. A different example of
multiple scales could be thought in terms of highly dissimilar clusters separa-
tion or as a mix of scales, clusters with different densities separated by highly
dissimilar distances. For the sake of simplicity, our previous example involved
Gaussian clusters but the reader should keep in mind that DHClus is explicitly
developed to manage non Gaussian data.

A major feature of DHClus is that it does not need a parameter specifying the
number of clusters; rather, the algorithm by itself tries to find an optimal number

⋆ Author to whom all correspondence should be addressed

15th Argentine Symposium on Articial Intelligence, ASAI 2014

43 JAIIO - ASAI 2014 - ISSN: 1850-2784 - Página 43

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296374903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of clusters. This feature is highly related with the ability of the algorithm to find
clusters defined by different scales. Some key components of DHClus come from
the use of ideas of Spectral Clustering[6]. In some sense DHClus is wrapped
around a simplified version of Spectral Clustering. The type of problems that we
have defined in the previous paragraph have been shown to be very difficult to
solve by Spectral Clustering [7]. This new algorithm allow us to solve problems
that the original algorithm cannot.

The rest of the paper is laid out as follows: Section 2 presents a description
of DHClus and discusses a number of relevant issues that arise from analyzing
the algorithm. Section 3 present results obtained from applying DHClus to five
real world datasets. The section also includes results coming from other methods
which provides a reference to evaluate the results from DHClus. Finally, Section
4 presents a summary of our findings and discuss some future work.

2 DHClus: A divisive hierarchical aproach for clustering.

DHClus is a clustering algorithm that finds the number of clusters in the data
but considering that the clusters included in the dataset have different scales.
The hierarchical structure of the algorithm is used to capture the different scales
present in the data. The root of the tree has the complete dataset, then each
new node of the tree is obtained by partitioning the data from its parent node
in two. To partition the data contained in each parent node we look for two
clusters with Spectral Clustering. We have followed the work of von Luxburg [6]
and used the version of Spectral Clustering algorithm associated to the random
walk that uses the Eigenvectors of the Laplacian matrix: L = P−1W , where
P is the degree matrix and W the similarity matrix. An important step in the
clustering procedure is to calculate the similarity matrix, W , associated with
the data. Most commonly used functions have parameters, which are dependent
of the scale of the clusters. Since we are looking to solve problems with many
different scales one possible solution would be to calculate the similarity matrix
W considering all the scales involved. Instead we consider all the scales involved
in the problem one at the time by using a tree and solving a subproblem with a
single scale in each node.

An example is the Gaussian or RBF similarity, which can be defined as:

s(xi, xj , σ) = e
−|xi−xj |

2

2·σ2 , where |xi − xj | is the euclidean distance and σ is a
parameter that depends on the scale. In this similarity the constant σ is related
to the density of the data. If we were to use this similarity we would need to
estimate σ and calculate W again for each scale present in the problem. We
introduced this similarity as a simple example of what means to recalculate the
scale parameters and similarity matrix (W) to consider all the scales present. In
this work we have used a different similarity which will be described later.

15th Argentine Symposium on Articial Intelligence, ASAI 2014

43 JAIIO - ASAI 2014 - ISSN: 1850-2784 - Página 44

Up to this point DHClus would simply divide the data until only singletons are
left in each node. Such behavior would force us to look for the number of clusters
by searching the tree. Instead we propose to validate the partition of each node,
i.e. decide after we divide the data associated to a node if we accept the partition
or if we stop and do not partition that node anymore. The algorithm stops when
this criterion tell us that no more nodes need to be divided. Algorithm 1 describes
DHClus using pseudo code but without much detail. In the following paragraphs
we present a careful analysis of the algorithm.

input : X ∈ Rn a dataset, s(, , θ) a similarity function, θi an interval for
the scale parameters.

output: {L1,L2, ...,Lkc
} Clustering Labels, kc number of clusters.

1 Optimize θ, argmin
θ

= ψ(X, s(, , θ), θ = θi);

2 Calculate W by using s(, , θ) ;
3 Divide X in two clusters X1 and X2 by partitioning W with Spectral
Clustering;

4 Calculate label L1 and L2 corresponding to X1 and X2;
5 Validate X1 and X2, i.e. answer: do we have two clusters?;
6 if two clusters then

