
Aggregation Algorithms for Regression. A

Comparison with Boosting and SVM Techniques

P .M. Granitto, P.F. Verdes and H.A. Ceccatto

Instituto de F��sica Rosario - CONICET/UNR
Boulevard 27 de Febrero 210 Bis, 2000 Rosario, Argentina

Abstract. Classi�cation and regression ensembles sho w generalization
capabilities that outperform those of single predictors. We present here a
further ev aluation of tw o algorithms for ensemble construction recently
proposed by us. In particular, we compare them with Boosting and Sup-
port Vector Machine tec hniques, which are the newest and most sophisti-
cated methods to treat classi�cation and regression problems. We sho w
that our comparatively simpler algorithms are very competitive with
these tec hniques, showing even a sensible improvement in performance
in some of the standard statistical databases used as benchmarks.

1 Introduction

In general, the combination of outputs of sev eral predictors improves on the
performance of a single generic one [11]. F or this, they must be diverse, i.e.,
they must have independently distributed predictions for the test points. This
is possible when the learning algorithm is unstable[1], that is, very sensitive to
small changes in the structure of the data and/or in the parameters de�ning
the learning process. Classical examples in this sense are classi�cation and re-
gression trees and arti�cial neural netw orks (ANNs).In particular, in the case
of ANNs the instability comes naturally from the inherent data and training
process randomness, and also from the intrinsic non-identi�ability of the model.

The combination of strong instability of the learning algorithm with the need
for good individual generalization capabilities requires an adequate selection
of the ensemble members. Attempts to achiev e a sensible compromise betw een
the above mentioned properties include elaborations of tw o general techniques:
Bagging [1] and Boosting [4]. These standard methods for predictors aggrega-
tion follow tw o di�erent strategies: Bagging (short for 'bootstrap aggregation'),
and varian ts thereof,train independent predictors on bootstrap re-samples Ln
(n = 1;M) of the available dataD, employing the unused examples Vn = D�Ln
for v alidation purposes. These predictors are then aggregated according to dif-
feren t rules (for instance, simple or weigh ted a verage). Boosting and its varian ts
are, instead, stagewise procedures that, starting from a predictor trained on D,
sequentially train new aggregate members on bootstrap re-samples drawn with
modi�ed probabilities. According to the general approach, each example in D
is giv en a di�erent chance to appear in a new training set by prioritizing pat-
terns poorly learnt on previous stages. In the end, the predictions of the di�erent

CACIC 2003 - RedUNCI 485



2 P .M. Granitto et al.

members so generated are weigh ted with a decreasing function of the error each
predictor makes on its training data.

F or regression problems, on which w ewill focus here, Boosting is still a
construction area, where no algorithm has emerged yet as 'the' proper way of
implementing this technique [4, 2, 5]. Consequently, Bagging is the most common
method for regressors aggregation. In this work, tw o di�erent Bagging-like strate-
gies for ensemble construction recently proposed by us {SECA[6] and SimAnn[7]{
are tested against Boosting and other sophisticated techniques in the literature.
We will restrict ourselves to work in the regression setting, using ANNs as learn-
ing method. These restrictions are not essential; in principle, our analysis can be
extended to classi�cation problems and to other regression/classi�cation meth-
ods. Our main purpose is to assess the eÆcacy of these tw osimple methods
by comparison among themselves and with other modern techniques on several
syn thetic and real-world data sets.

The organization of this work is the following: In Section 2 we re-discuss the
methods proposed in Refs. [6, 7]. In Section 3 w ein troduce the syn theticand
real-world databases considered in this study ,and describe the experimental
settings used to learn from them. In Section 4 we obtain empirical evidence on
the relative eÆcacy of the methods discussed in Section 2 by applying them to
these databases. Finally, in Section 5 we summarize and draw some conclusions.

