
The Ant Colony Metaphor in
Continuous Spaces using Boundary Search

Guillermo Leguizaḿon

Laboratorio de Investigación en Inteligencia Computacional
Universidad Nacional de San Luis

Ejército de Los Andes 950
(5700) San luis, Argentina

legui@unsl.edu.ar

Abstract

This paper presents an application of the ant colony metaphor for continuous space optimiza-
tion problems. The ant algortihm proposed works following the principle of the ant colony ap-
proach, i.e., a population of agents iteratively, cooperatively, and independently search for a so-
lution. Each ant in the distributed algorithm applies a local search operator which explores the
neighborhood region of a particular point in the search space (individual search level). The local
search operator is designed for exploring the boundary between the feasible and infeasible search
space. On the other hand, each ant obtains global information from the colony in order to exploit
the more promising regions of the search space (cooperation level). The ant colony based algo-
rithm presented here was successfully applied to two widely studied and interesting constrained
numerical optimization test cases.

keywords: ant colony optimization, evolutionary algorithms, constraint optimization problems,
boundary search.

1 Introduction

The general nonlinear programming (NLP) problem is to findx so as to

optimizef(x) x = (x1; x2; :::; xn) 2 R
n

wherex 2 F � S. The setS � R
n defines the search space and the setF � S defines afeasible

search space. The search spaceS is defined as ann-dimensional rectangle inRn (domains of variables
defined by their lower and upper bounds):

l(i) � xi � u(i) 1 � i � n

whereas the feasible setF is defined by the intersection ofS and a set of additionalm � 0 constraints:

gi(x) � 0 for j = 1; :::; q hj(x) = 0 for j = q + 1; :::; m

CACIC 2003 - RedUNCI 740

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296348866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

At any pointx 2 F , the constraintsgi that satisfygj(x) = 0 are called theactive constraints atx.

In the last few years evolutionary algorithms and ant colony optimization have been studied and found
application to numerical optimization problems. Evolutionary techniques have been widely used for
solving constrained optimization problems for which several search operators have been proposed
and investigated. However some difficulties emerge when the evolutionary algorithm is not able of
searching the boundary areas of the feasible and infeasible search space [10]. A novel approach to
avoid the above obstacle has been investigated in [11, 13, 14]. That approach which belongs to the
category of the methods based in preserving the feasibility of the solutions, incorporates operators
that search the boundary of the feasible and infeasible regions in an efficient way.
On the other hand, some few experiences on applying the ant colony optimization (ACO) model
to numerical optimization problems can be found in the literature and they are not as developed as
evolutionary techniques. The ant colony optimization model [1, 2] was initially developed fororder
based problems (e.g., the Traveling Salesman Problem, Quadratic Assignment Problem). Recent
developments [3, 4, 5, 8] include the application of the ACO model tonon ordering or subset problems
(e.g., Multiple Knapsack Problem) and continuous search space. For solving subset problems [8],
the ACO approach is applied by moving thetrail from the problems’ connections to the problems’
components. On the other hand, problems involving continuous variables and constraints were studied
in [3] where a discrete structure is considered which represents a finite set a possible directions to
direct the individual search. Thus, following one of the main ideas of the ACO approach regarding
global information, the informationtrail is laid on directions. Therefore, the agents move from the
nest (a particular set of points) to the more profitable regions in the search space taking into account
thetrail information.
This paper shows the applicability of the ACO approach for solving constrained numerical optimiza-
tion problems by combining together in one algorithm the features of the ACO approach and the
boundary operators formerly included in evolutionary algorithms —i.e., operators which consider the
boundary of the feasible and infeasible search space. The design of the ACO algorithm is based
on different works on Evolutionary Algorithms (EAs) [11, 13] incorporating special genetic opera-
tors (mutation and crossover) to search on the boundary of the feasible search space and taking into
account the active constrains of the problem.
In addition to the global information to decide which direction to follow, each agent in the ant algo-
rithm presented here uses a search operator similar to those mutation operators defined in [11, 13, 14].
Additionally two approaches are tested with respect to the neighborhood size of a particular point in
the search space.
The paper is organized as follows. The following section describes the main characteristics of the
ACO approach as well as its formulation for solving continuous space problems. Section 3 briefly
describes the main ideas behind boundary operators in evolutionary algorithms and the two test cases
considered in our experiments. Section 4 presents the ACO approach as a general technique for
searching on the boundary as well as two version of an ACO algorithm for NLP problems. Section 5
describes the experiments and results. The last section discusses the more relevant results regarding
the two ACO algorithms implemented.

