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Abstract. The performance of the message-passing applications on a
parallel system can vary and cause inefficiencies as the applications grow.
With the aim of providing scalability behavior information of these ap-
plications on a specific system, we propose a methodology that allows
to analyze and predict the application behavior in a bounded time and
using a limited number of resources. The proposed methodology is based
on the fact that most scientific applications have been developed using
specific communicational and computational patterns, which have cer-
tain behavior rules. As the number of application processes increases,
these patterns change their behavior following specific rules, being func-
tionally constants. Our methodology is focused on characterizing these
patterns to find its general behavior rules, in order to build a logical
application trace to predict its performance. The methodology uses the
PAS2P tool to obtain the application behavior information, that allow us
to analyze quickly a set of relevant phases covering approximately 95%
of the total application. In this paper, we present the entire methodology
while the experimental validation, that has been validated for the NAS
benchmarks, is focused on characterizing the communication pattern for
each phase and to model its general behavior rules to predict the pattern
as the number of processes increases.

Keywords: Prediction Scalability, Communication Pattern, MPI appli-
cations

1 Introduction

During the last years, due to constant hardware evolution, high performance
computers have increased the number of cores significantly. Users of these sys-
tems want to get the maximum benefit of the number of cores and scale their
applications, either by reducing the execution time or increasing the workload.

? This research has been supported by the MICINN Spain under contract TIN2007-
64974, the MINECO (MICINN) Spain under contract TIN2011-24384, the European
ITEA2 project H4H, No 09011 and the Avanza Competitividad I+D+I program
under contract TSI-020400-2010-120.
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To achieve an efficient use of high performance systems, it would be impor-
tant to consider the analysis of the application behavior, before executing an
application in a large system, since the ideal number of processes and resources
required to run the application may vary from one system to another, due to
hardware differences. The lack of this information may cause an inefficient use,
causing problems at different levels, such as not achieving the expected speed up,
or increasing the economic and energy cost. To avoid these problems and make an
efficient system use, users and system administrators use predictive performance
models selecting the most appropriate resources to run the application.

In this paper, we propose a methodology that will allow us to analyze and
predict the scalability behavior for message-passing applications on a given sys-
tem, in a bounded time and using a reduced set of resources. The objective of
the methodology is to predict the application performance when increasing the
number of processes, characterizing and analyzing the behavior of the commu-
nication and computation patterns.

The methodology is based on the fact that most scientific applications have
been developed using specific patterns, which have functional similarity accor-
ding to the number of processes, following behavior rules. To characterize these
rules, we used the PAS2P methodology [1]. PAS2P identifies the application
phases, which contain a specific communication pattern and allows us to reduce
the complexity of the application analysis by creating the application signature,
which contains the relevant communication and computation patterns of the
application (phases), and their repetition rates (weights).

The application phases can be observed and analyzed during the execution
time dynamically, this is without having the source codes, to relate them by
functional similarity increasing the application processes, with the objective to
model their general behavior rules, to build an application logical trace that will
be independent of the machine. Once we have the logical trace, the last step is
to convert this trace in machine dependent, through the machine parameters to
get the physical trace This new trace will be used to predict the performance of
the application.

This paper is organized as follows: Section II presents the related work, Sec-
tion III presents an overview of the PAS2P methodology, Section IV presents the
proposed methodology, Section V presents the experimental validation, which is
focused in the communication pattern modeling, and finally Section VI presents
the conclusions and future work.

2 Related Work

There are other works, related to the study of communication patterns of MPI
applications. I. Lee et al [3] proposes to analyze the communication patterns of
NAS-MPI benchmarks to understand the communication behavior in scientific
workloads and to predict the larger scale program behavior. This work is focused
on measuring the communication timing, the sources and destinations and mes-
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sage sizes. This work differs from our proposal in that we model the general rules
of the communication pattern and communication volume.

R. Preissl et al [4] presents an algorithm for extracting communication pa-
tterns. The algorithm finds locally repeated sequences on each node using a suffix
tree algorithm and matches these local repetitions with other sequences on other
nodes to generate a global pattern. This approach differs of our work in that we
use a functional similarity algorithm, instead of the suffix tree algorithm.

