Metadata, citation and similar papers at core.ac.uk

Provided by SEDICI - Repositorio de la UNLP

THE OPTIMAL ROUTING PROBLEM IN MULTICOMPUTER NETWORKS:
AN EVOLUTIONARY APPROACH

Hernandez J. L.

Faaultad de Ingenieria
Universidad Nacional de Rio Cuarto
Ruta36 Km. 601, 5800Rio Cuarto, Argentina
e-mail: j|h@ing.unrc.eduar
Phore: (058) 676248

Gdlard R.,

Proyedo UNSL-338403
Departamento de Informatica
Universidad Nacional de San Luis
Ejército delos Andes 950- Locd 106
5700- San Luis,Argentina
E-mail: rgallard@und.edu.ar
Phore: +54 62 2083
Fax :+54 62 3024

ABSTRACT

Optimal resource dlocation is an important isue in computer network administration.
One of these problems involves finding an optimal route to transport certain traffic from a
source node to a destination node. For messages to get from the sender to the recaiver it is
necessary to make anumber of hops choasing, at ead of the intermediate nodes, an outgoing
line to use. Seledion of an outgoing link can depend onamourt of traffic, type of link or other
criteriabased onthe associated cost to each line. The total transportation cost through any of the
possible routesisto be minimised.

Instead of facing the problem in a step by step dedsion making fashion, a global
approach based onlong term averages can be succesdully used when network traffic is not
extremely dynamic. Given the number of nodes in the network and the interconnedion topology
this later approach leads to a highly combinatorial problem.

Evolutionary Algorithms behave dficiently in searching optimal or nea optimal solutionsin a
wide range of hard combinatorial problems. Moreover, when using an evolutionary approad,
instead of a single optimal solution a set of near optimal solutions is provided. This property
allows us to provide timely acceptable solutions when the network interconnectivity changes
over time.

This paper describes a genetic dgorithm using a sort of edge aossover, operating on variable
length chromosomes. Also a maao-mutation operator is introduced by repladng an entire
chromosome to avoid costly repair mechanisms.

A report on experiments and results contrasted against conventional approadiesis also included.

KEYWORDS:. Network routing, step by step node selection, evolutionary algorithms,
edge recombination.
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THE OPTIMAL ROUTING PROBLEM IN MULTICOMPUTER NETWORKS:
AN EVOLUTIONARY APPROACH
1. INTRODUCTION

For a given topology, ore of the problems to be faced in the field of Network Analysis is to
determine an optimal route to trangport certain amourt of traffic from a source noce to a
destination nade ([7], [8]). The objective functionto minimize, in this case, is the st function
which correspond to the total sum of the partial costs associated to the intermediate links
conforming the route to be followed by the traffic.

Cost al ocation can be done according to different criteria. In some systems the st isinversely
proportional to the transfer speed, directly proportional to the transfer speed or computed as a
function of transfer connedion fares between links. Other propcsals consider costs as a
function d the main features of alink. King-Tim Ko [4] propases to use the aiterion o
cost per distance with parameters based ontransfer speeds between nodes (e.g. 6 Mbps
cost one unit per kilometer, 45Mbps cost 4 urits per Km and 150Mbps cost 9 units per
Km, etc). Other metrics include more dements in the structure of costs in order to
consider aso dynamic charaderistics of the system, such as the expeded traffic a&
catain time intervals. These gproaces attempt to predict the traffic demand and
consequently the aost matrix is updated dynamicdly. Once acriterion to al ocae asts
to the links is chaosen, the optimal route problem must be solved by some heuristic. The
present paper shows the results when a genetic algorithm approach ([1], [2], [3]), is contrasted
against atraditional greedy approach, propcsed by Dijkstra and used by Bronson[9], [5], [6]).

2. THE TYPICAL APPROACH

For the classical optimal route problem (ORP) a st is asociated to ead link between nodes in
a mnneded network. The objective isto find a route between a pair of arbitrary chosen source
and destination nodesin order to minimize the total cost of transport.

Dijkstra propcse to assign costs to each node in the network. In his agorithm, the cost
aswciated to a particular noce is given by their neighbous nodes in the following simple
fashion:

Costs are build as the sum of the partial path followed from the source node and if more than a
neighbou contributes with a cost value then the lower cost is chosen.

To illugtrate the dgorithm we consider the network of figure 1, and we assume that nodes 1 and
8 are the source and destination nales respedively.