2 Ensemble Construction Algorithms

The simplest way of generating a regressor aggregate is Bagging [1]. According
to this method, from the data set D con tainingN examples (t;x) one gen-
erates bootstrap re-samples Ln (n = 1;M) by drawing with replacement N
training patterns. Thus, eac h training set Ln will con tain,on average, 0:63N
di�erent examples, some of them repeated one or more times. The remaining
0:37N examples in Vn = D � Ln are used for validation purposes in the re-
gressor learning phase (bac kpropagation trainingof the ANN in our case). In
this w ayone generates M di�erent members fn of the ensemble, whose out-
puts on a test point x are �nally averaged to produce the aggregate prediction
�(x) = w1f1(x) + ::: + wMfM (x). The weights wn are usually tak en equal to
1=M (simple averaging). Other options will be discussed below. Notice that, ac-
cording to this method, all the regressors are trained independently and their
performances individually optimized using the \out-of-bag" data in Vn. Then,
although there is no �ne-tuning of the ensemble members' diversity, the method
frequently improves largely on the average performance of the single regressors
fn.

Bagging can be viewed as a �rst stage of more sophisticated algorithms for
building a composite ANN regressor. Let's consider training to convergence M
ANNs on the bootstrap re-samples Ln, saving the intermediate states fn(�) at
eac h training epoch � . Building an ensemble can be then translated to the task of
selecting a combination of one state fn(�

opt
n ) from each of theM runs to create an

optimal ensemble. In this light, Bagging solves the problem by choosing the state

CACIC 2003 - RedUNCI 486



Aggregation Algorithms for Regression 3

using only information on the given run (�optn is the n umber of training epochs
for which the validation error on V is minimum). In more advanced algorithms,
the regressors are not optimized individually but as part of the aggregate.Within
this framework, we have recen tly proposed[7] an `optimal' way of constructing
an ensemble based on the minimization of

E(� ) =
NX
p=1

[tp � �p(xp;w(� ))]
2; (1)

as a function of the set of training epochs � = f�n;n = 1;Mg for all netw orks.
Here �p(xp;w(� )) =

P
n=1;M wpnfn[xp;w(� )] is the aggregate regressor built

with those netw orks that have not seen pattern (tp;xp) in their training phase,
i.e.

wpn =

pnP
n 
pn

; (2)

where 
pn = 1 if (tp;xp) 2 Vn and 0 otherwise. Notice that the validation pro-
cedure generated by Eq. (1) amounts to e�ectively optimizing the performances
of sev eral subsets of the M trained ANNs, eac h subset including on average
0:37M netw orks.The adv an tageis that, like in the description of Bagging at
the beginning of this section, no sub-utilization of data for validation purposes
is necessary.

The minimization of Eq. (1) can be accomplished by using simulated anneal-
ing in � -space. That is, starting from netw orks trained� 0 epochs, we randomly
change �0n and check whether the ensemble generalization error (1) increases or
decreases when net w orkn is trained up to �0n + �� . As usual, w eaccept the
move with probability 1 when E(� ) decreases, and with probability

expf��[E(� )�E(� 0)]g

1 + expf��[E(� )�E(� 0)]g
(3)

when E(� ) increases. This is repeated many times considering di�erent networks
n (chosen either at random or sequentially), while the annealing parameter �
is con veniently increased at each step; the algorithm runs until E(� ) settles in
a deep local minimum. In practice we have tak en�� = r�max=20, where �max

is the maximum number of training epochs and r is a random number in the
in terval [�1; 1]. The annealing temperature was decreased according to ��1 =
0:995qE(�0)=2, where q is the annealing step. We point out that the minimization
problem is simple enough not to depend critically on these choices. Notice that
for the implementation of this algorithm {that we have called \SimAnn"{ one is
forced to store all the intermediate netw orksfn[w(�)]. Howev er, given the large
storage capacity in computers now ada ys, in most applications this requirement
is not severe.