7 DHClus(X1, s(, , θ), θi);
8 DHClus(X2, s(, , θ), θi);

9 else

10 return Lq;
11 end

Algorithm 1: DHClus

Algorithm 1 inputs are the dataset X , which we would like to cluster, a sim-
ilarity function s(, , θ) and θi an interval to look for the optimal values θ. The
notation s(, , θ) implies that the parameters (θ) are intrinsic to the similar-
ity function, which means that parameters are embedded inside the function.
Also θi represents an arbitrary number of parameter. For each one a range
of values is defined. There we will look for an optimum set of parameters.
In this paper we use a similarity named RBF-PKNNG, which we define as

spknng(xi, xj , θ) = e
−d(xi−xj)

2
pknng

2·σ2 . The PKNNG metric, d(xi − xj)pknng , was
developed as a graph based metric which uses the concept of geodesic distance
to calculate the distance between two points (xi,xj). This metric, developed by
Bayá and Granitto [2], also uses penalized edges to join dense groups of points
that are connected through low density regions of space. Due to space constrains
we refer the reader to [2] for more information on the topic. The PKNNG metric
was very useful to detect arbitrary shaped clusters in high dimensional data. The
similarity spknng uses a parameter σ, which in this case has a different meaning
that in the plain RBF similarity. The constant σ is related to the distances in

the PKNNG graph such that the fractional quantity
d(xi−xj)

2
pknng

2·σ2 defines the
meaning of close and far. There is also an extra parameter from the PKNNG

15th Argentine Symposium on Articial Intelligence, ASAI 2014

43 JAIIO - ASAI 2014 - ISSN: 1850-2784 - Página 45

metric, k, which we need to consider. Finally, θ is defined as θ = {θk, θσ}. There
are two parameters that need to be set.

Line 1 from Algorithm 1 presents a function ψ that uses as input the data X ,
the similarity spknng(, , θ) and the interval θi, which accounts for k and σ. As a
result, ψ finds a set of optimal values θ to setW using RBF-PKNNG, which then
is used to divide the data with Spectral Clustering in two clusters. We present
the following function as a candidate for ψ:

BH(k∗) =
1

k∗

k∗∑

i=1

1

ni

∑

x∈Ci

||x−mi||
2. (1)

where ni is the number of elements in cluster Ci, k
∗ is the number of clusters

and mi is the centroid of cluster Ci. The function BH(k∗) can be found in [1] as
a clustering quality index. We use Equation (Eq.) 1 restricted to a single value,
which is BH(2) because we are looking for the best partition of two clusters. But
Eq. 1 needs clustering assignments to find BH(2) so we will need to calculate
lines 1 to 4 as a block for each set of parameters. Equation 1 is not applied in
the original space Rn where X is defined but in the space of the first and second
Eigenvectors, which is where Spectral Clustering looks for two clusters. We are
partitioning the data and looking for the optimal parameters (θ) at the same
time. The notation: argmin

θ

= ψ(X, s(, , θ), θ = θi) means that we are looking for

the minimum BH(2) coming from two clusters defined in the space of the first
and second Eigenvectors, which was generated by the parameters θ = {θk, θσ}.
At the end of the block made by lines 1 to 4, we are only required to retain the
sets of clustering labels {L1,L2} that have minimum BH(2). This value, the
minimum of BH(2), represent the most compact representation of two clusters
in the space of the first and second Eigenvectors.

Fig. 1. Example of Algorithm 1 applied to
the data shown in the root node of the tree.

To validate that X1 and X2 form
two clusters, see Line 5, there are a
number of methods that can be ap-
plied. This methods are usually re-
ferred in the literature as clustering
validation [4]. We selected a variation
of a well known test, The Gap Statis-
tic [8], which is a weighed version of
the test developed by Yan and Ye [9].
This new version of the test compen-
sates for a number of problems in the
original method. The issue with both
versions is that they use the Euclidean
metric to define the within sum of
squares (WSS) and later perform a
statistical test with it. For more in-
formation on these methods we refer

15th Argentine Symposium on Articial Intelligence, ASAI 2014

43 JAIIO - ASAI 2014 - ISSN: 1850-2784 - Página 46

the reader to [8,9]. It is known that
the WSS defined with the Euclidean metric cannot be used to validate non
Gaussian data [3]. To solve this problem we change the usual definition of the
WSS involving the Euclidean metric and use instead the PKNNG metric. The
PKNNG metric is used with the parameter k found in lines 1 to 4. Then the
new weighed Gap Test is simply applied assuming that there can be only one or
two clusters, which answer our question: do we have two clusters?. A previous
work from Bayá and Granitto [3] has shown good results using a different metric
than the Euclidean to define the WSS. The results from this work motivated our
choice of test in Algorithm 1.