Fig. 1. Testing Net



At the beginning, noce 1, being the source has no reighbou contributing with cost values then a
zero value is assigned to it. From thisinitial assignment, only node 1 is avail able to assign costs
toits neighbaurs, node 2 and 3.After assignment, noce 2 have an associated cost of 1 and nale
3, an asvciated cost of 10.
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Fig 2. Asdgnment of coststo nodes

Proceeding in a similar fashion, duing ead step is necessary to consider al the nodes which
can give wsts to their neighbous and in the case that two or more neighbous assign the same
lower value to a node the seledion of the contributor is randam.

For example, when considering nodes 1 and 2 as contributors, node 1 assigns 10 to node 3 and
node 2 assigns 2 to nock 3, 4 to nock 4 and 2to nocke 5.

The algorithm builds a path choosing as contributors those nodes with minimum cost associated
in each step. In the case of the example nodes 3 and 5 have the same as<ociated cost of 2 (node
3 following the partia path 1-2-3, and noak 5 foll owing the partial path 1-2-5) and the algorithm
deddes randamly which nade (suppose node 3) isto be alded to the contributor list.

As the nodes are mvered the links are marked as used and the crrespording courns are
updated.

When the asignment is done to the destination nocde the dgorithm terminates and the route
seached isbuilt by traversing it towards the source node.

Fig. 3.0ptimal route; 1-2-3-4-6-7-8. Minimum accesscost to nock in boldface.

If the graph o figure 3 is converted into atree it can be observed that the dgorithm prunes the
tree branches which lead to higher costs and by doing it avoids intensve search and
consequently excessive computing time.



3. THE EVOLUTIONARY APPROACH

There exists ome simil arities between the Travelling Salesman Problem (TSP) ([10], [11]) and
ORP. Both o them are dealing with paths in a graph. But in TSP paths are Hamiltonian, that
means that a path is a g/cle and each city has to be visited exactly once . Consequently a
solution includes eat nock of the graph and the length is aways equal to the number of cities.
The salesman must return to the starting city (source node matches destination nod).

In ORP, the length of a route is variable depending on the topology of the network, it is not
necessary to contain all the network nodes and source node differs from the destination node.
Nevertheless, TSPapproaches srve @ abase for representation of individuals chromosomes) in
the population and for recombination operations.

Abou representation we can think of integers giving the sequence of nodes to be traversed, but
chromosomes shoud be mnsidered as having variable length.

In ORP, the problem is to find a sequence starting at the source node and ending at the
destination nale with minimum total cost associated.

In this case, for a network of n nodes it was considered a chromosome & an integer vedor v of
length n. In those cases where the length | of the route represented was duch that | < n, then the
vedor elements vi.; to v, were set to 0. Instead of variable length strings, this ort of padding
made eay data manipulation. This approach can be cnsidered as a variant of the traditiona
path representation in genetic algorithms for TSPproblems.

As an example the path P = 1-2-5-7-8, is represented by the vedor v = (1,2,5,7,80,00).
The fitness of the chromosome is determined acarding the asociated cost of the path and the
selection of individuals for mating was done by using fithessproportional seledion.

3.1. GENETIC OPERATORS

Under the prablem restrictions, the representation adopted and in order nat to include aly
procedure to repair unfeasible solutions, the genetic operators were carefully considered.

3.1.1. CROSSOVER

Even if the chromosome represents the order in which the nodes must be traversed for crossover
it was decided to consider the arcs connecting nodes. This implies a reformulation of the
crossover operator to produce asingle offspring containing arcs, which are present in their
parents.

To avoid creation of invalid solutions (e.g. noce replicaion in an offspring), an auxiliary
connectivity tableis used. For example in the network of figure 1, if we have parents P1 and P2
asfollows;

P1=(1,2,4 ,6 8)

P2=(1,34,5,6,78)
According to the parents information, the @rresponding connedivity table should be the
following.

CONNECTED TO
23
4
4
56
6
7-8
8
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From this table asingle offspring is built by firstly choosing the source node & the first node in
the new solution. The offspring begin as

0=(1)

The selected nock is used to insped the nodes connected to it and from this s, the node which
in turn has the lowest number of nodes connected to it is chasen. This strategy minimise the
probability of node isolation which would require a further chromosome repair including an arc
absent in both parents.

In the cae of more than ore node with equal number of minimum conredions then the
selectionis randam. In our example we choose node 2 (nodes 2 and 3have both oy onelink to
other nodes).