The SimAnn strategy for ANN aggregation minimizes some particular error
function in a global way. A di�erent approach is to adapt the typical hill-climbing
searc h method to this problem. In a previous work[6] we proposed a simple way
of generating a ANN ensemble through the sequential aggregation of individual

CACIC 2003 - RedUNCI 487



4 P .M. Granitto et al.

predictors, where the learning process of a new ensemble member is validated by
the previous-stage aggregate prediction performance. That is, the early-stopping
method is applied by monitoring the generalization capability on Vn+1 of the
n-stage aggregate predictor plus the n + 1 netw ork being currently trained. In
this way we retain the simplicity of independent netw ork training and only the
validation process becomes slightly more involv ed, leading to a controlled over-
training (\late-stopping") of the individual net w orks.Notice that, despite the
step wise characteristic of this algorithm (called SECA, for Stepwise Ensemble
Construction Algorithm), it can be implemented after the parallel training of
net w orks if desirable. Alternatively, if implemented sequentially it a voids com-
pletely the burden of storing net w orksat intermediate training times like in
SimAnn.

F or the sake of completeness, we summarize the implementation of SECA as
follows:

Step 1: Generate a training set L1 by a bootstrap re-sample from dataset
D, and a validation set V1 = D � L1 by collecting all instances in D that are
not included in L1. Produce a model f1 by training a net w orkon L1 until a
minimum ef (V1) of the generalization error on V1 is reached.

Step 2: Generate new training and validation sets L2 and V2 respectively,
using the procedure described in Step 1. Produce a model f2 training a netw ork
un til the generalization error onV2 of the aggregate predictor �2 = (f1 + f2)=2
reac hes a minimum e�(V2). In this step the parameters of model f1 are kept
constant and the model f2 is trained with the usual (quadratic) cost function
on L2.

Step 3: Iterate the process un til a number M of models is produced. A
suitableM can be estimated from the behavior of e�(Vn) as a function of n, since
this error will stabilize when adding more net w orks tothe aggregate becomes
useless.

Let's consider a simple analysis of the computational cost involv edin the
implementation of the abo vedescribed algorithms. Once the M ANNs have
been independently trained and T net works saved along each training evolution,
which is common to all the algorithms, Bagging requires a computational time
t � M � T to select the best combination (essentially , the evaluation of the T
ANN's validation errors for each of the M net works to �nd the corresponding

minima). SECA and SimAnn require (M+1)
2 �M � T and p �M � T net w ork

evaluations, respectively. Here we have written the number of simulated anneal-
ing steps Nsa = pT , with p an arbitrary integer, to facilitate the comparison. In
the following we will take p �M to ha ve a fair comparison betw een SECA and
SimAnn. Notice, however, that the major demand from a computational point
of view is the ANN training and not the netw ork selection to build the ensemble.
In practice, in the algorithms' evaluations in Section 4 we have taken M = 20,
T = 200 and p = 15, with all the netw orks trained a maximum of 10T to 100T
epochs, depending on the database.

As mentioned in the Introduction, a completely di�erent strategy for build-
ing composite regression/classi�cation machines is Boosting. For classi�cation

CACIC 2003 - RedUNCI 488



Aggregation Algorithms for Regression 5

problems, its main di�erence with Bagging is the use of modi�ed probabilities
to re-sample the training sets Ln. At stage n, the w eigh ts associated to exam-
ples in D are larger for those examples poorly learnt in previous stages, so that
they eventually appear several times in Ln. In this w ay,the new predictor fn
trained on Ln specializes on these hard examples. Finally, the inclusion of fn in
the ensemble with a suitably-chosen weigh t allo ws the exponential decrease with
boosting rounds n of the ensemble's training error on the whole dataset D. Notice
that, in addition to the above mentioned modi�cation of re-sampling probabil-
ities, other di�erences with Bagging are: i) Boosting is essentially a stage-wise
approach, which requires a sequential training of the aggregate members fn, and
ii) in the �nal ensemble these members are weighted according to their perfor-
mances on the respective training sets Ln (using a decreasing function of the
training error). A further consideration of this last characteristic will be done in
the next Subsection, where we discuss a weigh ting sc heme for bagged regressors
alternative to the simple average considered in this section.