2 The Ant Colony Optimization for Continuous Spaces

Ant algorithms are multi-agent systems in which the behavior of each simple agent, calledartificial
ant of ant, is inspired by the behavior of real ants. The ant colony optimization (ACO) meta-heuristic
defines a particular class of ant algorithms. Essentially, these algorithms work by matching the notion

CACIC 2003 - RedUNCI 741

of candidate solution with the route taken by an ant between two (possibly the same) places. Ants
leave atrail as they travel, and routes which correspond to good solutions will get a stronger trail
than routes which lead to poor solutions. By this way, the trail strength will affect the route taken by
future ants, i.e. previously generated solutions (routes taken by past ants) affect (via trail strength) the
solutions generated by future ants.
The traveling salesman problem (TSP) plays an important role in the ant colony optimization because
it was the first problem to be attacked by considering the above principles concerning the behavior or
real ants. An extensive source of information related to ACO meta-heuristic and its applications can
be found in [6].
Another interesting application of the ACO approach is concerned with numerical optimization [3, 5].
In order to apply an ACO algorithm an strategy is designed for modeling a continuous nest neighbor-
hood with a discrete structure as appearing in the ACO model either for ordering or subset problems.
That strategy determines a setfd1; d2; :::; dkg, wherek (number of directions) is a parameter of the
method (k = 4 in Fig. 1). Eachdi is represented as a vector (or point) in an-dimensional search
space.

d4

d2
d3

d1

x

y

Figure 1: Nest with four points

The structure of the ACO algorithm [3] is showed in Figure 2. Initially, the nest structure is initial-
ized by generating uniformly random starting vectors which represent search directions as appear in
Figure 1. Next, a valueRi (for 1 � i � n) is defined in order to establish a search radius around each
dimension of the points belonging to the nest.Ri values are subject to the bounds of each variable of
the problem. The search radius determines the maximum extent of the subspace (neighborhood) to
be considered in eachcycle of the algorithm. Thus,initialize A(t) allocates ants on various
directions;evaluate A(t) is a call to the objective function for all ants;update trail A(t)
is in charge of, proportionally, add a trail quantity to the particular directions the ants have selected
according to their fitness. Then,allocate ants A(t) allocates the ants by selecting directions
using a Roulette Wheel selection on the trail quantity and making a random step from the location of
the best previous ants that have selected the same direction and finally,evaporate A(t) decre-
ments the trail on each direction. The random step can be implemented as

�Ri
(t) = Ri:(1� r(1�t=T)

b

) (1)

whereRi is a problem dependent fixed parameter;r is a random number from[0::1]; T is the maximal
cycle number, andb is a system parameter determining the degree of non-uniformity.�Ri

(t) returns a
value in the range[0::Ri] such that the probability of�Ri

(t) being close to0 increases ast increases.
Figure 3 represents the evolution of a two dimensional vectorpi(t) on directioni for t 2 f0; 1; 2; 3; 4g.
For simplicity let’s assume thatR1 = R2 = R. Thus, an-dimensional rectangle represents the
neighborhood of a particular point. According to the structure of the ACO algorithm, at the first cycle,
a number of ants are allocated on thek directions—i.e.; the ants that were allocated on directioni at

CACIC 2003 - RedUNCI 742

procedure ACO Algorithm
begin

t = 0
initializeA(t)
evaluateA(t)
while (not terminationcondition) do
begin

t = t + 1
updatetrail A(t)
sendantsA(t)
evaluateA(t)
evaporateA(t)

end
end

Figure 2: Structure of the ACO algorithm for continuous problems

time0 will start the search from vectorpi(0). In Figure 3,pi(0) is the starting vector on directioni that
belong to the nest structure,pi(1) is the best point found by the ants allocated on directioni regarding
the search radius�R(0)

1. As t get increased, new regions of the search space are explored:pi(2),
pi(3), pi(4) and so on. During the run if certain direction do not result in any improvement, they do
no participate in the trail adding process and the reverse (evaporation) process diverts attention away
from them. This can be thought of as an analogy of a food source exhausting.

