
Dealing with non-termination in DCGs

�

M. Vilares Ferro D. Cabrero Souto M.A. Alonso Pardo

Computer Science Department, University of A Coru~na

Campus de Elvi~na s/n, 15071 A Coru~na

Spain

E-mail:fvilares, cabrero, alonsog@dc.�.udc.es

Abstract

The objective of this paper is to study a practical approach to deal with non-termination in

de�nite clause grammars. We focus on two problems, loop and cyclic structure detection

and representation, maintaining a tight balance between practical e�ciency and operational

completeness.

In order to guarantee the validity of our conclusions, we �rst map our study to a common

situated framework, where the e�ectiveness of each approach will be examined and, later,

compared by running experiments.

Key Words: De�nite Clause Grammars, Cyclic Derivations, Cyclic Structures.

1 Introduction

The concept of termination relies on the �niteness of all possible logical derivations starting in

the initial goal. This is a crucial problem when encoding uni�cation-based grammar formalisms,

since practical systems often diverge from their theoretical de�nitions. So, although termination

can be claimed for decidable problems, often logical environments are confronted with the

problem that an apparently correct program may fail to terminate for certain forms of the

input. This is, for example, the case of Prolog programs with left-recursion on local variables,

where some input patterns can loop whilst being a logical consequence of the logic program.

This di�erence between theoretical and practical operational models is justi�ed by e�ciency

gains, assuming that this kind of situations can be usually avoided in practical applications

by alert programmers. On the other side of the coin, we increase the gap between the

declarative semantics and the procedural semantics. In e�ect, the descriptive potential o�ered

by unrestricted declarative programming is appreciated in language development tasks, where

a large completion domain allows the modelling e�ort to be saved.

Previous works on this subject often focus on strategies for proving termination in letf-

terminating programs. This is the case of Apt and Pedresdi in [Apt 90], or Ullman and Van

Elder in [Ullman 88]. However, these studies are limited to deal with left-recursion in top-down

resolution and do not provide a practical approach to represent in�nite derivations. These studies

just focus on the semantics of the program, providing a theoretical basis to prove termination

of logic programs.

A di�erent point of view is given by other authors Haridi and Sahlin [Haridi 85], who base

uni�cation on natural deduction [Prawitz 65], avoiding occur-check; or Filgueiras [Filgueiras 84],

providing e�ective representation for cyclic structures. This is really of practical interest, since

we are providing a methodology to enlarge the domain of completeness for the programming

language.

�

This work has been partially supported by projects XUGA 20402B97 and PGIDT99XI10502B of the

Autonomous Government of Galicia, and project 1FD97-0047-C04-02 by the European Community.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296349576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We focus on two problems that arise when working with de�nite clause grammars (DCGs),

both of which can cause non-termination. The �rst problem is of general interest in formal

grammar theory and it concerns loop detection, when the parsing process is repeatedly returned

to the same processing state. The second problem stems from cyclic structures and it is a known

consequence of not implementing the occur-check, which would forbid uni�cation of a variable

with a term in which it occurs. In both cases, we rely on strategies to represent cyclic derivations

and structures.

Our proposal takes place in the framework of resolution strategies based on dynamic

programming, not-limited to top-down approaches, while extending the concept of uni�cation

to composed terms. Although the key idea of dynamic programming is to keep traces of

computations to achieve computation sharing, it also o�ers
exibility to investigate loop

detection. To deal with cyclic structures, our approach re�nes the occur-check to minimize

the time spent checking for re-occurring variables.

2 A situated framework

As �rst goal, we structure our work within a well-de�ned frame. This will allows us to compare

di�erent approaches on the basis of an common descriptive formalism, focusing on strategy-

dependent features.

2.1 The parsing model

We consider a uniform parsing frame, the logical push-down automaton (LPDA), such as it is

introduced in [Vilares 97].

