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We investigate the magnetic properties of quasi one-dimensional quantum spin-S antiferromag-
nets. We use a combination of analytical and numerical techniques to study the presence of plateaux
in the magnetization curve. The analytical technique consists in a path integral formulation in terms
of coherent states. This technique can be extended to the presence of doping and has the advantage
of a much better control for large spins than the usual bosonization technique. We discuss the ap-
pearance of doping-dependent plateaux in the magnetization curves for spin-S chains and ladders.
The analytical results are complemented by a Density matrix Renormalization Group (DMRG)
study for a trimerized spin-1/2 and anisotropic spin-3/2 doped chains.
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I. INTRODUCTION

One-dimensional and quasi one-dimensional quantum
spin systems have been a subject of close attention
in condensed matter physics. Over the past decades,
much progress has emerged from the studies of such low-
dimensional systems, the Haldane gap1 and the magneti-
zation plateaux2–4 being some of the best-known exam-
ples. In particular, spin chains have allowed to study
quantum magnetism in the simplest tractable setting,
while investigations of spin ladders have permitted first
steps in the study of crossover from one to two dimen-
sions.
The present work is devoted to magnetization plateaux

in quantum antiferromagnets: the magnetization remain-
ing spectacularly constant in a finite interval of external
magnetic field. This phenomenon has been found in a
great variety of systems from spin ladders3 and p-merized
chains4 to frustrated higher dimensional systems.5.
For a quantum spin-S chain, the necessary condition

for the occurrence of a magnetization plateau has been
established by Oshikawa, Yamanaka and Affleck2:

N(S −m) ∈ Z, (1)

where m is the magnetization per site, N is the number
of spins per unit cell, and Z is the set of all integers.
This condition restricts the plateau magnetization m

to rational values. However, it has been argued that
plateaux may also appear at an irrational m, as a re-
sult of either quenched disorder6 or doping with itinerant
carriers7–9,11,12. In the latter case, doping may allow to
reduce them in a controlled way, thus making the plateau
more easily accessible to experiments in lower magnetic
fields.
Unfortunately, the analytical methods, used so far to

study magnetization plateaux in spin chains and lad-
ders, have been limited to bosonization (and thus, effec-
tively, to one-dimensional spin-1/2 systems) – and to the
bond operator technique, intrinsically restricted to spin-
1/2 systems13. However, recently, Tanaka, Totsuka and

Hu14 (TTH) have arrived at the necessary condition of
Ref. 2 using the Haldane’s path integral approach. This
approach is applicable regardless of the dimensionality
or of the value S of the spin – and, below, we explore
how much progress it may afford us in understanding the
magnetization plateaux in various systems from spin-1/2
chains to higer-spin systems. This approach open new
perspectives in understanding the physics of magnetiza-
tion plateaux in higher spin and higher dimensional sys-
tems such as rare earth tetraborides15.

Our goal in this paper is to test and extend the ap-
proach developed by Tanaka et al.14. First, we test the
technique on several concrete small-spin N -leg ladders
and p-merized chains, previously studied with the help
of bosonization3,4. Then we extend the technique by
combining it with ideas due to R. Shankar16, to account
for hole doping in spin chains at non-zero magnetiza-
tion. Unfortunately, accounting for hole doping in zero
field has proven to be problematic for technical reasons
which we are not going to discuss here. However, at
a non-zero average magnetization per site the technical
difficulties are lifted, which allows us to generalize the
TTH approach to the case of doping. After this, we use
doped Hubbard and t − J chains and ladders as a test-
ing ground, and re-derive some of the results previously
found for these systems7–9,11. Then, we turn to doped
higher-spin systems, which tend to pose a problem for
the bosonization approach.

In Section II, we illustrate the key points of Ref. 14 by
studying magnetization plateaux in an anisotropic spin
chain with the help of coherent-state path integral tech-
nique. In Section III, we extend this to a dimerized chain,
and to a two-leg spin ladder – and then, in section IV,
we generalize the above to n-leg ladders and p-merized
chains, and find that they satisfy the necessary condition
of the Eq. (1).

In Section V, we generalize the plateau condition in
the Eq. (1) to account for the doping dependence. In a
spin-S system at a small hole density δ ≪ 1, we find the
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plateau condition to read

N

(

1− δ

2S

)

(S ±m) ∈ Z. (2)

The Section VI presents an application of the formal-
ism to a doped spin-3/2 chain, and compares the results
with those obtained numerically by DMRG.
In Section VII, we discuss the plateau condition for

a doped n-leg ladders and p-merized chains, with and
without doping.
In Section VIII, we present the results for a trimerized

chain, and compare with DMRG results.
Finally, in Section IX we present the conclusions, pos-

sible implications and extensions of the present approach
to higher dimensions.

II. ANISOTROPIC SPIN CHAIN IN A
MAGNETIC FIELD

In this Section, we study the spin-S nearest-neighbor
antiferromagnetic (AF) chain with easy-plane single-ion
anisotropy, subject to a transverse magnetic field:

H = J
∑

j

~Sj · ~Sj+1 +D
∑

j

(Szj )
2 − h

∑

j

S
z
j , (3)

where J is positive, and the magnetic field h points in
the z direction, as shown in the Fig. 1.
Following the Ref. 14, we analyze the system using the

coherent-state path integral description due to Haldane1.
The resulting effective action comprises two terms: the
first one is the coherent-state expectation value of the
Hamiltonian, and the second one, dubbed the Berry
phase term, corresponds to the solid angle swept by the
spins in their imaginary time evolution.
In order to obtain an effective theory, first, we iden-

tify the classical ground-state configuration and the low-
energy modes above it. Partially polarized by the mag-
netic field, the spins form a canted texture, that we

parametrize as ~Sj = S~nj, with ~nj being a unit vector
with staggered XY components (φj =

π
a
xj):

~Sj = (S sin θj cosφj , S sin θj sinφj , S cos θj) . (4)

We parametrize the fluctuations around the above
canted state as per

φj →
π

a
xj + φ(xj) θj → θ0 + δθ(xj), (5)

where θ0 is the classical ground state solution cos θ0 =
h

2S(2J+D) and xj = aj, with a the lattice constant.