While Boosting is, as explained above, a well de�ned procedure in the classi-
�cation setting, for regression problems there are several ways of implementing
its basic ideas. Unfortunately, none of them has yet emerged as \the" proper way
of boosting regressors. Without the inten tion of exhausting all the proposed im-
plementations, we can distinguish tw o Boosting strategies for solving regression
problems: i) by reducing them to classi�cation problems and essentially c hanging
example weigh ts [4, 2], and ii) by forward stage-wise additive modelling, which
modi�es the target values to e�ectively �t residual errors[5, 3]. In order to com-
pare with SECA and SimAnn algorithms described above, in this work we will
implement the Boosting techniques from [2] and [5] as examples of these tw o
di�erent strategies.

2.1 Weighting Ensemble Members

For the Bagging-like ensemble construction algorithms above described, the �nal
aggregate prediction on a test point is simply the mean of the individual pre-
dictions, without weigh ting the outputs of the ensemble members (wn = 1=M,
n = 1;M). This is not particularly wise for SECA, since some of these members
may ha ve poor generalization capabilities.In [6] we ga ve a typical example of
the problems SECA can run into, and following general ideas from Boosting we
proposed to modify the algorithm so that the output of the ensemble at the m-th
stage becomes

�m(x) =

mX
n=1

wnfn(x); (4)

where wn is a decreasing function of en, the MSE of the n-th member overD;
i.e., we weighted each ensemble member according to its individual performance
on the whole dataset. This is the way in which Boosting reduces the importance
of o ver�tted members in the �nal ensemble. We explored tw o di�erent weighting

CACIC 2003 - RedUNCI 489



6 P .M. Granitto et al.

functions:

wi =
e��iP
j e
��
j

; wi =
exp(��ei)P
j exp(��ej)

; (5)

and show ed that, for small to intermediate values of �, weigh ting produces better
results than simply averaging the individual predictions. Since in [7] we found
no major di�erences betw een both weigh ting la ws, we will use, like in this refer-
ence, potential weigh ting with� = 2 to aggregate regressors (the corresponding
algorithms have been called W-SECA and W-SimAnn).

In Sections 4 w ewill sho who w eÆcient W-SECA and W-SimAnn are by
comparing them with Boosting and other techniques in the literature, on real
and synthetic databases. In the next section we brie
y describe these databases
and the experimental settings considered for this comparison.

3 Benchmark Databases and Experimental Settings

We have evaluated the algorithms described in the previous section by applying
them to several benchmark databases: the syn thetic F riedman#1, 2, 3 data
sets and chaotic Ikeda map, and the real-world Abalone, Boston Housing, Ozone
and Servo data sets. In the cases of the Friedman data sets we can control the
(additive) noise level, which allows us to investigate its in
uence on the di�erent
algorithm's performances. We present the results for the Ikeda map together
with those of real-world sets because the level of noise in this problem is �xed
by its in trinsic dynamics. In addition, at the end of next section we will present
results on the Mackey-Glass equation, which a�ords a more general comparison
with other regression methods in the literature. In the follo wingw egiv ebrief
descriptions of the databases and the ANN architectures used.

{ F riedman #1
The Friedman #1 synthetic data set corresponds to training vectors with 10
input and one output variables generated according to

t = 10 sin(x1x2) + 20(x3 � 0:5)2 + 10x4 + 5x5 + "; (6)

where " is Gaussian noise and x1; : : : x10 are uniformly distributed over the
in terval [0; 1]. Notice that x6; : : : x10 do not enter in the de�nition of t and
are only included to chec k the prediction method's ability to ignore these in-
puts. In order to explore the algorithm's performances in di�erent situations
w e used di�erent noise levels and training set lengths. The noise component
w asset to three lev els: No noise (i.e., " = 0, labeled \free"), low noise ("
with normal distribution N(� = 0; � = 1)), and high noise (" with normal
distribution N(� = 0; � = 2)). We generated 1200 sample vectors for each
noise level and randomly split the data in training and test sets. The data
sets D had alternatively 50, 100 and 200 patterns, while the test set con-
tained always 1000 examples. We considered ANNs with 10:h:1 architectures,
where the number of hidden units h = 6; 10 and 15 for increasing number of
patterns in the training set.

