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Abstract

Web Engines are a useful tool for searching information in the Web. But a great part of this
information is non-textual and for that case a metric space is used. A metric space is a set where a
notion of distance (called a metric) between elements of the set is defined. In this paper we present
an efficient parallelization of a pivot-based method devised for this purpose which is called the
Sparse Spatial Selection (SSS) strategy and we compare it with a clustering-based method, a
parallel implementation of the Spatial Approximation Tree (SAT). We show that SAT compares
favourably against the pivot data structures SSS. The experimental results were obtained on a high-
performance cluster and using several metric spaces, that shows load balance parallel strategies
for the SAT. The implementations are built upon the BSP parallel computing model, which shows
efficient performance for this application domain and allows a precise evaluation of algorithms.

Keywords: Metric Space, BSP, Parallel Search, Distance Computations.

1 Introduction

The World Wide Web has information useful to millions of people. Some simple browse the Web
through entry points such as Yahoo!. But many information seekers use a search engine to begin their
Web activity. In this last case usually users submit a query of keywords, and receive a list of Web
pages containing the keywords that may be relevant. There is no question that the Web is a huge and
challenging to deal with. For helping users to find their answers, the search engine module is respon-
sible for receiving and filling search request from users. The engine relies heavily on the indexes and
some time on the page repository. Because of the Web’s size, and the fact that users typically only
enter one or two keywords, result sets are usually very large. Therefore the ranking operation has
the task of sorting the results. The query module is of special interest because traditional information
retrieval (IR) techniques have run into selectivity problems when applied without modifications to
Web searching: most traditional techniques rely on measuring the similarity of query texts with texts
in a collection’s documents.

With the growth of non-text content of the Web, it is becoming increasingly important to store,
index and search over images, audio, and video collections. Metric spaces and similarity search are
used for that kind of objects. The computational cost of the algorithms that determine the similarity
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between two objects makes similarity search an expensive operation and a case for its efficient par-
allelization. This fact has motivated the development of many research works aiming to do efficient
similarity search over very large collections of data.

Many research studies have been presented so far about multimedial structures. Some of them
are Burkhard-Keller-Tree (BKT) [5], Fixed-Queries Tree (FQT) [2], Fixed-Height FQT (FQHT) [1],
Fixed-Queries Array (FQA) [6], Vantage Point Tree (VPT) [22], Approximating and Eliminating
Search Algorithm (AESA) [21], LAESA (Linear AESA) [12], Bisector Trees (BST) [9], Generalized-
Hyperplane Tree (GHT) [17], Geometric Near-neighbor Access Tree (GNAT) [3] and Spatial Approx-
imation Tree (SAT) [13]. These structures are used to perform similarity searches in a metric space.

In this paper we present a parallel strategy for the Sparse Spatial Selection (SSS) index which is
a pivot based-technique. We present strategies to reduce the number of distances computations and
the I/O requirements. We compare the efficiency of the algorithms implemented with the parallel
implementation of a clustering-based technique, the Spatial Approximation Tree (SAT). We use the
Bulk Synchronous Parallel - BSP [20] model to perform the parallel querying and data distribution.

The rest of this paper is organized as follow. Section 2 introduces the theoretical concepts needed
to understand the problem. In Section 3 the sequential SSS index is presented. Section 4 presents the
Sequential SAT algorithm. In Section 5 the parallel platform is explained. In Section 6 we present the
parallel SSS index strategies and in Section 7 the parallel SAT algorithms. Section 8 preset the results
obtained and finally Section 9 presents the conclusions and future works.

2 Theoretical Concepts

A metric space (X, d) is composed of a universe of valid objects X and a distance function d : X×X→
X

+ defined among them. The distance function determines the similarity or distance between two
given objects. The goal is given a set of objects and a query, retrieval all objects close enough to the
query. This function holds several properties: strictly positiveness (d(x, y) > 0 and if d(x, y) = 0 then
x = y), symmetry (d(x, y) = d(y, x)), and the triangle inequality (d(x, z) = d(x, y) + d(y, z)). The
finite subset U ⊂ X with size n = |U|, is called dictionary or database and represents the collection
of objects where searches are performed.