An LPDA is de�ned as a 7-tuple A = (X;F;�;�; $; $

f

;�), where X is a denumerable and

ordered set of variables, F is a �nite set of functional symbols, � is a �nite set of extensional

predicate symbols, � is a �nite set of predicate symbols used to represent the literals stored in

the stack, $ is the initial predicate, $

f

is the �nal predicate; and � is a �nite set of transitions.

The stack of the automaton is a �nite sequence of items [A; it; bp; st]:�, where the top is on

the left, A is in the algebra of terms T

�

[F [X], � a substitution, it is the current position

in the input string, bp is the position in this input string at which we began to look for that

con�guration of the LPDA, and st is a state for a driver controlling the evaluation. Transitions

are of three kinds:

� Horizontal: B 7�! CfAg. Applicable to stacks E:� �, i� there exists the most general

uni�er (mgu), � = mgu(E;B) such that F� = A�, for F a fact in the extensional database.

We obtain the new stack C�:�� �.

� Pop: BD 7�! CfAg. Applicable to stacks of the form E:�E

0

:�

0

�, i� there is � =

mgu((E;E

0

�); (B;D)), such that F� = A�, for F a fact in the extensional database.

The result will be the new stack C�:�

0

�� �.

� Push: B 7�! CBfAg. We can apply it to stacks E:� �, i� there is � = mgu(E;B), such

that F� = A�, for F a fact F in the extensional database. We obtain the stack C�:� B:� �.

where B, C and D are items and A is in T

�

[F [X], a control condition to operate the transition.

Dynamic programming is introduced by collapsing stack representations on a �xed number

of items and adapting transitions in order to deal with these items. When the correctness and

completeness of computations are assured, we talk about the concept of dynamic frame. Here,

the use of it allows us to index the parse, which relies on the concept of itemset, associating a

set of items to each token in the input string. We use bp to chain pop transitions.

Two dynamic frames are of practical interest, S

2

and S

1

, where the superscript denotes the

number of top stack elements used to generate items. The standard dynamic frame, S

T

, where

a stack is given by all its components, uses backtracking to simulate non-determinism.

2.2 Cyclic structures

Conventional interpreters do not implement the occur-check in the uni�cation algorithm. Doing

so, it is possible to unify a variable with a term in which it occurs, producing an in�nite circular

term.

To prevent this, we chose to work in the generalization of substitution to function and

predicate symbols, as initially proposed in [Filgueiras 84]. This means that the uni�cation

algorithm will treat symbols in the same way as for variables: referencing or linking them

whenever they unify, and dereferencing before testing for compatibility.

f 1

X

f 2

f 3

Y

f 1

X f 3

Y

f 2

Y

f 3

f 2f 1

X

st
ep

 1
st

ep
 2

st
ep

 3

Figure 1: Uni�cation of X with Y.

To illustrate our discussion we consider, as a classic example, terms resulting from solving

unify(X,f(X)) and unify(Y,f(f(Y))), as shown in step 1 of Fig. 1. When using a conventional

uni�cation algorithm, without occur-check, it will loop trying to unify X with Y .

Following now [Filgueiras 84], the process is also shown in Fig. 1, where we shall use ! to

denote a uni�cation link from a represented symbol to its representative. Here, the actions to

be performed start by dereferencing X and Y . The uni�cation process leads to the uni�cation

of f1 with f2, since both symbols have the same name and arity. So, a link is set from f1 to f2,

as it is shown in step 2 of Fig. 1. We now proceed with the uni�cation of the arguments X and

f3. After dereferencing X to f1 and then to f2, it results in the uni�cation of f2 and f3. As

consequence, a new link is added, as it is shown in step 3 of Fig. 1. Finally, we have to unify f3

and Y , which is dereferenced to f2 and then to f3, and it is equal to f3. The algorithm stops

here, unifying X and Y .