Expanding up to the second order in the δθ, we can
write S±

j = Sxj ± iSyj as a function of δθ(xj) and φ(xj)
and, using these fluctuation fields, we write an effective
theory. If we calculate the Poisson Brackets {Sz, S±}φ,δθ,
we obtain i~{Sz, S±}φ,δθ = −S(sin θ0−δθ cos θ0) (±~S±)
then is straightforward to see that defining

aΠ(xj) = −S
[

δθ(xj) sin θ0 +
1

2
(δθ(xj))

2 cos θ0

]

(6)

h
θ

FIG. 1. Classical configuration for a spin chain in the presence
of a magnetic field.

as the conjugate field of φ we have the correct commuta-
tion relations for the spin operators

Szj ≃ S cos θ0 + aΠ(xj) (7)

S±
j ≃ (−1)je±iφ(xj)

[

S sin θ0 −
am

S sin θ0
Π(xj) (8)

− a2

2

S2

S2 −m2

1

S sin θ0
Π2(xj)

]

,

where m = S cos θ0.
Following the Ref. 14, one arrives at the low-energy

continuous effective action, corresponding to the Hamil-
tonian (3):

S=

∫

dxdτ
{

a (2J +D)Π2−i(∂τφ)Π

+
J

2
a(S2 −m2)(∂xφ)

2 + i

(

S −m

a

)

(∂τφ)

}

. (9)

The last term in right hand side of the Eq. (9) arises from
the Berry phase of the individual spins in the Eq. (3).
After gaussian integration over the field Π, the action
(9) takes the form

S=

∫

dxdτ

{

Kτ

2
(∂τφ)

2+
Kx

2
(∂xφ)

2+i

(

S −m

a

)

(∂τφ)

}

(10)

with

Kτ =
1

2a (2J +D)
Kx = Ja(S2 −m2). (11)

The last term in (10) counts the winding number of
the space-time history of the field φ, defined on a cover-
ing space of a circle. In order to understand the con-
sequences of the topological term, it is convenient to
apply a standard duality transformation to the action.
First, the phase field φ is written as φ = φv + φt, where
φv is a fixed field configuration containing all the vor-
tices (∂µ∂ν − ∂ν∂µ)φv 6= 0, and φt contains the fluctu-
ating vortex-free part. Next, we introduce the Hubbard-
Stratonovich auxiliary vector field Jµ = (Jτ , Jx), and
integrating by parts we obtain

S =

∫

dxdτ

{

i

(

Jτ +

(

S −m

a

))

(∂τφv)

+ iJx(∂xφv) +
1

2

J2
τ

Kτ

+
1

2

J2
x

Kx

(12)

− i

[

∂τ

(

Jτ +

(

S −m

a

))

+ ∂xJx

]

φt

}

.
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Defining J̃µ = Jµ+δµ,0
(

S−m
a

)

the vorticity-free part can

be eliminated with the constraint ∂µJ̃µ = 0. Then, the
action reads

S =

∫

dxdτ

{

iJ̃µ∂µφv +
1

2Kτ

(

J̃µ −
(

S −m

a

))2

+
1

2Kx

J̃2
x

}

.

The constraint ∂µJ̃µ = 0 is solved in one dimension (1D)
in terms of an auxiliary field by

J̃µ = ǫµν∂νχ, (13)

where χ is vorticity-free. Integrating the first term in
the action by parts, and using the substitution χ→ χ̃+
(

S−m
a

)

x, we obtain

S =

∫

dxdτ

{

1

2Kτ

(∂xχ̃)
2 +

1

2Kx

(∂τ χ̃)
2

+ iB

(

χ̃+

(

S −m

a

)

x

)}

, (14)

where B = ǫµν∂µ∂νφv =
∑

j 2πqjδ(τ−τ̃j)δ(x−x̃j). Here,
τ̃j and x̃j are the time and space coordinates of the j-th
vortex event and qj is the vorticity. Upon summation
over the vortex configurations in the partition function,
and then rescaling the time variable, the action is brought
to the form

S =

∫

dxdτ

{

1

2
√
KτKx

(

(∂xχ̃)
2 + (∂τ χ̃)

2
)

+ λ̃1 cos

(

2π

(

χ̃+

(

S −m

a

)

x

)) }

. (15)

This effective action is identical to the one obtained in
the Ref. 2 via bosonization. The cosine term is com-
mensurate for S −m ∈ Z. The magnetic excitations are
gapless for all the values of m that satisfy S − m /∈ Z.
Then, when the condition

S −m ∈ Z (16)

is satisfied, a plateau can occur for some range of pa-
rameters if the scaling dimension of the perturbation is
small enough. More precisely, the presence of the cosine
operator in the Eq. (15) is not enough to produce a gap
in the spectrum. The stiffness of the χ̃ field must be such
that this operator has scaling d dimension smaller than
2. Since d is a decreasing function of D, we expect a
plateau for large enough values of this parameter.
The condition (16) is the well-known result of Os-

hikawa, Yamanaka and Affleck2, which generalizes the
argument due to Lieb, Schulz and Mattis17.
A more general situation arises when S − m = p/r,

with p, r ∈ Z. In this case, the vortices whose winding
numbers are integer multiples of r are free of destructive
interference. In this case, only vortices with vorticity ±r
are able to condense. In the effective action, this is sig-
nalled by the rth harmonic of the cosine term in the har-
monic expansion being commensurate. If relevant, this
cosine operator gives rise to a gapped r-fold degenerate
ground state and fractionalized excitations14. The best-
known example of such a scenario is the AF chain with

a strong enough second-neighbor AF coupling18. The
system is then in a gapped phase with two degenerate
spontaneously dimerized ground states; fractional exci-
tations are spinons – domain walls between these two
ground states. In what follows, we concentrate on the
case S −m ∈ Z.
At this point, we would like to make an observation,

which will prove useful in the Section V, when comparing
the plateau condition for doped systems with that at zero
doping: According to the Eq. (10), for each contribution
to the partition function, the Berry phase term provides
a weight factor

ei(S−m)
∑

j

∫
dτ∂τφj ,

where the integral
∫

dτ∂τφj = 2πnj is an integer times
2π, and the subscript j labels the spins in the chain.
Inverting the sign in front of the S changes the imagi-
nary exponent by 4πnjS, which is an integer times 2π
both for integer and half-integer S. Therefore, the nec-
essary condition (16) for the magnetization plateau may
be equivalently presented as

(S ±m) ∈ Z. (17)

In the following, we would like to extend the approach
above to other one-dimensional spin systems. In the next
section, we discuss the cases of a two-leg ladder and a
dimerized spin chain. Then, in the Section V, we study
the magnetization plateaux in the presence of doping.