M. Chao et al [5] proposes a methodology to determine the communication
pattern similarities between two programs using two metrics to form a coordinate
on a 2-dimensional Cartesian Space. Our work differs of this, because we search
the similarity as the number of processes increases.

3 Overview about PAS2P methodology

The PAS2P methodology [1] is composed by two steps. The first step is done on a
base machine and consists on analyzing the application, building the application
model to extract its phases and weights that will use to construct the signature,
which is an executable that contains the application phases. The second step
consists on executing the signature on a target system, to measure the execution
time of each phase. Once these times have been measured, equation 1 is used to
predict the application execution time in the target system, where PET is the
Predicted Execution Time, n is the number of phases, TEPhasei is the Phase i
Execution Time and Wi is the weight of the phase i.

PET =

n∑
i=1

(TEPhasei)(Wi) (1)

4 Proposed Methodology

Fig. 1 shows the proposed methodology, which is based on the fact that most
message-passing applications have been developed using specific communication
and computation patterns, which have functional similarity when the number of
processes increases, following specific rules of behavior. These patterns compose
the application phases, that can be observed and traced to relate them when the
number of processes increases, in order to find and model their general behavior
rules. Once the patterns have been modeled, it is possible to generate the logical
trace, which will provide the communication and computation times to predict
the application performance.

In this section, we will describe each of the methodology stages, focusing on
the characterization and modeling of the communication pattern, which is the
objective of this paper.

4.1 Characterization

The characterization step comprises two sub-stages: Machine Characterization
and Application Characterization. The Machine Characterization is done once,
regardless of the application which scalability we will predict.
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Fig. 1: Proposed Methodology

Machine Characterization. Consists on characterizing the machine perfor-
mance in computation and communication. First of all, the performance is ana-
lyzed to obtain the real cycle time, when the processor is executing floating-point
instructions and there are not misses on any level of the memory hierarchy. We
characterize instead of using the theoretical time provided by the manufacturer,
because there may be differences between them. In order to obtain the real cy-
cle, a micro-benchmark was developed. On the other hand, the interconnection
network is characterized using benchmarks.

Application characterization. Consists on analyzing the application beha-
vior (communication and computation) to obtain information and build its log-
ical trace. We carry out a set of signature executions for a small and different
number of processes, that will be analyzed to extract information of each phase
of the signature. Each phase identifies a repetitive computation and communi-
cation behavior. The application signatures are obtained with PAS2P tool [2],
which is a tool that applies the PAS2P methodology in an automatic and trans-
parent way. It was decided to work with the signature rather than the whole
application, since the signature contains only the relevant application phases.
By analyzing this small set of relevant phases, we cover about 95% of the whole
application. For this work, we integrated PAS2P with PAPI hardware perfor-
mance tool [6] to obtain low-level performance information, such as the number
of instructions and the number of cycles of each phase.

4.2 Logical trace generation

Once the relevant phases have been characterized, the communication and com-
putation patterns are modeled for each phase to obtain the general behavior
rules, which will be used to generate the application logical trace. This trace will
be machine independent, according to how the application has been developed.
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The parameters of the general behavioral rules will define the trace for a specific
number of processes. Once the logical trace has been generated, the predicted
computation and communication times are provided to generate the physical
application trace, which will be dependent on the machine and will allow us to
predict the application performance.

Communication pattern modeling. The communication pattern comprises
the general behavior equations, which predict the destination from the source,
and the data volume for each phase. The phases will be related by functional
similarity between the signatures with different number of processes, in order
to model their behaviors. It should be mentioned that a phase can have 1 to N
communications, depending on the application. The predicted data volume of
each communication will be obtained by mathematical regression models, while
for obtaining the general communication rules (source - destination), we propose
an algorithm, based on obtaining the communication equations that calculate the
destination from the source (eq.processes.phase) for each phase of the signatures
(local equations). From these equations, using functional similarity, the general
equation behavior is modeled. We show an example of this algorithm, which
considers that each phase ( Fi ) has only one communication, and therefore one
local equation, as shown in fig. 2(a) for the phase 1 for 8 processes. Once the
local equations have been obtained for each phase of each signature, these are
analyzed by functional similarity to model the general behavior equation ( GEFi

) as shown in fig. 2(b) for phase 1.