2.3 Loop detection

Loop detection resorts to noticing when the process is repeatedly returned to the same processing

state. In context-free parsing, the comparison of one state to a previous one involves checking

for equality between atomic symbols. However, DCGs can be thought of a generalization of

non-terminal symbols from a �nite domain of atomic elements to a possibly in�nite domain of

directed graph structures and, thus, the equality test is insu�cient. Instead, we have to compare

terms using subsumption. As an example, considerer the following na��ve grammar:

1

: a(nil)! b:

2

: a(f(X))! a(X):

By starting with the atom b, you will expect the analysis process to �nd that X ! f

1

([nilj

1

]).

To achieve this, we can construct the following sequence of terms:

a(nil); a(f(nil)); a(f(f(nil))); : : :

If we just use the former algorithm to check the subsumption of two terms like f(nil) and

f(f(nil)), it fails as shown in Fig.2. The loop is never detected and the analysis process lasts

forever. To create any such answer, we have to resort to cyclic derivations [Samuelss 93].

a 1

f 3

X

nil

a 2

f 4

X

X

nil

f 5

a 1

f 3

X

nil

a 2

f 4

X

X

nil

f 5

a 1

f 3

X

nil

a 2

f 4

X

X

nil

f 5

step 2: success setp 3: failstep 1: success

Figure 2: Trying to subsume f(nil) and f(f(nil)).

From a practical viewpoint, given a DCG, we recover its context-free backbone, that is,

the context-free grammar obtained by removing all the arguments from the predicates of the

grammar. It is obvious that any cyclic derivation over a DCG will have a corresponding cyclic

derivation over this skeleton. So, before checking for a loop in the DCG itself, we shall check the

context-free backbone. Once a loop is detected, we traverse for predicate and function symbols

to detect whether the analysis has returned to a previous state.

In order to achieve this, we store the terms in a shared structure that allows us to easily

detect wheter a term occurs inside another one, and, therefore, they are the begining and the

end of a loop iteration in the analysis process. So, in the previous example, the context-free

backbone is

r

1

: a! b: r

2

: a! a:

and, after generating the terms

a(f(nil)); a(f(f(nil)))

we detect a context-free loop, a � a. We now traverse the terms as shown in Fig. 3, concluding

that the �rst one occurs inside the latter one, returning to the same processing state

1

and, thus,

a loop has been completed, and we have detected it.

3 The evaluation schema

It is possible to e�ciently guide the detection of cyclic derivations on the basis of the evaluation

strategy used. On the other hand, for cycles to arise in arguments, it is �rst necessary that

the context-free backbone given by the predicate symbols determines the recognition of a same

syntactic category without extra work for the scanning mode. This is a key observation to

solve in�nite term traversal, and our aim is to estimate which evaluation scheme is the most

appropiate to deal with.

We have considered three basic evaluation schema: a pure bottom-up architecture,

a mixed-strategy with dynamic prediction [Pereira 83], and a mixed-strategy with static

prediction [Vilares 97]. In this manner, we can compare the computational behaviour over

a familly of bottom-up related evaluators working on a same dynamic frame S

1

.

To locate each scheme in our framework, we introduce the categories 5

k;i

; i 2 f1; : : : ; n

k

g for

each rule

k

: A

k;0

! A

k;1

; : : : ; A

k;n

k

, whose meaning will be dependent on the parsing scheme.

For futher details, the reader can see [Vilares 98].

1

We didn't go further in the analysis of the input, and the reduced non-terminal is the same.

3.1 A mixed-strategy with dynamic prediction

Here, the symbol 5

k;i

shows that the �rst i categories in the right-hand-side of rule

k

have

already been recognized. In addition, given a category A

k;i

, we shall consider the associated

symbols A

0

k;i

and A

00

k;i

to respectively indicate that A

k;i

is yet to be recognized or has been

already recognized. So, we obtain the following set of transitions that characterize the parsing

strategy:

1. [$; 0; 0;] 7�! [A

0

0;0

; 0; 0;] $

2. [A

0

k;0

; it; it;] 7�! [5

k;0

(

~

T

k

); it; it;]

[A

0

k;0

; it; it;]

3. [5

k;i

(

~

T

k

); it; bp;] 7�! [A

0

k;i+1

; it; it;]