III. TWO-LEG LADDERS AND DIMERIZED
CHAINS

A. Two-leg spin ladder

The formalism above can be used to study more in-
volved spin models, such as spin ladders, that interpolate
between one and two dimensions. For spin 1/2 experi-
mental evidence of zero magnetization plateaux has been
reported for instance in (C5H12N)2CuBr4

19. In this sec-
tion we study two-leg ladders with single-ion anisotropy
in a magnetic field, and in the next section we discuss
extensions to N -leg ladders and p-merized chains.
Consider the following Hamiltonian

H =
∑

j

{

Jq(~S1,j · ~S1,j+1 + ~S2,j · ~S2,j+1)

+ J⊥~S1,j · ~S2,j +D((Sz
1,j)

2 + (Sz
2,j)

2) (18)

− h((Sz
1,j) + (Sz

2,j))
}

,

where Jq is the antiferromagnetic coupling along the
chain, and J⊥ is the inter-chain coupling. The onsite
anisotropy term is added only for completeness and we
can recover the isotropic case by taking the D = 0 limit.
In the S → ∞ limit we can write the energy of the

system as a function of the angle θ (see Fig. 2), with the
minimum at

cos θ0 =
h

2S(2Jq + J⊥ +D)
. (19)
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As before, we parametrize the fluctuations in terms of
the fields δθα and φα, where α = 1, 2 is the chain in-
dex. Equations (6), (7) and (8) have the same form in
each chain. Using this parametrization in the Hamilto-
nian, retaining terms up to second order in the fields and
switching to the path integral language, we obtain the
action

S=

∫

dxdτ

{

Jq
2
a(S2 −m2)((∂xφ1)

2 + (∂xφ2)
2)

+
J⊥
2

(

S2−m2

a

)

(φ2−φ1)
2+i

(

S−m
a

)

∂τ (φ1 + φ2)

}

+

∫

dxdτ

{

a

(

2Jq + J⊥
S2

S2 −m2
+D

)

(

Π2
1 +Π2

2

)

(20)

+J⊥a

(

1− m2

S2 −m2

)

Π1Π2 − i (Π1∂τφ1 +Π2∂τφ2)

}

.

Integrating over the Π-fields and using the transforma-

tion ~ϕ = U~φ with

~ϕ =

(

ϕa
ϕs

)

~φ =

(

φ1
φ2

)

U =

(

1 −1
1
2

1
2

)

(21)

we can write S = Ss + Sa, with

Ss =

∫

dτdx

{

1

2
K(s)
x (∂xϕs)

2 +
1

2
K(s)
τ (∂τϕs)

2

+ i 2

(

S −m

a

)

(∂τϕs)

}

and

Sa =

∫

dxdτ

{

1

2
K(a)
x (∂xϕa)

2 +
1

2
K(a)
τ (∂τϕa)

2

+ 2J⊥

(

S2 −m2

a

)

ϕ2
a

}

,

where

K(a)
x = K(s)

x = 2Jqa(S
2 −m2)

(

K(s)
τ

)−1

=
a

2

[

4Jq + J⊥

(

1 + 3
m2

S2 −m2

)

+ 2D

]

(

K(a)
τ

)−1

=
a

2

[

4Jq + J⊥

(

3 +
m2

S2 −m2

)

+ 2D

]

The action corresponding to the antisymmetric field
ϕa contains a mass term. In order to obtain an effective
theory the field ϕa can be evaluated in the saddle point
solution ϕa = 0.
In the symmetric action Ss, we use the duality trans-

formation of the section II, presenting the field ϕs as
a sum of the vortex component ϕs,v and the vortex-
free component ϕs,t. Upon rescaling the time as per

τ →
√

K
(s)
τ /K

(s)
x τ , and following the standard steps

we obtain

S =

∫

dxdτ







1

2

√

K
(s)
τ K

(s)
x

(

(∂xχ̃)
2 + (∂τ χ̃)

2
)

+ λ̃1 cos

(

2π

(

χ̃+ 2

(

S −m

a

)

x

)) }

. (22)

h
z

xj j+1j−1

2

1

Jq

J⊥

θ

FIG. 2. Classical configuration for a spin ladder in the pres-
ence of a magnetic field.

Now, the cosine term is commensurate if

2(S ±m) ∈ Z (23)

Note that, even though our approach does not apply
directly to the m = 0 case, this conditions is nevertheless
consistent with the well known m = 0 plateau for S =
1/2.

Another important comment is due here. The factor 2
in front of the Berry term is not an artifact of the trans-
formation (21) because of the periodicity of the fields.
Each one of the fields φ1 and φ2 satisfy

φ1(x + L) = φ1(x) + 2πn1

φ2(x + L) = φ2(x) + 2πn2

where n1 and n1 are integers. Then the antisymmetric
combination satisfy φ1 − φ2 = 2π(n1 − n2). The saddle
point solution ϕa ≡ 0 implies n1 = n2 and then the
sum φ1 + φ2 has periodicity 4πn1. The factor 1

2 in the
definition of ϕs is necessary for the correct periodicity.