This ant colony model comprises at least two main levels of abstractions:

1. individual search: describes the employed individual search strategy—i.e., stochastic hill-
climbing, steepest descent, line search, etc.

2. cooperation: involves the information interchange among the agents which consists of a joint
search effort towards certain directions. That information is represented by� , where�i is the

1Note that�R(t) is not a monotonically decreasing value (See Eq. 1)

i
p(0)

p(3)
i

p(2)
i

p(1)
i

p(4)
i

(0)
∆

R

∆
R (1)

∆
R (2)

∆
R (3)

i

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

Figure 3: Evolved points and their respective neighborhood area

CACIC 2003 - RedUNCI 743

amount of trail laid on directioni. During the search, before starting the individual local search,
the agents select randomly a direction to search with probability:

Pi(t) =
[�i(t)]

� � [�i(t)]�P
k[�k(t)]� � [�k(t)]�

(2)

�i is either 1 (as used in our experiments) or incorporates some problem knowledge1, and� and
� define a trade-off between the ant colony dynamic and heuristic value.

Related to the variation of the amount of the trail on each direction (�i), the ACO algo-
rithm update�i by (1) �i = �i + ��i in update_trail A(t) and (2) �i = � � �i in
evaporate_trail A(t), where��i is a quantity proportional to the fitness of the best
ant on directioni and(1� �) is the coefficient of evaporation.

3 Boundary Search Operators in Evolutionary Algorithms

Evolutionary algorithms for solving general constrained optimization problems involve some type of
constraint handling techniques regarding the feasible and infeasible search space [9]. These tech-
niques are concerned with the potential generation of infeasible solutions during the search. Some
approaches include several instances of penalization and repair algorithms. Alternatively it is possible
to use decoders in order to drive the search inside a feasible search space —i.e., the decoder search
space. More recently a method calledstrategic oscillation [9, 12] was developed in conjunction with
the evolutionary strategyscatter search. This method is a basic strategy for exploring the bound-
ary between feasible and infeasible parts of the search space. It proceeds as follows: approaches
and crosses the feasibility boundary by a design that is implemented either by adaptive penalties and
”inducements”. In the context of constrained parameter optimization, an analogous approach was pro-
posed in evolutionary algorithms by applying special operators designed for searching the boundary
between the feasible search space [11, 13, 14]. A useful property of the boundary search space is that
it is closed under the application of the boundary operators. Additionally it is worth remarking that the
initial population is only composed of individuals laying on the boundary search space. Therefore all
the potential individuals to be generated will lay on the boundary as well. In regards of this boundary
approach, we describe in the following two examples of numerical constrained optimization problems
for which evolutionary techniques were applied.
The first test case is an interesting constrained numerical optimization problem proposed by Keane [7]
which consists in maximizing the function:

FK(x) = j
Pn

i=1 cos
4(xi)� 2

Qn
i=1 cos

2(xi)qPn
i=1 ix

2
i

j;

with
Qn

i=1 xi � 0:75,
Pn

i=1 � 7:5n, and0 � xi � 10 for 1 � i � n.
FunctionFK is nonlinear and its global maximum is unknown, lying somewhere near the origin. The
problem has one non linear constraint and one linear constraint; the last one is inactive around the
origin.

In the following some of the main components of the evolutionary algorithm designed for searching
on the boundary feasible search space are briefly described.

1For some continuous domains gradient information could be used if available.

CACIC 2003 - RedUNCI 744

� Initialization: each solutionx = (x1; :::; xn) in the initial population is obtained as follows: ran-
domly choose a positive variable forxi and use its inverse as a variable forxi+1. The last variable
is either0:75 (whenn is odd), or is multiplied by0:75 (if n is even).

� Crossover: select two parentsx andy. The offspringz is obtained by:

zi = x�i y
(1��)
i i 2 [1; n], with � randomly chosen in[0; 1]

This operator is calledgeometrical crossover.

� Mutation: pick two variables randomly and then multiplying one by a random factorq and the other
by 1

q
(restrictq respect to the bounds on the variables).

The second test case [11] correspond to the following optimization problem:

FS(x) = (
p
n)n �

nY
i=1

xi ;

where
Pn

i=1 x
2
i = 1 and 0 � xi � 1 for 1 � i � n. The function has a global solution at

(x1; x2; :::; xn) = (1p
n
; :::; 1p

n
) and the value of the function on this point is1.