[5

k;i

(

~

T

k

); it; bp;]

4. [5

k;n

k

(

~

T

k

); it; bp;]

[A

0

k;0

; bp; bp;] 7�! [A

00

k;0

; it; bp;]

5. [A

00

k;i+1

; it; bp;]

[5

k;i

(

~

T

k

); bp; r;] 7�! [5

k;i+1

(

~

T

k

); it; r;]

where an instance of 5

k;i

(

~

T

k

) indicates that all literals until the i

th

literal in the body of

k

have been proved. The state, represented by \ ", has no operative sense here.

a 1

f 3

X

nil

a 2

f 4

X

a(f(f(nil)))a(f(nil))

Figure 3: Traversing f(nil) and f(f(nil)) after context-free loop detection.

3.2 A bottom-up scheme

Here, the symbol 5

k;i

expresses that the categories in the right-hand-side of

k

after the i

position have already been recognized. The set of transitions is:

1: M 7�! 5

k;n

k

(

~

T

k

) M

2: 5

k;i

(

~

T

k

) A

k;i

7�! 5

k;i�1

(

~

T

k

)

3: 5

k;0

(

~

T

k

) 7�! A

k;0

where M is an atom de�ned by giving as argument to every predicate of the LPDA a vector of

new variables of appropriate length, and 5

k;i

(

~

T

k

) indicates that all literals from the i

th

in the

body of the clause

k

, have been proved.

3.3 A mixed-strategy with static prediction

We requires the same interpretation for symbols 5

k;i

as for bottom-up evaluation. We de�ne

the transitions as follows:

Φ -> S .

state 4

NP -> noun .

state 1

NP -> NP NP .
NP -> NP . NP
NP -> . NP NP
NP -> . noun
NP -> .

state 3

NP

S -> NP .
NP -> NP . NP
NP -> . NP NP
NP -> . noun
NP -> .

state 2
state 0

NP -> . NP NP

NP -> . noun

NP -> .

Φ -> . S

S -> . NP

noun

NP

S

NP

noun

noun

Figure 4: Characteristic �nite state machine for the running example

1. [A

k;n

k

; it; bp; st] 7�! [5

k;n

k

(

~

T

k

); it; it; st]

[A

k;n

k

; it; bp; st]

faction(st; token

it

) = reduce(

k

)g

2. [5

k;i

(

~

T

k

); it; r; st

1

]

[A

k;i

; r; bp; st

1

] 7�! [5

k;i�1

(

~

T

k

); it; bp; st

2

]

faction(st

2

; token

it

) = shift(st

1

)g; i 2 [1; n

k

]

3. [5

k;0

(

~

T

k

); it; bp; st

1

] 7�! [A

k;0

; it; bp; st

2

]

fgoto(st

1

; A

k;0

) = st

2

g

4. [A

k;i

; it; bp; st

1

] 7�! [A

k;i+1

; it+ 1; it; st

2

]

[A

k;i

; it; bp; st

1

]

faction(st

1

; A

k;i+1

) = shift(st

2

)g; i 2 [0; n

k

)

5. [A

k;i

; it; bp; st

1

] 7�! [A

l;0

; it+ 1; it; st

2

]

[A

k;i

; it; bp; st

1

]

faction(st

1

; A

l;0

) = shift(st

2

)g

6. [$; 0; 0; 0] 7�! [A

k;0

; 0; 0; st]

[$; 0; 0; 0]

faction(0; token

0

) = shift(st)g

Control conditions are built from actions in a driver given by an LALR(1) automaton built from

the context-free skeleton.

3.4 Parsing a sample sentence

To introduce both, LPDA interpretation and cyclic derivations, we consider as a running example

a simple DCG to deal with the sequentialization of nouns in English, as in the case of \North

Atlantic Treaty Organization". The clauses, in which the arguments are used to build the

abstract syntax tree, could be the following:

1

: s(X) ! np(X):

2

: np(np(X;Y)) ! np(X) np(Y):

3

: np(X) ! noun(X):

4

: np(nil):

In this case, the augmented context-free skeleton is given by the context-free rules:

(0) � ! S a (1) S ! NP (2) NP ! NP NP

(3) NP ! noun (4) NP ! "

whose characteristic �nite state machine is shown in Fig. 4.