P7 

P0 

P2 
P3 

P1 

P4 
P5 
P6 

P7 

Phase 1 (F1) for 8 processes 
Eq.Processes.Phase 

Eq.8.1 

(a) F1 for 8 processes

F4 

F1 

F2 

F3 

Signature	
  for	
  
8	
  processes	
  

F4 

F1 

F2 

F3 

F4 

F1 

F2 

F3 

F4 

F1 

F2 

F3 

eq.8.1 eq.16.1 GEf1 

eq.8.2 

eq.8.3 

eq.8.4 

eq.16.2 

eq.16.3 

eq.16.4 

Signature	
  for	
  
64	
  processes	
  

Signature	
  for	
  
32	
  processes	
  

Signature	
  for	
  
16	
  processes	
  

eq.64.1 

eq.64.2 

eq.64.3 

eq.64.4 

eq.32.1 

eq.32.2 

eq.32.3 

eq.32.4 

(b) Comparison of phases by functional similarity

Fig. 2: Obtaining general equations by functional similarity

The algorithm to obtain the behavior rules is divided in two stages, in the
first stage the local equations are generated for each phase, and in the second
stage the general equations are obtained, as shown in fig. 3. Noteworthy that
for both steps, the process identifier (process number) is converted to binary in
order to work at bit level.

The first algorithm stage is composed of a first sub-stage of analysis and a
second sub-stage of modeling. During the analysis phase, the dependencies be-
tween processes (Dependent, No-Dependent), the pattern type: Static (Mesh,
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Fig. 3: Proposed algorithm to model the communication pattern

Ring, ...) or Dynamic (Exchange or Permutation), and the distance matrix be-
tween processes are obtained for each phase of the signatures.

All this information is provided to the modeling phase to generate the local
equations. In this second sub-stage, the communication pattern of each phase is
identified. Moreover, the repeatability of the communication is sought to gener-
ate a more structured equation model. Once this information has been identified,
the local equation for each communication is generated and applied in a compres-
sion method to simplify the next step of modeling. The output of this module is a
communication structure that identifies each local equation. The algorithm uses
two different structures because the way to predict the communication pattern
is different depending on the pattern type. If the pattern is dynamic, the obten-
tion of the destination process is based on the exchange of a certain number of
source bits, which are called bits involved. For this type of algorithm, the first
structure (EC1) is used. In case of a static pattern, to obtain the destination
process we search the repeatability of the communications, for example, in a 4
x 4 mesh, the first three processes in the first row have a displacement of 1,
while the fourth process connects with the first and has a displacement of 3.
This behavior is repeated for the remaining rows of the mesh. For this type of
patterns, the second structure (EC2) is used.

The structure EC1 has the number of phase (#Phase), the communication
number of the phase (#Comm), the algorithm type ( Exchange, Permutation
) and a vector with the bits involved in the pattern as parameters, while the
structure EC2 has the number of phase, the communication number of the phase,
and a list of communication and number of repetitions as parameters.

1. EC1 = {#Phase, #Comm, Algorithm Type , List of bits involved }

2. EC2 = {#Phase, #Comm, list[ communication list[#repetition] ] }

Fig. 4 shows a brief example of the procedure. We have a phase with 8
processes and three communications, where each communication has its own
communication pattern. If we focus on the first communication, that shows its
communication pattern, we generate the matrix distance between the source and
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Fig. 4: Example of generating the Communication Structure

destination. The algorithm is static, then we search for repetitions, in this case,
we have two, therefore the sequence {+3,+1,-1,-3} is repeated two times, once
for processes from 0 to 3 and then for processes from 4 to 7. Once we have
the sequences and repeatability, we create the local equation and generate the
structure of communication EC1.

Once the communication structure has been obtained, it is submitted to the
second algorithm stage with the purpose of obtaining the general equations,
which model the general behavior of the communication pattern. To model the
general equations of each phase, the local equations are analyzed by functional
similarity. When the similarity has been identified, the general equations are
modeled. The general equation has as variables the number of processes to pre-
dict, the displacements between the source and destination for the number of
processes to predict, and the hops between the processes executed and the num-
ber of processes to predict. Finally, the last step that compresses the general
equation in order to simplify the expression used to predict the communication
pattern for a greater number of processes.