CACIC 2003 - RedUNCI 490



Aggregation Algorithms for Regression 7

{ F riedman #2
F riedman #2 has four independent variables and the target data are gener-
ated according to

y = x21 +
p
x2x3 � (x2x4)�2 + " (7)

where the zero-mean, normal noise is adjusted to give noise-to-signal pow er
ratios of 0 (no noise), 1:9 (low noise) and 1:3 (high noise). The variables xi
are uniformly distributed in the ranges

0 < x1 < 100; 20 <
x2
2�

< 280; 0 < x3 < 1; 1 < x4 < 11 (8)

The training sets con tained20, 50 and 100 patterns, and the test set had
always 1000 patterns. We considered 4:h:1 ANNs, with h = 4; 6 and 8 ac-
cording to the training set length.

{ F riedman #3
F riedman #3 hasalso four independent variables distributed as above but
the target data are generated as

y = tan�1
�
x2x3 � (x2x4)

�2

x1

�
+ " (9)

The noise-to-signal ratios were chosen as before, but in this case the training
sets con tained 100, 200 and 400 patterns. Accordingly, we considered h = 6; 8
and 12. As in the previous cases, the test sets had always 1000 patterns.

{ Abalone
The age of abalone is determined by cutting the shell through the cone, stain-
ing it, and counting the number of rings through a microscope. T oavoid
this boring task, other measurements easier to obtain are used to predict
the age. Here we considered the data set that can be downloaded from the
UCI Machine Learning Repository (ftp to ics.uci.edu/pub/machine-learning-
databases), containing 8 attributes and 4177 examples without missing val-
ues. Of these, 1045 patterns were used for testing and 3132 for training. The
ANNs used to learn from this set had a 8:5:1 architecture.

{ Boston Housing
This data set consists of 506 training vectors, with 11 input variables and one
target output. The inputs are mainly socioeconomic information from census
tracts on the greater Boston area and the output is the median housing price
in the tract. These data can also be do wnloaded from the UCI Machine
Learning Repository.
We considered 450 training examples and 56 data points for the test set. The
ANNs used had a 11:5:1 architecture.

{ Ozone
The Ozone data correspond to meteorological information (humidity, tem-
perature, etc.) related to the maximum daily ozone (regression target) at a
location in Los Angeles area. Removing missing values one is left with 330
training vectors, containing 8 inputs and one target output in each one. The

CACIC 2003 - RedUNCI 491



8 P .M. Granitto et al.

data set can be downloaded by ftp (to ftp.stat.berkeley .edu/pub/users/breiman)
from the Department of Statistics, University of California at Berkeley.
We considered ANNs with 8:5:1 architectures and performed a (random)
splitting of the data in training and test sets containing, respectively, 295
and 35 patterns.

{ Serv o
The servo data cover an extremely non-linear phenomenon {predicting the
rise time of a servomechanism in terms of two (continuous) gain settings and
tw o (discrete) choices of mechanical linkages. The set contains 167 instances
and can be downloaded from the UCI Machine Learning Repository.
We considered 4:15:1 ANNs, using 150 examples for training and 17 examples
for testing purposes.

{ Ikeda
The Ikeda laser map [8], which describes instabilities in the transmitted light
by a ring cavity system, is given b y the real part of the complex iterates

zn+1 = 1 + 0:9zn exp

�
0:4i�

6i

(1 + jznj2)

�
: (10)

Here we have generated 1100 iterates, using 100 in the training set and 1000
for testing purposes. After some preliminary investigations,w echoose an
embedding dimension 5 for this map and considered ANNs with a 5:10:1
architecture.