A k-dimensional vector space is a particular case of metric space in which every object is repre-
sented by a vector of k real coordinates. The definition of the distance function depends on the type of
objects we are managing. In a vector space, d could be a distance function of the family Ls, defined
as Ls(x, y) = (

∑

1≤i≤k |xi − yi|
s)

1
s [4]. For example, s = 2 yields Euclidean distance, that is the

number of insertions, detentions or modifications we have to performe to make two words equal.
The computational cost of the algorithms that determine the similarity between two objects makes

similarity search an expensive operation and a case for its efficient parallelization. This fact has
motivated the development of many research works aiming to do efficient similarity search over very
large collections of data. Data parallel programming is particularly convenient for two reasons. The
first is its easiness of programming. The second is that it can scale easily to large problem sizes.

There are two main queries of interest for a collection of objects in a metric space:

• range search: that retrieves all the objects u ∈ U within a radius r of the query q, that is:
{u ∈ U/d(q, u) = r};

• nearest neighbor search: that retrieves the most similar object to the query q, that is {u ∈
U/∀v ∈ U, d(q, u) = d(q, v)};
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In this paper we are devoted to range queries. Nearest neighbor queries can be rewritten as range
queries in an optimal way [8], so we can restrict our attention to range queries. The evaluation of the
distance function is very expensive, and therefore searches become inefficient if the collection has a
high number of elements. Thus, reducing the number of evaluations of the distance function is the
main goal of the methods for similarity search in metric spaces. To do that, they first build indexes
over the whole collection. Later, using the triangle inequality, those indexes permit to discard some
elements without being necessary to compare them against the query.

Search methods can be classified into two types [7]: pivot-based and clustering-based techniques.
Pivot-based search techniques choose a subset of the objects in the collection that are used as pivots.
The index is built by computing the distances from each pivot to each object in the database. Given
a query (q, r), the distances from the query q to each pivot are computed, and then some objects of
the collection can be directly discarded using the triangle inequality and the distances precomputed
during the index building phase. Being x ∈ U an object in the collection, we can discard x if
|d(pi, x)− d(pi, q)| > r for any pivot pi, since by the triangle inequality, if this condition is true, its
distance to q will be d(x, q) > r. The objects that can not be discarded by this condition make up the
candidate list, and they must be compared against the query. The total complexity of the search is the
sum of the internal complexity, the comparisons of q with each pivot, and the external complexity, the
comparisons of q with each object in the candidate list.

Clustering-based techniques split the metric space into a set of equivalence regions each of them
represented by a cluster center. During searches, whole regions can be discarded depending on the
distance from their cluster center to the query. Two good surveys can be found in [8] and [23].

A recent pivot-based technique is the Sparse Spatial Selection (SSS) [4]. SSS is a dynamic method
since the collection can be initially empty and/or grow later. It works with continuous distance func-
tions and it is suitable for secondary memory storage. The main contribution of SSS is the use of a
new pivot selection strategy. This strategy generates a number of pivots that depends on the intrinsic
dimensionality of the space. Moreover, this pivot selection strategy is dynamic since it adapts the
index when new objects are added to the collection.

A recent clustering-based technique is the Spatial Approximation Tree (SAT) devised to support
efficient searching in high dimensional metric spaces [13]. This structure has been compared suc-
cessfully against other data structures [15] and update operations have been included in the original
design [14]. The SAT is a nice example of tree data structure in which well-known tricks paralleliza-
tion simply do not work [11, 10]. It is too sparse, unbalanced and its performance is too dependent
on the workload generated by the queries being solved by means of searching the tree.

3 Sequential SSS Index

Let (X, d) be a metric space, U ⊂ X an object collection, and M the maximum distance between any
pair of objects, M = max{d(x, y)/x, y ∈ X}. The set of pivots contains initially only the first object
of the collection. Then, for each element xi ∈ U, xi is chosen as a new pivot if its distance to every
pivot in the current set of pivots is equal or greater than α M , being α a constant parameter. That is,
an object in the collection becomes a new pivot if it is located at more than a fraction of the maximum
distance with respect to all the current pivots. For example, if α = 0.5 an object is chosen if it is
located farther than a half of the maximum distance from the already selected pivots. The following
pseudocode summarizes the pivot selection process:

PIVOTS← {x1}
for all xi ∈ U do

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Procesamiento Distribuido y Paralelo
_________________________________________________________________________

 
 