B. Dimerized spin chain

The dimerized spin chain can be studied in a similar
way. We begin with the Hamiltonian

H =
∑

j

{

(J + δJ)~S1,j · ~S2,j + (J − δJ)~S2,j · ~S1,j+1

+ D
[

(Sz
1,j)

2 + (Sz
2,j)

2
]

− h
[

Sz
1,j + Sz

2,j

]}

, (24)

and use the Eqs. (6), (7) and (8) for each sublattice.
We then switch to the path integral formalism, take the
continuum limit and drop the constant terms to obtain
the following action:
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S =

∫

dxdτ

{

J

(

S2 −m2

a

)

(φ1 − φ2)
2

+
a

4
(J − δJ)(S2 −m2)

[

(∂xφ1)
2 + (∂xφ2)

2
]

+
1

2
(J − δJ)(S2 −m2)(φ1 − φ2)(∂xφ1 + ∂xφ2)

+ a

(

J
S2

S2 −m2
+D

)

(Π2
1 +Π2

2) (25)

+ 2aJ

(

1− m2

S2 −m2

)

Π1Π2

+ i

(

S −m

a

)

(∂τφ1 + ∂τφ2)

− i(∂τφ1Π1 + ∂τφ2Π2)} .

Integrating the Π-fields and making the substitution ~ϕ =

U~φ with U given by (21) we have

S =

∫

dxdτ

{

4J

(

S2 −m2

a

)

ϕ2
a

+
a

2
(J − δJ)(S2 −m2)

[

(∂xϕs)
2 + (∂xϕa)

2
]

+ 2(J − δJ)(S2 −m2)ϕa∂xϕs

+ i2

(

S −m

a

)

(∂τϕs) (26)

+
1

2
K̃(s)
τ (∂τϕs)

2 +
1

2
K̃(a)
τ (∂τϕa)

2

}

.

The field ϕa is massive and we can use the saddle point
solution for it ϕa = 0. The action for the symmetric field
results

Ss =

∫

dτdx

{

1

2
K̃x(∂xϕs)

2 +
1

2
K̃τ (∂τϕs)

2

+ 2i

(

S −m

a

)

(∂τϕs)

}

(27)

with K̃x = a(J − δJ)(S2 −m2) and K̃τ = 1/[a(2J +D)].
The action has the same form as for the two-leg lad-

der and, repeating the steps described in the preceding
subsection, we obtain the necessary condition for the for-
mation of magnetization plateaux

2(S ±m) ∈ Z. (28)

In both cases studied in this Section, the unit cell con-
tains two spins, and the effective action was written in
terms of two fields: ϕs and ϕa. Notice that, of these two,
only the massless one (ϕs) defines the necessary condition
for the formation of plateaux.

IV. EXTENSIONS TO N-LEG LADDERS AND
P -MERIZED CHAINS.

The arguments, presented in the preceding sections,
can be easily extended to more complex models. As we

have shown in the previous section, the magnetization
processes of a two-leg ladder and of a dimerized chain are
described by a single effective action of the massless field,
that has the same form for these two different models.
Under certain restrictions, this similarity holds for N -leg
ladders and N -merized chains, as well. In the last section
we have used two fields to describe the low-energy theory
and finally only one field remains massless in our effective
action. The extension to the N -leg ladder is natural and
follows the same steps as in the two legs case but now
working with N different fields. The first N−1 fields are
massive as in the case of ϕa for the two legs ladder. The
effective action can be written also in terms of the last
field, which is given by ϕs =

1
N

∑

i φi, and the action is
a straightforward generalization of the of equation (22)

S =

∫

dxdτ

{

2π2

β2

(

(∂xχ̃)
2 + (∂τ χ̃)

2
)

+ λ̃1 cos

(

2π

(

χ̃+N

(

S −m

a

)

x

)) }

, (29)

where β depends of the microscopic parameters and the
commensurability condition is given by

N(S ±m) ∈ Z. (30)

Again, this result contains also what is known for the
zero magnetic field. The N -leg ladder at zero field was
studied by G. Sierra20 using the original Haldane’s path
integral approach, and the presence of a spin gap was
recovered from the condition (30) with m = 0.

V. ADDING HOLES TO A SINGLE CHAIN

There are several examples of hole-doped magnets. For
instance, doping the S = 1 metal oxide Y2BaNiO5

21

with Ca introduces hole carriers in the chains. Other
examples are given by manganese oxides such as
La1−xCaxMnO3

22.
Theoretical studies of these compounds generally de-

part from the double exchange model23. Using strong
Hund’s rule coupling between the itinerant and localized
spins, an effective Hamiltonian on a restricted Hilbert
space is introduced, where creation of a hole on a given
site replaces the spin S on this site by S − 1/2. Such
a calculation of the effective Hamiltonian generalizes the
derivation of the t−J model from the Hubbard model for
S = 1/224. In this section, we study the effect of doping
on the low energy physics of a Heisenberg chain and the
corresponding effect on the magnetization curve.
We begin with a spin chain with one spin per site in

the presence of a magnetic field. Using the path inte-
gral formulation, we have shown that the effective action
is given by the Eq. (9) of the Section II. Creation of
a hole at a given site j corresponds to extracting the
spin from this site. To account for this, we will simply
remove the contribution that the jth spin would have
made to the action. Let us introduce at each site a hole
creation operator ψ†

j , satisfying fermion commutation re-

lations {ψ†
i , ψj} = δij . Without any holes, we have just
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the low-energy action (9) of the Section II for the pure
spin system.

Important contributions to the action upon creation
of a hole are obtained by the change in the interaction
between the spins, and simply replacing the Berry term
for the spin-S by that for S − 1/2 for the spin with the
hole and then taking into account the contribution to the
action due to the hole hopping. We start by considering
this very hopping term.