F or eac h one of these databases we trained M = 20 independent net w orks,
storing T = 200 intermediate weights and biases w(� ) on long training experi-
ments until con vergence (10T to 100T epochs, depending on the database). We
considered this number of net w orksafter chec kingon preliminary evaluations
that there w ere nosensible performance improvements with bigger ensembles.
With these 20 ANNs we implemented W-SECA and W-SimAnn ensemble con-
struction algorithms. We tested these Bagging-like techniques and also boosted
ANNs according to the Friedman [5] and Drucker [2] Boosting algorithms, con-
sidering in this case a maximum of 20 rounds for comparison.

The results given in the follo wing section correspond to an average over
50 independent runs of the above-described procedures, without discarding any
anomalous case (for Boston, Ozone and Servo databases we averaged over 100 ex-
periments because the smaller test sets allow larger sample 
uctuations). We will
not indicate the variance of average errors, since these deviations only charac-
terize the dispersion in performances due to di�erent realizations of training and
test sets. They have no direct relevance in comparing the average performances
of di�erent methods (in each run all the algorithms use the same 20 netw orks).
This procedure guarantees that di�erences in the �nal ensemble performances
are only due to the aggregation methods and/or validation settings.

Finally, at the end of Section 4 we make a �nal comparison of W-SECA and
W-SimAnn with several other methods in the literature. This is done using as a
test bed the chaotic Mackey-Glass time series:

CACIC 2003 - RedUNCI 492



Aggregation Algorithms for Regression 9

{ Mackey-Glass

The Mackey-Glass time-delay di�erential equation is a model for blood cell
regulation. It is de�ned by

dx(t)

dt
=

0:2x(t� �)

1 + x10(t� �)
� 0:1x(t) (11)

When x(0) = 1:2 and � = 17, we ha ve a non-periodic andnon-convergen t
time series that is very sensitive to initial conditions (w eassume x(t) = 0
when t < 0).

In order to compare with the results in [9] and [10], w ehave do wnloaded
the database used by these authors and considered, like in these works, an
embedding dimension d = 6 and 1194 patterns for training and 1000 patterns
for testing purposes. After some preliminary investigations to optimize the
number of hidden units, we considered ANNs with a 6:40:1 architecture.

4 Evaluation Results

The results quoted belo ware giv en in terms of the normalized mean-squared
test error:

NMSET =
MSET
�2
D

; (12)

de�ned as the mean-squared error on the test set T divided by the variance of
the total data set D. According to this de�nition, NMSE ' 1 for a constant
predictor equal to the data average and 0 for a perfect one. Then, its value allows
to appraise both the predictor's performance and the relative complexity of the
di�erent regression tasks. Notice that, as indicated in the table captions, the
results are given in units of 10�2, so that all the errors are muc h smaller than 1
and, consequently, the predictions muc h better than the trivial data average.

In Tables 1 and 2 we present results obtained with tw o Boosting algorithms
(\Drucker"[2] and \Residual"[5]). For these algorithms we used a maximum of
20 boosting rounds, which should produce a fair test considering the 20 ANNs
ensembled in the Bagging-like W-SECA and W-SimAnn methods. Notice that
for the 27 Friedman datasets the Boosting algorithms perform better than W-
SECA and W-SimAnn only in three cases, and in these few cases the \Drucker"
implementation is always the best performer. For the real-world databases and
Ikeda map this implementation and W-SimAnn are the top performers.