1312



if ∀ p ∈ PIVOTS, d(xi, p) ≥ α M then
PIVOTS = PIVOTS← ∪ {xi}

A key observation here is that the calculations performed to obtain the values of the distance
function d(xi, p) during the construction of the SSS index are not discarded, they actually form the
index itself. Namely for each pivot, the SSS index maintains the distance between each database
object and all of the pivots. Thus solving the range query (q, r) takes the following steps:

foreach pivot p do dq[p]← d(q, p)
n← 0
foreach object o do

foreach pivot p do
if ( distance[o][p] > (dq[p]−r) and

distance[o][p] < (dq[p]+r) ) then
n← n + 1

endif
endfor

if ( n = total number of pivots ) then
add object o to a list of candidate objects �.

endif
endfor
foreach object o ∈ � do

if ( d(o, q) ≤ r ) then
report object o as solution

endif
endfor

It seems evident that all the selected pivots will not be too close to each other. Forcing the distance
between two pivots to be greater or equal than Mα, ensures that they are well distributed in the whole
space. It is important to take into account that the pivots are not very far away from each others
neither very far from the rest of objects in the collection (i.e., they are not outliers), but they are well
distributed covering the whole space. The hypothesis is that, being well distributed in the space, when
a search is performed the set of pivots will be able to discard more objects than pivots selected with a
different strategy.

Being dynamic and adaptive is another good feature of the pivot selection technique. The set of
pivots adapts itself automatically to the growing of the database. When a new element xi is added to
the database, it is compared against the pivots already selected and it becomes a new pivot if needed.
In this way the number of pivots does not depend on the collection size but on its intrinsic dimen-
sionality of the metric space. Actually the collection could be initially empty, which is interesting in
practical applications.

Although in this method it is not necessary to state in advance the number of pivots to use, it is
necessary to set the value of α. This value determines the number of pivots. It is clear that the bigger
the value of α, the smaller the number of pivots that can be “placed” into the space. However, α must
always take values between 0.35 and 0.40, depending on the intrinsic dimensionality of the space.
That is, the optimal results in SSS are always obtained when α is set to those values and in general a
higher α works better when the intrinsic dimensionality is higher [4].
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4 Sequential SAT

The SAT construction starts by selecting at random an element a from the database S ⊂ U . This
element is set to be the root of the tree. Then a suitable set N(a) of neighbours of a is defined to be
the children of a. The elements of N(a) are the ones that are closer to a than any other neighbour.
The construction of N(a) begins with the initial node a and its bag holding all the rest of S. We first
sort the bag by distance to a. Then we start adding nodes to N(a) (which is initially empty). Each
time we consider a new node b, we check whether it is closer to some element of N(a) than to a itself.
If that is not the case, we add b to N(a). We now must decide in which neighbour’s bag we put the
rest of the nodes. We put each node not in a ∪ N(a), but in the bag of its closest element of N(a).
The process continues recursively with all elements in N(a).

The structure is a tree that can be searched for any q ∈ S by spatial approximation for nearest
neighbour queries. The mechanism consists in comparing q against a∪N(a). If a is closest to q, then
a is the answer, otherwise we continue the search by the subtree of the closest element to q in N(a).

It is a little interest to search only for elements q ∈ S. The tree we have described can, however,
be used as a device to solve range queries for any q ∈ U with radius r. The key observation is that,
even if q 	∈ S, the answer to the query are elements q′ ∈ S. So we use the tree to pretend that we
are searching an element q′ ∈ S. Range queries q with radius r are processed as follows. We first
determine the closest neighbour c of q among {a}∪N(a). We then enter into all neighbours b ∈ N(a)
such that d(q, b) ≤ d(q, c) + 2r. This is because the virtual element q′ can differ from q by at most r
at any distance evaluation, so it could have been inserted inside any of those b nodes. In the process
we report all the nodes q′ we found close enough to q. Finally, the covering radius R(a) is used to
further prune the search, by not entering into subtrees such that d(q, a) > R(a)+ r, since they cannot
contain useful elements. The following pseudocode summarizes the range search:

SEARCH(Node a, Query q, Radius r, Dist. dmin)
if (d(a,q) ≤ R(a)+r) then

if (d(a,q) ≤ r) then
report a

endif
dmin = min{d(c, q), c ∈ N(a)} ∪ dmin

for (b ∈ N(a)) do
if (d(b,q) ≤ dmin+2r) then

RangeSearch(b,q,r,dmin)
endif

endfor
endif

5 Parallel Platform

In the BSP model of parallel computing [20], any parallel computer is seen as composed of a set of
P processor local-memory components which communicate with each other through messages. The
computation is organized as a sequence of supersteps. During a superstep, the processors may perform
sequential computations on local data and/or send message to others processors. The messages are
available for processing at their destination by the next superstep, and each superstep is ended with
the barrier synchronization of processors [16].
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The practical model of programming is SPMD, which is realized as C and C++ program copies
running on P processors, wherein communication and synchronization among copies are performed
by ways of libraries such as BSPlib [18] or BSPpub [19].

We choose the BSP model because it is deadlock-free and has a particular way of organizing
computations and the resulting performance is in fact not too far from the one obtained with fully
asynchronous message passing realizations. Its main advantage stems from the fact that BSP provides
a cost model that allows a seemingly precise evaluation of the communication and computation costs
of parallel programs. In this particular work, we have used the BSPonMPI library that allows running
BSP using the MPI primitives.

The environment selected to process the queries is a cluster of computers connected by fast switch-
ing technology. We assume a server operating upon a set of P machines, each containing its own
memory. Client request are sent to a broker machine, which in turn distribute those request evenly
onto the P machines implementing the server. Requests are queries that must be solved with the
data stored on the P machines. We assume that under a situation of heavy traffic the server start the
processing of a batch of Q = q P queries in every superstep. Basically every processor has to deal
with two kinds of messages, those from newly arriving queries coming from the broker, in which case
a search is started in the processor, and those from queries located in others processors that decided
to continue their search locally in this processor.

We assume that the broker distribute Q = q P queries in every superstep so that q new queries
arrive at each processor in each superstep. In this case, it is not difficult to see that the cost of the
broadcast operation we employ is O(q P + q P G + L) against the O(q P + q P 2 G + L) common
practice strategy reported in the literature.

6 Parallel Strategies for the SSS Index

The SSS index is a pivot-based technique where distances between the objects in the collection and the
pivots are computed before the search operation starts. It can be seen as a table with so many columns
as pivots and so many rows as objects in the database. This strategy can be easily parallelizable
distributing the rows among the processors. But in this case the pivots must be replicated in all
processors because the query objects have to be compared against them. The replication is due to the
SSS index performs an intersection between the database objects and the pivots. Therefore all objects
with d(o, piv) ∈ {d(q, piv) + r, d(q, piv) − r} for every pivot in the set of pivots, are selected as
candidates to be part of the answer. The non-pivot objects are distributed in a multiplexed way.

This method can be seen as a global strategy because all processors share the same pivots but they
have only a piece of the whole database. With this approach we can use two different strategies to
perform the queries searches. In the first one called Strategy-B, the broker machine sends the query
to one processor of the system selected in a circular way as in the first strategy. Then the processor
receiving the query performs a broadcast so all processors get the same query. After receiving this
query, processors search in their local SSS index the most similar objects, namely the objects that
satisfies the range query (q, r) and send them to the requesting processor. This processor finally waits
for all the results obtained in the previous step, and sends the results to the broker machine (see Figure
1). For the case of queries requiring the nearest k objects within distance r – we denote this operation
(q, r, k) – every processor sends its k nearest objects and the requesting processor determines the best
k among the k P candidates.

The second strategy applied to this global index approach, called Strategy-C, is to build the results
for a specific query in several steps. So many steps as processors are in the system (see Figure 1). In
this scheme when a new query arrives from a broker machine, the receptionist processor performs a
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Figure 1: Global index distribution.

local similarity search using its portion of the SSS index. This processor gets a partial result for the
query and sends it to the next processor. This is repeated until all processors have searched in their
local indexes for similar objects. And the last one sends the final results to the broker machine. For k-
nearest queries (q, r, k), together with the message travelling from one processor to the another there
is an indication of the maximum distance to q of the set of K candidates contained in the message.
This value is used to prone the number of distance calculations in the receiving processor.

This case is very similar to the Strategy-B, but here the communication is performed in smaller
chunks. The results are passed from one processor to another until building the final results, so we
have P messages with partial results for every query, and all processors are performing the same tasks
in every superstep. While in the other strategy, the communication is performed in bigger chuncks
and the receptionist machine has to perform the selection of the best results.