Once the algorithm has decided if there are one or two clusters it can choose
to continue and apply DHClus to a new pair of nodes associated to partition
X1 and X2 by recursively calling DHClus (lines 7 and 8) or finish the process
for the current node. Line 10 returns the labels corresponding to a leaf node or
end node. Consistence for the labels is kept internally and the clustering labels
L = {L1,L2, ...,Lkc

} are obtained with the labels returned in Line 10 and so are
the number of cluster (kc). Both L and kc are the output of DHClus.

Figure 1 is the graphical equivalent of applying Algorithm 1 to the dataset
associated to the root node of the tree. This dataset present both Gaussian and
non Gaussian data. The difficulty of this dataset consists of finding clusters of
different shapes and densities.

3 Results.

In this section we show some performance results of DHClus when it is applied
to a set of gene expression datasets. Table 1 presents a brief description of these
datasets. The datasets {Aml, Ali, Leu, Lung} are different types of human cancer
cells while Yeast is a dataset of proteins. In the first set of examples we would
like to cluster the types of cancers while in the Yeast dataset we would like to
find functional groups of proteins. The relevance of these sets from a machine
learning point of view comes from the high number of dimensions, the small
number of samples and the different densities of the clusters. More detail of
these datasets can be found in [2,3].

Our first concern is to verify if DHClus can solve the clustering problems defined
by the datasets from Table 1, i.e. can DHClus find clusters with high degree of
matching between these clusters and the golden rule. In real working conditions
it is not usual to have the true labels of the data (or golden rule) but here we
are using these datasets to estimate the behavior of our algorithm. Still this is
not enough, we need to present our results and a reference to compare both.
For this reason we contrast our results with Spectral Clustering (SP) using: the
RBF similarity, the RBF-PKNNG similarity and Spectral Clustering using Local
Scaling (LS) which is an improvement of the RBF similarity introduced to find

15th Argentine Symposium on Articial Intelligence, ASAI 2014

43 JAIIO - ASAI 2014 - ISSN: 1850-2784 - Página 47

Dataset Samples Class & Sample distribution Dimension

Aml 38 3 (11-8-19) 999
Ali 62 3 (42-9-11) 1000
Leu 248 6 (43-27-15-79-20-64) 985
Lung 197 4 (139-17-21-20) 1000
Yeast 208 4 (14-27-121-46) 79

Table 1. This table presents five gene expression datasets. The columns of the table
describe important features of the dataset. The third column has the number of classes
and the distribution of examples per class. The rest of them are well described by their
names.

clusters with different densities. A full description of Local Scaling can be found
in the work presented by Zelnik-Manor and Perona [10].

Dataset Dhclus SPrbf SPrbf−pknng SPls

Aml 1 1 0.91 1
Ali 1 1 1 1
Leu 0.92 0.75 0.55 0.68
Lung 0.64 0.91 0.65 0.82
Yeast 0.85 0.95 0.97 0.96

Table 2. Value of cRand for DHClus SPrbf , SPrbf−pknng and SPls.

Table 2 presents the results of applying to each dataset: DHClus, Spectral
Clustering with the RBF similarity (SPrbf), Spectral Clustering with the RBF-
PKNNG similarity (SPrbf−pknng) and Spectral Clustering with Local Scaling
(SPls). We use the Adjusted Rand Index (ARI or cRand)[5] to measure the
degree of match between the known classes and the labels resulting from each
clustering method. Table 2 presents the cRand of a single run using all the data
from each dataset. In the case of DHClus the algorithm itself is detecting the
number of clusters and setting the internal parameters. On the other hand the
three Spectral Clustering variants (SPrbf , SPrbf−pknng, SPls) need the number
of clusters set by hand. Internal parameters in these methods are found in each
case using Equation 1 in the space of the Eigenvectors like it was done with
DHClus. For example in the case of LEU the parameters selected are those
that minimize BH(6) in the space of the first six Eigenvectors. Since Spectral
Clustering is simultaneously looking for six clusters we select the parameters
that lead to the most compact six clusters in the Eigenvectors space.