In the following some of the main components of the evolutionary algorithm designed for searching
on the boundary feasible search space forFS are briefly described.

� Initialization: each solutionx = (x1; :::; xn) of the initial population is obtained by generatingn

variablesyi and calculatings =
qPn

i=1 y
2
i . Thenxi = yi=s for i 2 [1; n].

� Crossover: select two parentsx andy. The offspringz is obtained by:

zi =
q
�x2i + (1� �)y2i i 2 [1; n], with � randomly chosen in[0; 1]

This operator is calledsphere crossover.

� Mutation: pick two different variables randomly from solutionx. Let’s sayx i andxj and a random
numberp 2 (0; 1)

xi ! p � xi and xj ! q � xj where q =
q
(xi
xj
)2(1� p2) + 1

4 Boundary Search Operators in the ACO Algorithm

It is common situation for many constrained optimization problems that some constraints are active
at the target global optimum and this optimum lies on the boundary of the feasible search space. Our
proposal towards to redesign some components of the ACO algorithm for continuous spaces as was
presented in Section 2 in order to guide the search around the boundary of the feasible and infeasible
search space. In this new version of the ACO algorithm the nest must consist of a set of points either
very close the boundary or just on the boundary where some or all constraints of the problem are ac-
tive. However, the way in which we obtain those points could be strongly determined by the problem
at hand as well as the way the algorithm will explore the region in order to keep the new generated
points as close as possible to the boundary during the individual search stage. Therefore, an ACO

CACIC 2003 - RedUNCI 745

algorithm designed for searching on the boundary search space have to include an appropriate pro-
cess of generation of the initial points as well as a special individual search technique—i.e., random
step (Eq. 1) must be changed accordingly. Recent experiments from the community of evolutionary
computation showed outstanding results [11, 13, 14] by applying evolutionary algorithms which re-
stricted the search of the solutions to the boundary of the feasible part of the search space. In order
to fulfill that requirement some special evolution operators were designed such as the geometrical
and sphere crossovers and two specific mutation operators. In reference to our goal we design a new
version of the ACO algorithm for solving the two test casesFK andFS described in Section 3. This
new version of the ACO algorithm based in earlier works on boundary search [11, 13, 14] satisfies
the requirements above mentioned concerning the initialization process and individual search.
In addition to the ACO algorithm based in boundary operators, we also implemented an ACO algo-
rithm based in the approach proposed in [5] for constrained optimization in order to compare our
proposal with an ACO algorithm without using any boundary operator. In the following, their respec-
tive implementations will be referred as AC0-B and ACO-nonB.

4.1 ACO-nonB algorithm

Related to this article it is important to consider the ACO algorithm [5] for constrained optimization
problems in which is included a constraint handling technique based on the distance of a solution
from the feasible search space —i.e., the smaller the distance, the more acceptable the solution is.
The acceptability of constraint violation is implemented as a linear function of the ratio of the feasible
region to the overall search space.
The design of ACO-nonB algorithm is based on the ACO algorithm described in [5]. In the following
the main characteristics concerning the handling constraints approach are explained.
For the two test cases considered in this paper ACO-nonB algorithm implements (at theindividual
search level) a method based inpenalty functions which takes into account the violation of constraints.
Thus, for test caseFK, an infeasible solution is penalized by decreasing the objective valueFK(x)
by a ratep = 0:75=(0:75 � Qn

i=1 xi). Therefore, the smaller the value (
Qn

i=1 xi), the bigger the
penalization applied to the solution.
On the other hand, for test caseFS, the penalization method includesdead penalization for that
solutions whichj1�Pn

i=1 x
2
i j > Ia

2
. Otherwise, the solution is penalized by decreasing the objective

valueFS(x) by a ratej1 � Pn
i=1 x

2
i j=Ia. The parameterIa determines the interval of acceptable

solutions with respect to their objective value. The initial value ofIa is established experimentally
and is decreased as a function of the elapsed cycles of the algorithm. At the end of the runningIa is
close to zero —i.e., only feasible solutions are accepted at this stage. In our experiments,Ia was set
to 1.
For both test cases considered, the initialization process proceeds in a similar way. The nest is a set
of points randomly generated subject to the interval of the respective problem variables. Thus, for
functionFK ; xi 2 [0; 10] and, for functionFS; xi 2 [0; 1].