We are going to describe the parsing process for the simple sentence \North Atlantic",

focusing on the introduced mixed-strategy with static prediction. From the initial predicate $

on the top of the stack, and taking into account that the LALR automaton is in the initial

state 0, the �rst action is the scanning of the word \North", which involves pushing the

item [noun("North"); 0; 1; st

1

] that indicates the recognition of term noun("North") between

positions 0 and 1 in the input string, with state 1 the current state in the LALR driver. This

con�guration is shown in Fig. 5.

[$; 0; 0; st

0

]

`

[noun("North"); 1; 0; st

1

]

[$; 0; 0; st

0

]

Figure 5: Con�gurations during the scanning of \North".

At this point, we can apply transitions 1, 2 and 3 to reduce by clause

3

. The con�gurations

involved in this reduction are shown in Fig. 6.

`

[r

3;1

(X); 1; 1; st

1

]

[noun("North"); 1; 0; st

1

]

[$; 0; 0; st

0

]

`

[r

3;0

("North"); 1; 0; st

0

]

[$; 0; 0; st

0

]

`

[np("North"); 1; 0; st

2

]

[$; 0; 0; st

0

]

Figure 6: Con�guration during the reduction of clause

3

.

We can now scan the word \Atlantic", resulting in the recognising of the term noun(\Atlantic

00

)

between positions 1 and 2 in the input string, with the LALR driver in state 1. As in the case

of the previous word, at this moment we can reduce by clause

3

. This process is depicted in

Fig. 7.

`

[noun("Atlantic"); 2; 1; st

1

]

[np("North"); 1; 0; st

2

]

[$; 0; 0; st

0

]

`

[r

3;1

(X); 2; 2; st

1

]

[noun("Atlantic"); 2; 1; st

1

]

[np("North"); 1; 0; st

2

]

[$; 0; 0; st

0

]

`

[r

3;0

("Atlantic"); 2; 1; st

2

]

[np("North"); 1; 0; st

2

]

[$; 0; 0; st

0

]

`

[np("Atlantic"); 2; 1; st

3

]

[np("North"); 1; 0; st

2

]

[$; 0; 0; st

0

]

Figure 7: Con�gurations during the processing of the word \Atlantic".

After having recognised two np predicates, we can reduce by clause

2

in order to obtain a

new predicate np which will represent the nominal phrase \North Atlantic". This reduction is

shown in Fig. 8. The recognition of the complete sentence ends with a reduction by clause

1

,

obtaining the term

s(np(np("North"; "Atlantic")))

representing the abstract parse tree for the sentence \North Atlantic". The state of the LALR

driver will now be 4, which is the �nal state, meaning that the processing of this branch has

�nished. The resulting con�gurations are depicted in Fig. 9.

However, the grammar actually de�nes an in�nite number of possible analyses for each input

sentence. If we observe the LALR automaton, we can see that in states 0, 2 and 3 we can always

reduce the clause

4

, which has an empty right-hand side, in addition to other possible shift and

reduce actions. In particular, in state 3 the predicate np can be generated an unbounded number

of times without consuming any character of the input string, such it is shown in Fig. 10. Here,

the left-most drawing represents the cycle in the context-free backbone, the following the parsing

process on the DCG in state 3, and the last a �nite description for the in�nite term traversal.

Boxes represent the recognition of a grammar category in a given state of the LALR(1) driver.

`

[r

2;2

(X;Y); 2; 2; st

3

]

[np("Atlantic"); 2; 1; st

3

]

[np("North"); 1; 0; st

2

]

[$; 0; 0; st

0

]

`

[r

2;1

(X; "Atlantic"); 2; 1; st

2

]

[np("North"); 1; 0; st

2

]

[$; 0; 0; st

0

]

`

[r

2;0

(np("North"; "Atlantic")); 2; 0; st

0

]

[$; 0; 0; st

0

]

`

[np(np("North"; "Atlantic")); 2; 0; st

2

]

[$; 0; 0; st

0

]

Figure 8: Recognition of the nominal phrase \North Atlantic".