We performed a second experiment, which consist of analyzing the response of
DHClus to a perturbation of the input data. We removed a fraction of 5 percent
of the data and repeated the clustering with DHClus 100 times for each dataset.
The aim of this experiment is to find out the degree of change in the output
caused by a small perturbation of the input. These results are shown by Figure
2. Panel (a) presents the results using boxplots corresponding to the cRand
measured in the (y) axis for each dataset, which is indicated in the (x) axis. The

15th Argentine Symposium on Articial Intelligence, ASAI 2014

43 JAIIO - ASAI 2014 - ISSN: 1850-2784 - Página 48

Dataset Names

c
R

a
n

d

Aml Ali Leu Lung Yeast

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

Dataset Names

Aml Ali Leu Lung Yeast

2
4

6
8

1
0

N
u
m

b
e

r
o

f
C

lu
s
te

rs

(b)

Fig. 2. Response to perturbation of DHClus. Panel (a) shows the cRand (y axis) for
each real dataset (x axis). The blue line is the best solution of Spectral Clustering for
each dataset. Panel (b) shows the number of clusters (y axis) for each real dataset (x
axis). The blue line is the correct number of cluster extracted from Table 1.

blue line shows the best solution of Spectral Clustering for each dataset based on
the single run results from Table 2. Panel (b) presents boxplots measuring the
number of clusters obtained by DHClus for each dataset. The number of cluster
can be read in the (y) axis and the dataset name in the (x) axis. In this case the
blue line shows the number of classes of each dataset.

We direct our attention first to the results presented in Table 2. As we can see
performances appear similar. DHClus finds a better clustering solution for Leu,
a worst solution for Lung and a slightly worst one for Yeast. But one should
not forget that DHClus is selecting both the number of clusters and internal
parameters automatically while the SP variants need the information of the
number of clusters to output the solution and to set any internal value. DHClus
is finding similar results with less information. Also this kind of information
needed by the SP variants is usually not available.

Figure 2.a shows the variation of the cRand index corresponding to a pertur-
bation made by sub-sampling the input data. In both figures the result that
stands out the most is the Lung dataset, which is actually the worst one. The
problem with this example is that DHClus fails to recognize one class as a valid
cluster. The results from Figure 2.b in the case of Lung show that many runs of
DHClus find four clusters. A closer look to the output reveals that it is always
finding three classes and when the method finds four clusters it is because one
of the classes is being divided in two clusters. This example is the only one that
fails to find one class. We found out too that sometimes the algorithm may over
fragment the solution, i.e. divide one class in more clusters but only after rec-
ognizing correctly all classes. This is what happens for datasets Leu and Yeast
but the number of clusters found is close to the number of classes.

15th Argentine Symposium on Articial Intelligence, ASAI 2014

43 JAIIO - ASAI 2014 - ISSN: 1850-2784 - Página 49

4 Conclusions and future work.

We have presented a new Divisive Hierarchical Clustering algorithm, DHClus,
which automatically finds the number of clusters and sets its internal parameters.
Our results show that DHClus has similar performance than Spectral Clustering
combined with different similarities. Our worst result was the Lung dataset and
it happened when DHClus failed to find one of the classes. This kind of result
is problematic since the solution tree was prematurely ended by the stop propo-
sition (see Line 5 from Algorithm 1). This same proposition is also responsible
for over fragmenting the solution but in such case it is possible to prune the
solution tree to find a better clustering outcome. These errors occur because
the stop proposition acts using only local information. It evaluates part of the
data using a single scale. This scale used in the test is unique but each test can
have a different scale. A pruning rule could improve performance by including
global information using all scales and the data as a whole. Including a pruning
function to DHClus is a future modification we intend to make. We also plan to
look for other stopping criteria as well.

References

1. Ball, G.H., Hall, D.J.: Isodata. a novel method of data analysis and pattern clas-
sification. (1965)

2. Bayá, A.E., Granitto, P.M.: Clustering gene expression data with a penal-
ized graph-based metric. BMC Bioinformatics 12(1), 2 (2011), http://www.

biomedcentral.com/1471-2105/12/2

3. Bayá, A.E., Granitto, P.M.: How many clusters: A validation index for arbitrary-
shaped clusters. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics 10(2), 401–414 (2013)

4. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
J. Intell. Inf. Syst. 17(2-3), 107–145 (2001)

5. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1988)

6. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4),
395–416 (2007), http://dx.doi.org/10.1007/s11222-007-9033-z

7. Nadler, B., Galun, M.: Fundamental limitations of spectral clustering. In: Advanced
in Neural Information Processing Systems 19. MIT Press (2007)

8. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a
dataset via the gap statistic. Journal of the Royal Statistical Society, Series B 63,
411–423 (2001)

9. Yan, M., Ye, K.: Determining the number of clusters using the weighted gap
statistic. Biometrics 63(4), 1031–1037 (2007), http://dx.doi.org/10.1111/j.

1541-0420.2007.00784.x

10. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neu-
ral Information Processing Systems 17. pp. 1601–1608. MIT Press (2004)

15th Argentine Symposium on Articial Intelligence, ASAI 2014

43 JAIIO - ASAI 2014 - ISSN: 1850-2784 - Página 50