CACIC 2003 - RedUNCI 493



10 P .M. Granitto et al.

F riedman #1 Noise Free Low Noise High Noise

Length 50 100 200 50 100 200 50 100 200
W-Bagging 3.23 1.88 0.13 4.17 2.75 1.62 5.73 4.63 3.27
W-SECA 3.13 1.76 0.12 4.10 2.49 1.47 5.69 4.40 3.07
W-SimAnn 3.24 1.77 0.11 4.13 2.54 1.50 5.73 4.44 3.07

Residual 3.63 2.46 0.53 4.46 3.24 2.15 6.13 4.90 4.00
Drucker 3.32 1.98 0.60 4.10 2.68 1.67 5.78 4.50 3.21
F riedman #2 Noise Free Low Noise High Noise

Length 20 50 100 20 50 100 20 50 100
W-Bagging 0.65 0.0076 0.0041 3.28 1.86 1.53 7.52 5.64 4.90

W-SECA 0.62 0.0079 0.0042 2.94 1.84 1.55 7.50 5.56 4.91
W-SimAnn 0.49 0.0076 0.0041 2.93 1.82 1.57 7.50 5.59 4.94
Residual 0.83 0.0116 0.0050 3.09 1.98 1.64 7.74 5.80 5.14
Drucker 1.20 0.0081 0.0044 3.14 1.81 1.56 7.49 5.57 4.96
F riedman #3 Noise Free Low Noise High Noise

Length 100 200 400 100 200 400 100 200 400
W-Bagging 1.71 0.67 0.37 6.42 5.09 4.36 12.50 11.08 10.14
W-SECA 1.64 0.66 0.36 6.16 4.93 4.28 13.38 11.39 10.08
W-SimAnn 1.69 0.65 0.35 6.24 4.90 4.26 14.83 12.14 10.07
Residual 2.37 0.86 0.55 7.47 5.80 4.75 17.16 13.37 10.74
Drucker 1.77 0.72 0.40 6.15 5.00 4.28 13.24 11.52 10.10

T able 1: Normalized mean-squared test errors (in units of 10�2) for the weighted
versions of the algorithms indicated. These �gures correspond to an average over
50 experiments, using out-of-bag data for validation purposes. The results of tw o
di�erent boosting algorithms are included for comparison.

Database Abalone Boston Ozone Servo Ikeda

W-Bagging 4.644 2.503 3.931 1.840 16.64
W-SECA 4.626 2.482 3.887 1.845 15.10
W-SimAnn 4.631 2.498 3.865 1.823 15.10

Residual 4.646 2.638 4.028 2.172 22.07
Drucker 4.624 2.479 3.920 1.778 16.19

T able 2: Same as Table 1 for the real-world databases indicated.

As a further investigation on W-SECA and W-SimAnn, we have considered
the Mackey-Glass problem. This allows us to make a comparison with seven other
regression methods based on Support Vector Machines (SVM) and regularized
Boosting using Radial Basis Function (RBF) networks, as described in [9] and
[10]. Follo wing these works, we introduced three levels of uniform noise to the
training set, with signal-to-noise ratios of 6.2%, 12.4% and 18.6% respectively,
and Gaussian noise with signal-to-noise ratios of 22.15% and 44.30% respectively.
The test set is kept noiseless to measure the true prediction error. As mentioned
in Section 4, to have a fair comparison all the experimental settings (training and
test set lengths, embedding dimension, etc.) are the same as in [9] and [10]. Table

CACIC 2003 - RedUNCI 494



Aggregation Algorithms for Regression 11

3 presents the corresponding results, which show that W-SECA and W-SimAnn
are among the top performers in almost all cases, with only a performance edge
in fa vor of SVM methods for the largest Gaussian noise case (we are disregarding
the CG-k result for the largest uniform noise since it seems to be abnormally
small).

Mackey-Glass Uniform Noise Gaussian Noise

Noise Level 6.20% 12.40% 18.60% 22.15% 44.30%
CG-k 0.11 0.35 0.31 - -
CG-ak 0.10 0.35 0.65 - -
BAR-k 0.13 0.32 0.51 - -
BAR-ak 0.12 0.27 0.66 - -
SVM e-ins 0.07 0.28 0.57 0.58 3.23
SVM Huber 0.13 0.38 0.71 0.58 3.23
RBF-NN 0.16 0.38 1.54 0.65 3.90
W-Bagging 0.07 0.25 0.58 0.69 4.00
W-SECA 0.07 0.25 0.53 0.66 3.67
W-SimAnn 0.08 0.24 0.55 0.57 3.78

T able3: T est set prediction errors (in units of 10�2) for the Mackey-Glass
problem using W-SECA and W-SimAnn. For comparison, we give the results of
other methods in the literature taken from [10].