4 Dealing with cyclic derivations

We can now explore with greater depth into the adaptation of the general loop and cyclic

detection strategies introduced in our situated framework to the set of parsing schema considered

in the dynamic frame S

1

. To facilitate the understanding, we shall focus on our running example,

assuming the adaptation to the other schema in a natural manner.

`

[r

1;1

(X); 2; 2; st

2

]

[np(np("North"; "Atlantic")); 2; 0; st

2

]

[$; 0; 0; st

0

]

`

[r

1;0

(np(np("North"; "Atlantic"))); 2; 0; st

0

]

[$; 0; 0; st

0

]

`

[s(np(np("North"; "Atlantic"))); 2; 0; st

4

]

[$; 0; 0; st

0

]

Figure 9: Con�gurations for the recognising of the sentence \North Atlantic".

4.1 Looking for loops

After testing the compatibility of name and arity between two terms in di�erent items, the

algorithm establishes if the associated non-terminals in the driver have been generated in

the same state

2

, covering the same portion of the text, which is equivalent to comparing the

corresponding back-pointers. This is equivalent to test the existence of a loop for these non-

terminals in the context-free backbone.

ε

np(nil) 3

ε

np(nil) 3

ε

NP 3

ε

NP 3

ε

NP 3 ε

np(nil) 3np(np(nil,nil),nil) 3

ε

np(nil) 3

s(np¹([¹ | nil²],[¹ | ²])) 4

np(nil) 3

np(nil,nil) 3

np(np(nil,np(nil,nil))) 3

np(np¹([¹ | nil],[¹ | nil])) 3

Figure 10: Cycles in the context-free skeleton and within terms.

If all these comparisons succeed, we look for loops. The system veri�es, one by one, the

possible occurrence of repeated terms by comparing the addresses of these with those of the

2

This would be only neccessary in the mixed-strategy with static prediction, because for the other schema

states have no operative sense.

arguments of the other predicate symbol. The optimal sharing of the interpretation guarantees

that there exists common sub-structures if and only if any of these comparisons succeed. In this

last case, the algorithm stops on the pair of arguments concerned, while continuing with the

rest of the arguments.

Reducing

2

:

t

1

� np(X;Y) �

�

X nil

2

; Y nil

2

�

np

X Y

X

Y

nil

Reducing

2

:

t

2

� np(X

0

; Y

0

) �

�

X

0

 t

1

; Y

0

 nil

2

�

np

X’ Y’

X’’ nil

Y’’

Y’

X’’ Y’’

X’ np

t

3

� np(X;Y) �

�

X np

1

([nil

2

j

1

]; nil

2

); Y nil

2

�

np

X Y

X

Y

nil

Figure 11: Cyclic tree traversing (1)

Returning to Fig. 10, once the context-free loop has been detected, we check for possible

cyclic derivation in the original DCG. The center drawing in that �gure shows how the family

of terms

np(nil); np(np(nil; nil)); np(np(np(nil; nil); nil)); : : : ; np(np

1

([nilj

1

]; nil))

is generated. In an analogous form, the family

np(nil); np(np(nil; nil)); np(np(nil; np(nil; nil))); : : : ; np(np

1

(nil; [nilj

1

]))

can be also generated. Due to the sharing of computations the second family is generated from

the result of the �rst derivation, so, by means of the successive applications of clauses

2

and

4

, we shall in fact generate the term on the right-hand side of the �gure, np(np

1

([nil

2

j

1

]; [

2

j

1

])),

which corresponds exactly to the internal representation of the term

3

. We shall now describe

how we detect and represent these types of construction. In the �rst stages of the parsing

process, two terms np(nil) are generated, which are uni�ed with np(X) and np(Y) in

2

, and

np(X;Y) is instantiated, yielding np(np(nil; nil)). In the following stage, the same step will be

performed over np(np(nil; nil)) and np(nil), yielding np(np(np(nil; nil); nil)). At this point, we

consider that:

� there exists a cycle in the context-free backbone,

� we have repeated the same kind of derivation twice, and

� the latter has been applied over the result of the former.