To avoid a new sdlection of the same node, the node is deleted from the second column of the
corresponding entry in the table. The new seleded node is the next comporent of the offspring.
0=(1,2)

and the modified tableis

CONNECTEDTO
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In the final stages when building the off spring we could have

h=(1,24,56)
with table content
NODE | CONNECTED TO

1 3

2 -

3 -

4 -

5 -

6 7-8

7 8

8 -
andfinally

0=(1,24,5,68)

Note that the aiterion of choosing the node with minimum number of links leads to a crossover
operation where asingle offspring is creaed. If al links are to be mnsidered then a variable
number of offspring could be created.



3.1.1. MUTATION

In this case amaao-mutation operator was used. If a diromosome undergoes mutation then a
valid ore replaces the whole diromosome. As mutation is applied with low probability, this do
not disturbs local search while tries to maintain population diversity. The main goa here is to
produce avaid chromosome withou using any repair procedure, which are epensive in
processing time. In the implementation this smply implies a @l to the procedure which creates
theinitial popuationwith popilation size set to ore.

4. EXPERIMENTSAND ANALYSESOF RESULTS

A set of experiments were designed to study and contrast the genetic goproach. In what follows
a description of results for networks of 8, 12,20 and more nodes until a total of 140 nodes are
discus=ed. Main performance variables dudied were quality of results and processing time. The
following figures show the genetic algorithm performance when solving the ORP.

Figure 4 shows asingle runin order to remark the behaviour of the genetic agorithm when
better individuals are foundin the popuation.
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Fig. 4.

Nevertheless, the general behaviour is different: sometimes the anvergence is immediate and
other it is lengthy

Series of 40 runs were dore with elitism, popuation size fixed to 10individuals, probability of
0.75for crossover and variable probability for mutation ranging from 0.0015to 0.(. In figure
5, the minimum, mean and maximum value found,are shown.
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Fig. 5

The experiments evolved also through the experience gained so far. Initial experiments showed
a better performance when the variable mutation gprobability was applied. This maintains genetic
diversity and avoids being trapped into local optima. On the other hand excessive genetic
diversity, which can slow down the search, was prevented by maintaining two €elite individuals



(De Jong).

The foll owing experiment was dore on the 12 rodes network of figure 6. The minimum cost 9,
correspondsto the route P* = 1-2-3-4-6-7-8-9-11-12.

Fig. 6. Optimal route:1-2-3-4-6-7-8-9-11-12. Minimum accesscost to nade in boldface

The corresponding minimum, mean and maximum val ues of each operation are plotted in figure
7. In this case, one dite individua was maintained, al other parameters remained with the

previous sttings.
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Fig. 7

Comparisons with the dasdca approach of Dijkstra were also performed. For this a network
topology was designed in modues (Seefig. 8) . The increment of complexity was associated to
a mncatenation d modues.

In the cae of small networks the dassic approad is the winner with precise optimal values and
shorter running times. But when the size and complexity of the network increases the genetic

algorithm is faster and the lossof quality in resultsis minimal.



Classical Method running time:1.37s
GA running time:5.65 s
Minimun cost:14

Fig. 8

Abou the quality of results, sometimes the genetic algorithm converges to a suboptimal but
quite near optimal solution. This can be seenin figure 9.

On the other hand, the evolutionary approach hes the advantage of providing a set of multiple,
“good enough” solutions that can be used to face dynamicd changes in system
interconnectivity.

Figure 10 shows a mmparison d running time for diverse degrees of complexity. Here can be
observed a crosspoint determining when it is convenient to use the evolutionary approac.
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CONCLUSIONS

Evolutionary computing techniques offer an aternative gproadh to solve the optimal route
problem. Beaing this in mind, it was necessary to decide which representation and genetic
operators were suitable to face the problem. Fitness proportiona seledion works properly in
most problems and it was adopted here. In order to creae legal offspring, a aosover operator
exchanging arcs held by the parents and a maao-mutation operator, were devised.

Experimental results were mntrasted against the Dijkstra's traditional method. For small
networks the genetic dgorithm performs as well as the Dijkstra’s algorithm, when quality of
results are mnsidered, hut it is more expensive in computing time. For large networks, even if
sometimes the genetic dgorithm does not find the optimal solution the best-found individuals
are quite near to it. And thisis done in shorter computing time. It is important to consider that,
instead of providing a single and possble out of date optimal solution, the evolutionary
approadc offers a set of near optimal solutions which can be used as useful alternative solutions
when due to the system dynamics the interconnectivity of the network changes.

Future work will investigate the possbility of creating multiple offspring by relaxing the
criterion of node seledion in the process of building the new child, together with varied
selection mechanisms attempting to ensure abalance between genetic diversity and selective
pressure.
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