Let Ω1 and Ω2 be the classical spins at sites 1 and
2. According to the arguments of Shankar16, the correct
hole hopping term from site 1 to site 2 would not be

simply −tψ†
2ψ1, as such a term would move the hole, but

not the spin Ω. At the microscopic level, the electron is

transferred by the operator d =
∑

σ c
†
1σc2σ, that moves

the charge and the spin coherently from 2 to 1. The
action of this operator on a state with the hole on site 1
is

d|o,Ω2〉 = |Ω2, o〉 (31)

where o represents a hole. In this language, the correct
matrix element for the process is −t〈Ω1|Ω2〉. Thus, the

correct hopping term is −t〈Ω1|Ω2〉 ψ†
2ψ1, where

〈Ω1|Ω2〉 =
(

cos
θ1
2
cos

θ2
2

+ ei(φ2−φ1) sin
θ1
2
sin

θ2
2

)2S

(32)

Notice that, in the h = 0 case, the classical configuration
of the spins is antiparalel and the overlap of coherent
states vanishes. Then, in the zero magnetic field case, the
hoping amplitude between nearest neighbors is a fluctu-
ating variable with zero average, a very difficult problem
to study. This is the main reason for the original problem
on hole doping16 to concentrate in a model where doping
between second neighbors was the dominant effect. In
our case, the non zero magnetization implies a non zero
overlap between neighboring coherent states allowing for
a consistent study of first neighbors hoping problem.

Finally, the hopping of holes is described by the fol-

lowing Hamiltonian

Hhopp = −t
∑

j

〈Ωj |Ωj+1〉 ψ†
j+1ψj + h.c. (33)

If we expand θ around the classical energy minimum
value θ(x) = θ0 + δθ(x), we must retain the terms up
to order a, since the continuum limit ψj → √

aψ(x) for
the fermion operators involves an extra factor of a. Using
the Eq. (6) and retaining terms up to the first order in
a, we find

〈Ωj |Ωj+1〉 ≃
(m

S

)2S

e(2a
S
m

Π(x)−ia S
m

(S−m)∂xφ(x)) (34)

then

Hhopp≃−t
∑

j

(m

S

)2S

ψ†
j+1ψj

(

1+2a
S

m
Π(x)−ia S

m
(S−m)∂xφ(x)

)

+ h.c. (35)

Since the sought long-distance physics involves only
the states near the Fermi surface, we linearize the theory
around ±kF

ψj = eikF ajψR,j + e−ikF ajψL,j, (36)

to obtain Hhopp = Hfree + δH , where

Hfree =
∑

j

−t coskFa
[

ψ†
R,j+1ψR,j + ψ†

R,1ψR,j+1

+ ψ†
L,j+1ψL,j + ψ†

L,1ψL,j+1

]

+ it sinkFa
[

ψ†
R,j+1ψR,j − ψ†

R,1ψR,j+1 (37)

− ψ†
L,j+1ψL,j + ψ†

L,1ψL,j+1

]

and

δH=−t
(m

S

)2S ∑

j

{

4a
S

m
cos (kFa)Π(x)

(

ψ†
R,jψR,j + ψ†

L,jψL,j

)

−2a
S

m
(S −m) sin (kFa)∂xφ(x)

(

ψ†
R,jψR,j − ψ†

L,jψL,j

)

}

(38)

Taking the continuum limit ψj → √
aψ(x) and setting

the Fermi energy to zero, we obtain

Hhopp=

∫

dx

{

2at
(m

S

)2S

sin (kFa)

[

ψ†
R(x)

(

−i∂x+
S(S −m)

m
∂xφ

)

ψR(x)− ψ†
L(x)

(

−i∂x +
S(S −m)

m
∂xφ

)

ψL(x)

]

− 4atSm2S−1 cos (kF a)Π(x)
(

ψ†
R(x)ψR(x) + ψ†

L(x)ψL(x)
)}

(39)

Since the linearized theory has an infinite number of par-
ticles in the ground state, we shall introduce normal or-
dering, to correctly define the theory:

ψ†(x)ψ(x) = δ+ : ψ†
R(x)ψR(x) + ψ†

L(x)ψL(x) : (40)

Now, we account for hole doping. For S = 1/2, we be-

gin with the action without holes, and remove the Berry
phase term at each hole site. For larger values of S,
we have more than one electron on each site and a hole
corresponds to a spin [S − 1/2] impurity in the spin-S
host23,25,26. In other words, we apply the projection op-
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erator

Pj = 1−
ψ†
jψj

2S
(41)

to the Berry phase term in the action if the hole was
created on site j. We must do the same for the spin-spin
interaction part using the projector.

Pi,j = (1 − ψ†
iψi
2S

)(1 −
ψ†
jψj

2S
). (42)

Note that this is somehow a different scenario than the
one proposed by Shankar16 where an entire spin S would
hope from one site to another. Our approach is more
appropriate to cope with the experimental situation we

mention below. The modification of our approach to han-
dle Shankar scenario, or any intermediate value of the
spin hoping between S and 1/2 is straightforward.

The following step is to linearize the theory near ±kF ,
as we did in the hopping term, to obtain

Pj ≃ 1−
ψ†
jψj

2S
(43)

= 1− δ

2S
− 1

2S
: ψ†

R,jψR,j + ψ†
L,jψL,j :

where δ is the noninteracting ground state expectation
value. Then, in the presence of doping, the equation (9)
reads

SSM =

∫

dxdτ

{

J

2

(

1− δ

2S

)2

a(S2 −m2)(∂xφ)
2 + a

(

1− δ

2S

)2

(2J +D)Π2

}

+ i

∫

dxdτ

{(

1− δ

2S

)(

S −m

a

)

(∂τφ) −
(

1− δ

2S

)

(∂τφ)Π (44)

− 1

2S

(

S −m

a

)

(∂τφ)(: ψ
†
R,jψR,j + ψ†

L,jψL,j :)

}

.

Certain terms have been dropped here as irrelevant in
the renormalization group (RG) sense, such as products
of normal-ordered fermion operators and bilinears of spin
phase operators. As a result, the total action is given by
SSM + Shopp. Integrating out the Π field, we obtain

Seff=

∫

dxdτ

{

1

2
Kx(∂xφ)

2 +
1

2
Kt(∂τφ)

2

+i

(

1− δ

2S

)(

S −m

a

)

(∂τφ)

}

(45)

+ig1

∫

dxdτ

{

Ψ̄(x)σ3

(

∂x+i
S(S −m)

m
∂xφ

)

Ψ(x)

}

−
∫

dxdτ
{

Ψ̄(x)I (∂τ − ig2(∂τφ))Ψ(x)
}

,

where

1

2
Kx=a

J

2

(

1− δ

2S

)2

(S2 −m2)

1

2
Kt=

1

4a (2J +D)
(46)

g1=2at
(m

S

)2S

sin (kF a)

g2=

[

1

2S

(

S −m

a

)

+
2atSm2S−1 cos (kF a)
(

1− δ
2S

)

(2J +D)

]

Ψ(x) =

(

ψR
ψL

)

Ψ̄(x) =
(

ψ̄R, ψ̄L
)

.