Therefore this process can be repeated an unbounded number of times to give terms with the

form np(np

1

([nilj

1

]; nil)). The same reasoning can be applied if we wish to unify with the

3

We could collapse structures np(nil) and np(np

1

([nil

2

j

1

]; [

2

j

1

])) from the right-hand side of Fig. 10 in

np(

1

[niljnp(

1

;

1

)]), but this would require a non-trivial additional treatment.

variable Y . The right-hand drawing in Fig.10 shows the compact representation we use in this

case. The functor np is considered in itself as a kind of special variable with two arguments.

Each of these arguments can be either nil or a recursive application of np to itself. In the �gure,

superscripts are used to indicate where a functor is referenced by some of its arguments.

Loop detection is explained in detail in Fig. 11. The terms to be studied are intermediate

structures in the computation of the proof shared-forest associated to the successive reductions

of rules 2 and 4 in the context-free skeleton. So, we have to compare the structures of the

arguments associated to predicate symbol np, and in order to clarify the exposition, we have

written them as term�substitution. The second term, t

2

, is obtained after applying a uni�cation

step over the �rst one, t

1

. To show that this step is the same that we applied when building

t

1

, they are shadowed. Now, t

1

and t

2

satisfy the conditions we have established to detect a

loop, namely a loop exists in the context-free backbone, and we have repeated the same kind

of derivation twice, the latter over the result of the former. Thus, t

3

is the resulting loop

representation.

4.2 Cyclic subsumption and uni�cation

Now, we shall see some examples of how the presence of cyclic structures a�ects the uni�cation

and subsumption operations.

In general, a function subsumes (�) another function if it has the same functor and arity

and its arguments either are equal or subsume the other function's arguments. When dealing

with cyclic structures, one or more arguments can be built from an alternative: another term,

or cycling back to the function. Such an argument will subsume another one if it is subsumed

by at least one alternative.

np X

X nil
nil

nil

Figure 12: mgu of substitutions involving cyclic terms.

Returning to the example of Fig. 11, we can conclude that np

1

([nilj

1

];

1

) subsumes

np

1

([nilj

1

]; nil). Functor and arity, np=2 are the same, and so are the �rst arguments, [nilj

1

],

and for the second ones, [nilj

1

] � nil because of the �rst alternative, clearly nil � nil.

On the other hand, when calculating the mgu we also have to consider each alternative in

the cyclic term, but discarding those that do not match. Thus:

mgu(fY [ajb]g; fY ag) = fY ag

and therefore, following the latter example:

mgu(np(X;X); np

1

([nilj

1

]; nil)) = fX nilg

which is graphically shown in Fig. 12. For better understanding, the matching parts of

substitutions are shadowed. Finally, we must not forget that variables are the most general

terms and so they subsume any term, even alternatives in cyclic terms. For example:

mgu(np(X); np

1

([aj

1

])) = fX [ajnp

1

([aj

1

])g

5 Experimental results

For the tests we take our running example dealing with sequentialization of nouns. Given that

the grammar contains a rule NP ! NP NP, the number of cyclic parses grows exponentially

with the length, n, of the phrase. This number is:

C

0

= C

1

= 1 and C

n

=

2n

n

!

1

n+ 1

; if n > 1

We are not here interested in time and space bounds related to traversing cyclic

structures [Vilares 99] since the technique considered in our situated framework is not dependent

on the parsing scheme used. At this point, e�ciency is only a consequence of the capacity of the

evaluation strategy to �lter out useless items. So, we focus now on loop detection, comparing

performances over the schema previously introduced.