5 Summary and Conclusions

We have performed a comparison of simple methods for construction of neural
net w ork ensembles with more sophisticated Boosting and SVM methods for re-
gression. In particular, we considered the W-SECA and W-SimAnn algorithms,
previously proposed by us in Refs. [6, 7], which can be implemented with an inde-
pendent (parallel) training of the ensemble members. The W-SimAnn algorithm
uses simulated annealing to minimize the error on unseen data with respect to
the n umber of training epochs for each individual ensemble member.

F rom this comparison we found that the algorithms we proposed are among
the top performers in almost all situations considered (Tables 1-3). Given this
competitive behavior of w eigh tedBagging-like algorithms, one is tempted to
speculate that, for regression, the success of Boosting ideas might no be mainly
related to the modi�cation of resampling probabilities but to the �nal error
w eighting of ensemble members.

We had previously found[6, 7] that in general W-SECA and W-SimAnn pro-
duce better results than other similar algorithms in the literature (Bagging,
NeuralBAG, Epoch). Although this holds true in several cases with more than
95% of statistical signi�cance, the performance improvement obtained depends
largely on the problem considered. The answer to the question as to whether
these performances justify the use of W-SECA and W-SimAnn instead of, for
instance, the simpler Bagging method, depends then on the concrete application.

CACIC 2003 - RedUNCI 495



12 P .M. Granitto et al.

How ev er, a priori there is always a chance that using these algorithms one might
obtain fairly large improvements. In any case, the best justi�cation is perhaps
the fact that not muc h additional computational time is required to implement
them.

References

1. L. Breiman. Bagging predictors. Machine Learning 24:123-140, 1996.
2. H. Drucker. Boosting using Neural Networks. In Combining Arti�cial Neural Nets,

Amanda J. C. Sharkey, editor, pages 51-77, Springer-Verlag, London, 1999.
3. N. Du�y and D. Helmbold. Leveraging for regression. In COLT'00, pages 208-219,

2000.
4. Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning

and an application to boosting. In Pr oceedings of the Second European Conference

on Computational Learning Theory, pages 23-37, Springer Verlag, 1995.
5. J. Friedman. Greedy function approximation: A gradient boosting machine. Tech-

nical Report, Department of Statistics, Stanford University, 1999.
6. P . M. Granitto, P. F. Verdes, H. D. Navone and H. A. Ceccatto. A late-stopping

method for optimal aggregation of neural netw orks.International Journal of Neural
Systems 11:305-310, 2001.

7. P .M. Granitto, P.F. V erdes,H.D. Na voneand H.A. Ceccatto. Aggregation Al-
gorithms for Neural Netw ork Ensemble Construction. SBRN 2002, VII Brazilian
Symposium on Neural Netw orks, Recife, Brazil, 2002.

8. K. Ikeda. Multiple valued stationarity state and its instability of the transmited
light by a ring cavity system.Opt. Commun. 30:257-261, 1979.

9. K.-R. M�uller, A. Smola, G. R�atsch,B. Sch�olkopf, J. Kohlmorgen and V. Vap-
nik. Predicting time series with support vector machines. In B. Sch�olk opf, C. J.
C. Burges and A. J. Smola, editors, A dvanc esin Kernel Methods{supp ortvector

learning, pages 243-254, Cambridge, MA: MIT Press, 1999.
10. G. R�atsch, A. Demiriz and K.P. Bennett, Sparse regression ensembles in in�nite

and �nite hypothesis spaces. Machine Learning 48(1-3):189-218, 2002.
11. A. J. C. Sharkey, editor. Combining Arti�cial Neural Nets. Springer-Verlag, Lon-

don, 1999.

CACIC 2003 - RedUNCI 496