Another way to parallelize the SSS index would be to spread the space between the processors
and then each one builds its own SSS index with the local data (Strategy-A). The problem in this
strategy is that each processor will have to select new pivots locally, different from the global ones.
And therefore, the number of pivots will be greater than in the other strategies proposed. To avoid the
effects of imbalance from objects skewed to particular regions in space, we use multiplexed object
distributed strategy, so each object is sent to the processor p = idobjmod P .

To process a query using this scheme, the broker machine sends the query to one processor from
the system selected in a circular way, and this processor sends a copy of the query to all other proces-
sors ( O(q P +q P G+L) broadcast cost). Then, using the local SSS indexes each processor searches
for the most similar objects to the query. The results obtained are sent to the broker machine.
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7 Parallel SAT Strategies

A first point to emphasize is that the SAT structure contains nodes of very diverse number of children.
Every child node causes a distance comparison, so it is relevant to be able to balance the number of
distance comparisons performed in every processor per superstep. In the first parallel strategy for the
SAT, we propose to distribute the subtree of the root node among processors at random (R strategy).
In this case the root is replicated in all processors and queries are distributed in a circular way. The
processor receiving the query determines where it has to be solved.

Another parallel implementation considers the number of nodes that each processor has. So we
select the processors with fewer nodes to send a subtree. Queries are distributes in a circular way and
the processor receiving one query will determinate where the query must be solved. But, while we
were doing some experiments to study the results obtained by this strategy (load processor strategy -
LP ), we realize the number of comparisons performed depends not only in the number of nodes but
also in the query itself. Therefore to reduce the number of comparison distance we present another
strategy to map the tree nodes onto the processors by considering the number of distance comparisons
that may be potentially performed in every subtree rooted at the children of the SAT’s root. That is,
the subtrees associated with nodes b in N(a) where a is the root and N(a) is the set neighbour of a.
To do that, we replicate the root and each child of the root in every processor and we distribute all the
others nodes evenly through the processors, in a multiplexed way. A disadvantage is that every node
has to replicate its children locally, to be able to perform the distance comparisons and in this way
continue the searching operation.

In the multiplexed strategy (M), we also have to send the query to one processor and then it
determinates where the query has to be solved. Therefore, we have more communication and more
synchronization during a query processing operation.

These three strategies have a global distribution, because the SAT is sequentially built and then
the nodes are distributed in the server. Another way to parallelize this structure (named local strategy
L) is to distribute the database among the processors and then each processor builds its own local SAT
structure. This case requires broadcasting the queries, because there is no communication between the
processors during the query search operation and because they process these queries in a sequential
way.

To improve efficiency we set an upper limit V to the number of distance comparisons that are
performed per processor in each superstep. During a superstep, every time any processor detects that
it has performed more than V distance comparisons, it suspends query processing and waits until the
next superstep to continue with this task. Under the BSP model it means that all queries going down
in a tree in each processor k has to be sent again to the processor k as a message, exactly as if it found
out that the search have to continue in other processor. But no communication cost is involved for
these extra messages. Also the processors stop extracting messages from its input queue. Besides,
every S supersteps we collect statistics that are used to define the value of V for the next sequence of
supersteps. This statistics are independent of the value of V and of the S supersteps used to calculate
them. In this way the value of V can adapt itself to the workload changes produced by the flow of
queries arriving constantly to the server.

Because of limit V , supersteps can be truncated before processing all the available queries. There-
fore real supersteps are not a reliable measure of the real average number of supersteps required to
complete a query. To deal with this, we put in every query q a counter of virtual supersteps different
from the real ones executed by the BSP computer. Also, we keep a counter for the virtual supersteps
in each processor k. Every time a new query is initialized in a processor k we set the virtual supersteps
of the query to be equal to the number of batch it belongs to. The broker can do this before sending the
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query to the processor. Besides, every time a query has to migrate to another processor we increase
the virtual supersteps in one unity, because it takes one virtual superstep to get there. Additionally,
we count the total number of distance calculations that has been performed in every processor k. It
gives us a precise idea of global load balance (across supersteps).