Computation pattern modeling. As shown in fig. 5, the algorithm is based
on searching the repeatability of MPI primitives for each phase to identify the
computation patterns. Then, they are compared using functional similarity be-
tween the different signature executions to predict the computation patterns for
a larger number of processes. We search repeatability because these primitives
are enclosed in repeated loops throughout the phase. The aim of the proposed al-
gorithm, is to discover the minimum set of primitives and predict their repetition
number to generate the logical trace, as it may vary depending on the number of
processes. Once the information has been characterized, the computation time
between the MPI primitives is modeled, based on separating the computation
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time in: execution time, the time it takes the processor to execute instructions,
the stall time and the time that the processor waits for memory accesses. We
decided to separate computation times as they may have different trends when
the number of processes increases. In order to separate these times, the model
uses information from the hardware counter, obtained in the characterization
stage. Then, the computation time will be predicted using statistical regression
models .
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Fig. 5: Procedure to model the computation pattern

4.3 Simulation

Finally, in the last stage of the methodology we carried out a simulation of the
trace in order to obtain the communication times of the messages from the trace
on the physical machine. After the simulation, we obtained the runtime of each
predicted phase that comprises the trace. Each phase time will be multiplied by
the predicted weight of the phase to obtain the run time of the application for
the number of processes we want to predict, as shown in Equation 1.

5 Experimental Validation

This section shows the experimental validation of the communication pattern
modeling using the BT from the NPB class D. As experimental environment, we
used a cluster of 16 nodes with 16 processors Intel Xeon quad-core.

To carry out the experimental validation, we executed a set of BT signa-
tures and different number of processes (9, 16, 25 and 36). We predicted for 49
processes. The signatures were characterized to obtain the local equations for
all phases and validated the proposed algorithm for all the communications in
each phase, but due to a lack of space we only show the first communication in
the first phase, as is shown in fig. 6. From this characterization, table 1 shows
the local equations and the communication volumes. The pattern type is static
(Toroidal), hence, the EC1 output structure is used. From the information of
this structure, the general equation and the communication volume for each
communication phase were modeled and validated for 49 processes.
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Fig. 6: Characterization of the communication pattern and volume data

Table 1: Sumary of commnications for the different signatures

Signature Phase Com. Local Communication
(#Processes) Equation Volume (KB)

9 1 1 [+1 {+2,+3}], [-2{+1,+3} ] 2892
16 1 1 [+1 {+3,+4}], [-3{+1,+4} ] 2496
25 1 1 [+1 {+4,+5}], [-4{+1,+5} ] 2132
36 1 1 [+1 {+5,+6}], [-5{+1,+6} ] 1849

Fig. 7 shows the general equation, corresponding to a static algorithm (Toroi-
dal), which has a displacement +1 (first term of the equation), except for the
processes located at the end, which connect with the initial nodes (second term
of the equation). The variable Disp has a value of 1, since the distance between
the source and destination is 1, while the variable K indicates the number of
hops from the last characterized signature until the number of processes we want
to predict. BT signature has been executed for 36 processes, and we want pre-
dict for 49 processes, then K has increased by 1 unit (1 hop). This is, by the
application constraint, the next incremental step of 36 processes is 49, because
BT only accepts processes of a square number as valid. On the other hand, in fig.
7 we show the communication volume equation, which is a potential regression
and has a R-squared value of 0,97. If we apply this equation for 49 processes, we
obtain a communication volume of 1703.59 KB. If we compare this value with
the real execution, where we obtained a communication volume of 1628 KB, the
prediction error is about 4.6%.
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Fig. 7: Prediction of communication pattern and data volume for BT 49

6 Conclusions and future work

This paper proposes a methodology to analyze and predict the scalability beha-
vior in message-passing applications in a given system, using a limited number
of resources and bounded time. The methodology was presented and the model-
ing communication was experimentally validated. Currently, we are working on
finishing the computational model validation and generating the logical trace,
in order to insert it in a network simulator and obtain the physical trace, which
will predict the application performance.
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