Upon rescaling time in the fermionic part, we find

Seff = Sφ + SF (47)

with

Sφ =

∫

dxdτ

{

1

2
Kx(∂xφ)

2 +
1

2
Kt(∂τφ)

2

+ i

(

1− δ

2S

)(

S −m

a

)

(∂τφ)

}

SF = i

∫

dxdτ

{

Ψ̄(x)σ3

(

∂x + i
S(S −m)

m
∂xφ

)

Ψ(x)

}

−
∫

dxdτ

{

Ψ̄(x)I

(

∂τ + i
S(S −m)

m
(∂τφ)

)

Ψ(x)

}

+ i

∫

dxdτ

{

Ψ̄(x)I

(

g2 +
S(S −m)

m
(∂τφ)

)

Ψ(x)

}

.

Now, we write φ = φv + φt and then we eliminate the
φt field from the two first terms of SF via the change

Ψ → e−i
S(S−m)

m Ψ, and by an appropriate rescaling, this
effective action can be rewritten in a more compact form:

SF =

∫

dxdτΨ̄
[

−γµ(∂µ + iAµ + iÃµ)
]

Ψ (48)

with

Aµ =
S(S −m)

m
∂µφv (49)

and

Ã0 =

(

g2 +
S(S −m)

m
∂µ

)

∂τ (φv + φt) ; Ã1 = 0

γ0 =

(

0 −i
i 0

)

; γ1 =

(

0 1
1 0

)

. (50)
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As we have retained only quadratic terms, we can in-
tegrate out the fermionic degrees of freedom. The result
is just the determinant of the fermion’s kernel. At this
point there is a mathematical observation which is impor-
tant to stress. The Atiyah-Singer Index theorem stress
that the fermionic determinant is non zero only when the
gauge fields A and Ã have zero total magnetic flux16. It
can be shown that this condition is automatically satis-
fied for the field Ã. For the field A, the Index theorem
then imposes a global constraint that the field φ have the
total vorticity equal to zero, which is nothing else than
the charge neutrality of the vortex gas realized by the
field φv.
Once we have integrated out the fermions, we are left

with an effective action, which depends only of the scalar
field φ. It is basically given by Sφ in Equation (47)
corrected by unimportant gauge invariant counter-terms
arising from the fermionic determinant. We then per-
form the same steps as above, in particular the duality
transformation, and get an effective action of the kind:

Sφ =

∫

dxdτ

{

1

2Kτ

(∂xχ̃)
2 +

1

2Kx

(∂τ χ̃)
2

+ λ1 cos

[

2π

(

χ̃+

(

1− δ

2S

)(

S −m

a

)

x

)] }

.

(51)

In the action above, the cosine term is commensurate
when the following condition is satisfied

(

1− δ

2S

)(

S −m

)

∈ Z. (52)

Let us now compare the plateau condition (52) for the
doped chain to the zero-doping condition (17), namely

(S ±m) ∈ Z.

The latter emerged from rewriting the Berry phase term
in two different yet equivalent ways. Now, if we follow the
same arguments and introduce the projectors in the Eqs.
(41) and (42), we obtain the two following conditions

(

1− δ

2S

)

(S ±m) ∈ Z. (53)

Notice that, for δ 6= 0, the two signs in the condition
above no longer define the same set of plateau magne-
tization values27. This inequivalence appeared as a re-
sult of passing to the continuum limit and implementing
the normal ordering (40). The linear approximation can
be implemented provided interference terms due to the
Berry phase are properly taken into account, i.e. if there
is a value of doping and magnetization, for which vortex
configurations are not suppressed by the Berry phase,
this should also be true in the linearized theory. Then,
in the linearized theory, if one of the conditions in (53)
is satisfied, it must manifest itself in the effective action
for the scalar field φ by a commensurate cosine operator.
Upon infinitesimal doping, each plateau magnetization
value that meets the zero-doping plateau condition

(S ±m) ∈ Z, (54)

gives rise to two different plateau magnetization values,
according to the Eq. (53). However, it is the microscopic
details of the model that eventually determine whether
the plateau is indeed realized at both of these values, only
one of them – or neither.

VI. MAGNETIZATION PLATEAUX OF AN
ANISOTROPIC S = 3/2 SPIN CHAIN.

Now, we use the results presented in the preceding sec-
tions to study the magnetization plateaux of a simple
spin chain. The S = 3/2 chain with on-site anisotropy
has been studied numerically by Okamoto28 and Sakai
and Takahashi29. At D = 0, there are no plateaux in
the magnetization curve; as D is increased beyond a crit-
ical values Dc, a plateau appears at msat/3, where msat

denotes the saturation value. With the formalism de-
velopped in the sections above, we qualitatively recover
these results, and show that the critical value Dc de-
creases upon doping. Indeed, as mentioned above, the
stiffness of the field χ̃ must be such that the cosine op-
erator in (15) be relevant in the renormalization group
sense. In the case δ = 0, our computation shows that
this is achieved for values of D greater than Dc = 0.467,
a value to be compared with the result of Okamoto and
Kitazawa (Dc1 = 0.387) .
In the presence of doping, the Hamiltonian contains

lattice S = 3/2 spins and spin-1 mobile “holes”, and can
be obtained from a Kondo lattice model25. It has the
form

H =
∑

〈ij〉

−tT̂ + J ~Si · ~Sj +
∑

i

D(Szi )
2, (55)

where the kinetic energy term acts as per

T̂ |3/2,m〉|1,m′〉 = A|1,m+ 1/2〉|3/2,m′ − 1/2〉
+ B|1,m− 1/2〉|3/2,m′ + 1/2〉(56)

with A =
√

(2 −m′)(3/2−m)/3 and B =
√

(2 +m′)(3/2 +m)/3. In other words, the local
magnetization can only change by 1/2 since it comes
originally from the hopping of spin-1/2 electrons.
Upon doping, we expect the plateau to split into two.