8 Results

The database collection used in the experiments showed below is a 69Kwords English dictionary and
a 51Kwords Spanish dictionary. This system has 32 dual processors (2.8GHz) that use NFS mounted
directories. Queries were selected at random from a log of 127,000 queries. In each superstep we
introduce Q = 32 queries per processor and each of them solves 10,000 queries. So the total number
of queries processed in the system is 10,000 P .

We measure the efficiency of each strategy explained in this paper as the ratio A/B where A is the
average distance computation performed in each supersptep by all processors, and B is the maximum
number of distance computations performed in that superstep by any processor. This measure gives
us an idea about the load balance of the system.
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Figure 2: Efficiency obtained by the Strategy-A, Strategy-B and Strategy-C using up to 32 processors
with the SSS technique.

Figure 2 shows the efficiency in each superstep. Strategies B and C obtains a good performance
(they are overlapped in the graphic) and they show a better load balance than the Strategy-A. This
last one presents fluctuations and the efficiency is more unstable. This is because queries requiring
more distance computations may fall in the same processor, while in both others strategies the work
is distributed among the processors. Figure 3 shows the efficiency obtained by the proposed parallel
strategies for the SAT. In this case the L strategy is the one presenting less efficiency and therefore
less load balance between supersteps.

Figure 4 shows the running time in seconds divided by the maximum running time required by
the parallel implementations. The running time in this graphic increase with a greater number of
processor because the amount of queries processed is also larger. With this scheme we can see if
the strategies presented allows obtaining scalability. Here, we can see that Strategy-A obtains lower
running times than the two others strategies based in a global distribution approach for the SSS index.
This strategy only performs a broadcast at the beginning of processing each query, and then the pro-
cess is performed locally and some processors concentrate a great number of distances computations
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Figure 3: Efficiency obtained with 4,8,16 and 32 processors using the LP , R, M and L parallel
strategies proposed for the SAT method.
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Figure 4: Running time. Each machine process 10, 000P queries in batches of Q = 32. The results
are presented with a system with up to 32 processors.

in some processors, while other may remind with less load work.
The parallel SAT strategies proposed used an upper limit V to balance the number of computations

performed in each superstep. Figure 5 shows in the y − axis the values obtained by the upper limit
per superstep. This is presented for 4-32 processors using the LP , R, M and L strategies for the SAT.

Finally, Figure 6 shows in the x-axis the parallel strategies A, B and C for the SSS index and
LP , R, M and L for the SAT. At the left of this graphic we have the average distance computations
performed using 4, 8, 16 and 32 processors for the SSS index. In this case the B strategy is the
one reporting higher values. On the other hand, the different distance computations presented by the
execution of the algorithms with more processors is hard to distinguish. The average efficiency is
presented. We can see that the A strategy is the one reporting less distance computations but also has
less load balance due to the efficiency reported is very low.

At the right of this figure, we present the average distance computations and efficiency obtained
by each strategy of the SAT method with up to 32 processors. We can see that the behaviour stands
like the reported before in Figure 3, so the L strategy is the one with less uniform work distribution.
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Figure 5: Upper limits adaptation for the parallel strategies of the SAT.

 0

 1

 2

 3

 4

 5

LMRLPLMRLPCBACBA

Strategies

P= 4 

8

16

32

SSS  SAT  

Average
Distances

Average
Distances

Average
Efficiency

Average
Efficiency
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9 Conclusions and Future Works

In this paper we have presented the parallelization of a recent index method used to search similar
objects in a metric space and we compared it with some parallel implementations of a clustering-
based technique, the SAT. Results show that the SAT is more balance and obtains a better performance
decreasing the number of distance computations. The SSS index allows obtaining an optimal number
of pivots used to reduce the number of distance computations performed for searching similar objects.

The parallel strategies are based in two main schemes, a local scheme where the database is
distributed among the processors and then each processor builds its own index or tree to perform the
queries searches. The others strategies are based in a global distribution of the database. In these
cases a unique SSS-index is built and then all pivots are replicated in all processors (because the
intersection between queries and pivots is required by the SSS method). The database objects are
distributed among the processors in a multiplexed way. In the SAT method a unique tree is built and
the each node is multiplexed among processors.

As future work we intend to explore the parallel application of this method and compare it with
others metric index structures like the EGNAT, and GNAT. The effect of external memory is also an
interesting area applied to similarity search problems where parallel computing can allow a significant
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reduction of query execution times.
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