We assume that lexical information is directly provided by a specialized tagger since only

syntactic phenomena are of interest for us. In this manner, Fig. 13 shows the number of items

compared in order to detect cyclic derivations. These experiments have been performed on S

1

,

the optimal dynamic frame in each case [Vilares 98].

10

100

1000

10000

100000

2 4 6 8 10 12 14 16 18 20

N
u

m
b

er
 o

f
lo

o
p

 t
es

ts

Input length

Mixed strategy with dynamic prediction
Bottom-up

Mixed strategy with static prediction

Figure 13: Number of tests for loop detection with di�erent parsing schema

So, we can realize the e�ciency of mixed-strategies incorporing static prediction in opposition

to pure bottom-up approaches or evaluators based on dynamic prediction. That con�rms the

real interest of using a driver as guideline to deal with cyclic derivations, as contrasted with

na��ve subsumption-based strategies.

6 Conclusion

We have discussed and described some possible solutions to two common problems which can

cause non-termination in DCG parsing.

The �rst problem involves the ability of the parser for loop detection and representation.

Here, we have tackled the question from the viewpoint of dynamic programming, exploiting

the domain ordering, improving tabular evaluation, and pro�ting from the analogy with classic

context-free parsing.

The second problem is to detect and represent cyclic structures in �nite time. This is more

of a logic programming question, where often available algorithms are related to strategies for

traversing cyclic lists. In this case, our proposal generalizes the concept of uni�cation to include

function and predicate symbol substitution, making use of the sharing properties in dynamic

programming evaluation in order to reduce the computational complexity.

References

[Apt 90] K.R. Apt and D. Pedreschi. Studies in pure Prolog: Termination. In J.W.

Lloyd, editor, Computational Logic, volume 1436 of Basic Research Series, pages 150{176.

Springer-Verlag, Berlin-Heidelberg-New York, 1990.

[Filgueiras 84] M. Filgueiras. A Prolog interpreter working with in�nite terms.

Implementations of Prolog, 1984.

[Haridi 85] S. Haridi and D. Sahlin. E�cient implementation of uni�cation of cyclic structures.

Implementations of Prolog, 1985.

[Pereira 83] F.C.N. Pereira and D.H.D. Warren. Parsing as deduction. In Proc. of the

21

st

Annual Metting of the Association for Computational Linguistics, pages 137{144,

Cambridge, Massachusetts, U.S.A., 1983.

[Prawitz 65] D. Prawitz. Natural Deduction, Proof-Theoretical Study. Almqvist & Wiksell,

Stockholm, Sweden, 1965.

[Samuelss 93] C. Samuelss. Avoiding non-termination in uni�cation grammars. In Procs. 4th

Int. Workshop on Natural Language Understanding and Logic Programming, pages 4{16,

Nara, Japan, 1993.

[Ullman 88] J.D. Ullman and A. van Gelder. E�cient tests for top-down termination of logical

rules. Journal of ACM, 2(35):345{373, 1988.

[Vilares 97] M. Vilares and M.A. Alonso. An LALR extension for DCGs in dynamic

programming. In Carlos Mart��n Vide, editor, Mathematical and Computational Analysis

of Natural Language, volume 45 of Studies in Functional and Structural Linguistics, pages

267{278. John Benjamins Publishing Company, Amsterdam & Philadelphia, 1998.

[Vilares 98] M. Vilares, D. Cabrero, and M. A. Alonso. Dynamic programming as frame for

e�cient parsing. In 18th Int. Conference of SCCC, Piscataway, NJ, 1998. IEEE Press.

[Vilares 99] M. Vilares, M.A. Alonso, and D. Cabrero. An operational model for parsing de�nite

clause grammars with in�nite terms. In Alain Lecomte, Fran�cois Lamarche, and Guy

Perrier, editors, Logical Aspects of Computational Linguistics, volume 1582 of Lecture Notes

in Arti�cial Intelligence. Springer-Verlag, Berlin-Heidelberg-New York, 1999.