The necessary condition for the formation of magnetic
plateaux in the spin-3/2 chain is given by

(1− δ

3
)(
3

2
−m) ∈ Z (57)

For a small enough δ we obtain the following possible
plateaux

m̃± =
1

3
(1± δ) and m̃s = 1− δ

3
(58)

where m̃ = (1 − δ
2S )

m
S
.

In order to check these predictions, we have performed
numerical simulations using the powerful DMRG algo-
rithm30 for various dopings at a fixed large D/J = 5,
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FIG. 3. (Color online) Magnetization curve (m̃) for the S =
3/2 chain corresponding to D/J = 5 obtained with DMRG.

and with open boundary conditions (OBC) for system
lengths up to 64. Typically, we kept up to 1200 states,
which is sufficient to have a discarded weight smaller than
10−12.
The DMRG results are showed in Fig. 3. Without dop-

ing, the large on-site anisotropy D stabilizes a wide mag-
netization plateau at Ms/3 in agreement with previous
studies28,29. Now, doping with S = 1 impurities splits
this plateau, in perfect agreement with our prediction.

VII. HOLES IN N-LEG LADDERS AND
p-MERIZED CHAINS

In more complex models such as N -leg ladders and p-
merized chains, the contribution of doping can be traced
similarly to how it was done in the Section V. Here,
we briefly discuss the approach for the case of ladders.
The p-merized chain follows the same steps. First we
note that the hopping constant must be replaced by
tα,β = −t〈Ωα,j |Ωβ,j+1〉, where the indices α and β la-
bel the chains of the ladder. We need to define N kinds
of holes corresponding to each chain. Then we have two
kinds of hopping terms, the hopping in each chain (tα,α)
and the interchain hopping (tα,β , with α 6= β). Straight-
forward calculations give

tα,α ≃ t
(m

S

)2S

exp

[

2a
S

m
Πα − ia

S

m
(S −m)∂xφα

]

(59)

tα,β ≃ t
(m

S

)2S

exp

[

2a
S

m
(1− i(

φα − φβ

2
))(Πα − Πβ)

]

× exp

[

i2
S

m
(S −m)(

φα − φβ

2
)

]

. (60)

Now, we can write the kinetic Hamiltonian for the
fermions and linearize the spectrum as before. In the spin
part and the Berry phase contribution we must insert the

corresponding projectors 1 − ψ†
αψα

2S and (1 − ψ†
αψα

2S )(1 −
ψ

†

β
ψβ

2S ). The procedure is a straightforward extension of
the spin chain case: we must integrate over the Πα fields
and use the Hubbard-Stratonovich auxiliary fields as in

the case of the spin chain, decoupling each field φα as
φα = φα,v + φα,t. The first N − 1 fields are massive and
can be evaluated in the saddle point solution. Once we
have integrated out the fermions, we finally obtain the
following result for the effective action

Sladder
eff =

∫

dxdτ

{

1

2Kτ

(∂xχ̃)
2 +

1

2Kx

(∂τ χ̃)
2

+λ1 cos

(

2π

(

χ̃+N

(

1− δ

2S

)(

S−m
a

)

x

)) }

.

(61)

The final condition for the formation of magnetization
plateaux reads

N

(

1− δ

2S

)

(S ±m) ∈ Z. (62)

The calculation for the N -merized chain is straightfor-
ward and gives the condition (62).

For the case of the two-leg ladder, plateaux at irra-
tional values controlled by doping have been predicted
by bosonization7 and numerically supported by numer-
ical results9,11. In our approach the condition for the
formation of magnetization plateaux in a S = 1/2 two
legs ladder with doping reads

2(1− δ)(S −m) ∈ Z (63)

where the magnetization per site takes values between
−S ≤ m ≤ S. To compare with the results in Refs.7 and
9 and 11 we must properly normalize the magnetization

as m̃ = (1−δ)
S

m, and then, for S = 1/2 the condition
reads

1− δ ± m̃ ∈ Z (64)

which is identical to the condition used in Ref. 9 based
on the OYA criterion2. For small δ we expect possible
plateaux at m̃ = 1 − δ and m̃ = δ, which has been con-
firmed numerically with DMRG (See Fig. 3 of Ref. 11).

VIII. TRIMERIZED CHAIN

In this section we study a S = 1/2 trimerized chain in
a magnetic field. Although the main goal of this section
is to test our procedure developped in the previous sec-
tions against the numerical results, obtained by means of
DMRG simulations, the study of this model in the pres-
ence of doping is interesting by itself31. For instance,
the antiferromagnetic S = 1/2 trimerized chain has ex-
perimental realizations such as the synthesized copper
hydroxydiphosphate Cu3(P2O6OH)2, where a 1/3 mag-
netization plateau has been observed32.

The Hamiltonian of the S = 1/2 trimerized chain can
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FIG. 4. (Color online) Schematic magnetization curve for
the S = 1/2 trimerized chain. The solid line corresponds to
δ = 0 and the dashed red(blue) one to δ 6= 0. In the inset we
show the position of the possible magnetization plateaux as a
function of δ.

be written as

H = J
∑

j

(~Sj,1 · ~Sj,2 + ~Sj,2 · ~Sj,3)

+
γJ

2

∑

j

(~Sj−1,3 · ~Sj,1 + ~Sj,3 · ~Sj+1,1) (65)

− h
∑

j

3
∑

α=1

S
z
j,α

where J is the intra-trimer coupling and γJ the inter-
trimer one. The first subscript j labels a trimer, while
the second subscript labels the spins within the trimer.
We proceed as in the case of the dimerized chain – except
that now we work with three fields corresponding to the
three different spins in each trimer. Eventually, only one
field remains massless in the effective action, which is
a straightforward generalization of the Eq. (10). The
commensurability conditions are given by the Eq. (62)
with N = 3 and S = 1/2:

3(1− δ)(
1

2
±m) ∈ Z (66)

where we take − 1
2 ≤ m ≤ 1

2 . For δ = 0 a magnetization
plateau is expected at m/msat = 1/3. In the presence of
doping, the plateau is expected to split into two different
plateaux, located at

m±

S
=

1

3

(

1± 3δ

1− δ

)

(67)

As usual, a simple way to introduce doping is to con-
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FIG. 5. (Color online) Magnetization m̃ for the S = 1/2
trimerized chain with γ = 1/4 and J/t = 0.5, obtained by
DMRG simulations for different values of the filling on chain
of length L = 120. A splitting (proportional to doping) in the
magnetization plateau is clearly observed for non-zero doping.

sider a t− J hamiltonian:

H =
∑

〈ij〉

Jij(~Si · ~Sj −
1

4
ninj)−

∑

〈ij〉,σ

tij(c
†
iσciσ + h.c)

− h
∑

j

3
∑

α=1

S
z
j,α (68)

where the double occupancy is forbidden on each site, the
magnetic exchange and hopping amplitudes are equal,
respectively, to J and t for intra-trimer bonds – and to γJ
and

√
γ t for inter-trimer bonds. Note that we have used

an inter-trimer hopping amplitude of t′ =
√
γt in order

to be consistent with the magnetic exchange anisotropy
(t′/t)2 = γ.
In the Fig. 4, we show a schematic magnetization curve

for the S = 1/2 trimerized chain with the above parame-

ters. We plot the normalized magnetization m̃ = (1−δ)
S

m
in order to compare with the numerical results obtained
by DMRG. In terms of m̃, the two plateaux are predicted
to satisfy

m̃± =
1

3
± δ (69)

The DMRG results are shown in the Fig. 5 for a chain
of length L = 120 with OBC. Parameters of the t − J
model are J/t = 0.5 and an anisotropy γ = 1/4. Typi-
cally, we keep up to 1200 states, which is sufficient to have
a discarded weight smaller than 10−9. In the absence of
doping, our choice of strong anisotropy leads to a wide
plateau atmsat/3. For a finite doping of the order of 10%,
our numerical data are in perfect agreement with our pre-
diction: the plateau is split and the splitting is simply
proportional to doping. Between the plateaux, the mag-
netization curve is smooth (the steps are only finite-size
effects). However, for very small doping, we observe a
strange shape of the magnetization curve just above the
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upper split plateau. This phenomenon can already be ob-
served for a chain doped with a single hole, and it is likely
to stem from the existence of a bound state between a
hole and a polarized trimer (“magnon”). The same mech-
anism is at work for instance in lightly doped two-leg lad-
ders8,33, where a hole pair-magnon bound state emerges,
leading to an irrational magnetization plateau9. The for-
mation of such bound states is generic in t − J models
due to the Nagaoka effect10: holes gain kinetic energy in
a ferromagnetic environment. We have not investigated
in detail how this bound-state will modify the magneti-
zation curve in our case, but our data clearly show that
the magnetization curve has two different regimes in the
upper part.

IX. SUMMARY AND CONCLUSIONS

Systems with strong easy-axis anisotropy are likely to
show plateaux in the magnetization curve even at the
classical level. One peculiarity of such plateaux is that
the spin configuration must be collinear, i.e. all the spins
of the system must be pointing in the same direction34.
In the present work, we have studied the plateaux that
are intrinsically quantum-mechanical: the magnetization
curve of the corresponding classical system would remain
a straight line all the way to the saturation point. This
observation urges one to look for a theory, that would
clearly identify the quantum-mechanical effects behind
the plateaux. And this was precisely the achievement
of Tanaka, Totsuka and Hu14. A key advantage of their
approach versus the abelian bosonization is the applica-
bility of the former in more than one spatial dimension.
We have seen that, within the path integral approach,

all the information relevant for the presence of a plateau
is encapsulated in the Berry phase term. The topological
nature of the Berry phase and its expression in terms of
quantized vorticity play a crucial role here. Moreover,
even though the path integral approach is based on the
coherent-state description, developped for higher spins
S ≫ 1, the topological (quantized) nature of the Berry
phase serves as a protection that makes it exact even
for spin-1/2. To be more precise – given a value of the
plateau magnetization, the critical values of the micro-
scopic parameters for the opening of the plateau are sen-
sitive to the choice of a cut-off procedure, and subject to

1/S corrections, which renders their accurate calculation
difficult. However, the values of the plateau magnetiza-
tion itself, defined by the necessary condition above, are
exact.
In this paper, we have extended the TTH approach to

the presence of doping, and have shown that the doping-
dependent splitting of the magnetization plateaux is a
generic feature that goes beyond spin 1/2 Hubbard or
t−J models. We have tested the validity of the approach
by verifying some of the well-known results for undoped
and doped spin-1/2 chains and ladders3,4,7–9,11,12. Then,
to illustrate the power of the approach, we have studied
a doped higher-spin system that would present a prob-
lem for a rigorous treatment via traditional bosonization
technique. In contrast to the zero-magnetization case,
initially treated by Shankar, here we have successfully
used the path integral approach in the case of doped sys-
tems with nearest-neighbor hopping only. To the best
of our knowledge, this work also offers the first descrip-
tion of a doped antiferromagnetic system in the presence
of a magnetic field within the path integral approach.
Our analytical calculations have been supplemented by
DMRG numerical work in two key examples of doped
systems, the trimerized spin 1/2 chain, and a spin 3/2
chain. All of our results are represented by the Eq. (2),
but in fact this approach is applicable far beyond the ex-
amples given in the paper. It appears that now we have
a reasonably controlled technique to study the origin of
magnetization plateaux in system with arbitrary spin,
dimensionality and doping. This is to be contrasted to
other techniques that are limited either to one dimension
(such as bosonization or DMRG), or to spin-1/2 (such
as numerical diagonalization in dimensions D ≥ 2, or
bond-operator/hard core bosons descriptions).
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