4.2 ACO-B algorithm

The ACO-B algorithm forFK proceeds as follows. Before sending the ants on different directions,
initialize A(t) determines the nest in the search space. That nest is a set of points which lays
on the boundary of the feasible search space. The process to obtain the nest (the initial solutions) is
the same as the process used in the evolutionary algorithm described in section 3 corresponding to
functionFK. Randomly choose a positive variable forxi and use its inverse as a variable forxi+1,

CACIC 2003 - RedUNCI 746

the last variable is either0:75 (whenn is odd), or is multiplied by0:75 (if n is even). Theindividual
search level for functionFK is implemented as follows: the parametersRi = R = 10 for i = 1; ::; n
since0 � xi � 10, therefore�R(t) 2 [0; 10]. Given a solutionx = (x1; :::; xi; :::; xj; :::; xn), we
randomly choose two variablesi and j. Let’s assume thatxi < xj (for xi � xj we proceed in a
similar way). Next we obtain a valueq 2 (maxfqi; qjg; 1) whereqi andqj are chosen such as they
satisfy the following:

xj
qj

= Vj andVj = minfxj +�R(t); 10g (3)

xi � qi = Vi andVi = maxf0; xi ��R(t)g (4)

Thus, the new solution, which also lies on the boundary, is obtained as:

x
0 = (x1; :::; xi � q; :::; xj

q
; :::; xn)

wherexi � q � Vi and xj
q
� Vj.

For the test caseFS the ACO-B algorithm proceeds as before, except that thenest is determined by
generating a set of points where each one of them is obtained following the initialization process
described in Section 3 regarding the evolutionary algorithm for this function.
Theindividual search level for functionFS is implemented as follows: the parametersRi = R = 1 for
i = 1; ::; n since0 � xi � 1, therefore�R(t) 2 [0; 1]. Given a solutionx = (x1; :::; xi; :::; xj; :::; xn),
we randomly choose two variablesi andj. First, according to the mutation operator forFS (Section 3)
we have to choose a valuep 2 (0; 1) and aq value depending onp such asq =

q
(xi
xj
)2(1� p2) + 1.

By this approach we obtain a feasible solution on the boundary by changingxi = xi �p andxj = xj �q.
However, as we did for functionFK , we have to consider the actual value of�R(t) in the process
of finding the appropriate interval forp and hence the value forq. First, two valuesp1 andp2 are
obtained such as:

xi � p1 = Vi andVi = maxf0; xi ��R(t)g (5)

and

xj � q = xj �
s
(
xi
xj

)2(1� p22) + 1 = Vj whereVj = minfxj +�R(t); 1g (6)

then we set a random valuep 2 (maxfp1; p2g; 1) from which we obtain the respectiveq value. Then,
xi � p � Vi andxj � q � Vj.

non-feasible region

feasible region

Figure 4: The path is on the boundary of the feasible region

Figure 4 shows a possible path towards to a particular point on boundary of the feasible search space.
That path could represent a sequence of feasible points obtained in different cycles of the ACO-B
algorithm according to the special boundary operators defined for each test case.

CACIC 2003 - RedUNCI 747

For both functions, we consider two approaches concerning the value of �R(t)
1 for each t. In the first

one, called dynamic approach, �R(t) varies according to Eq.1. In the second approach, called fixed,
the value of �R(t) is kept constant through the whole running of the algorithm —i.e., �R(t) = R for
t = 0; : : : ; T .

5 Experiments and Results

The remaining parameters of ACO-nonB and ACO-B algorithms were set to the following values:
� = 1, �i(t) = 1, for all i and t, i.e., no local information available hence is � not considered (See
Eq. 2); � = 0:8; #ants=20, 50, and 100 released always on 10 alternative directions. For each test case
the algorithm run 20 times with different random seed values. Finally, the number of cycles was set
to 10; 000 and 30; 000.
The columns in each Table showed represent: n, the number of variables involved in the problem;
BK, the Best Known (for FK) and OV , the optimal value (for FS) ; the best found value (BF),
the average out of 20 runs (avg) and the respective standard deviation (stdv). All the tables, except
Tables 1 and 2, includes columns for the dynamic and fixed radius approach concerning the boundary
search.
Table 1 shows the results obtained by AC0-nonB with 20 ants in 10; 000 cycles for test cases FS and
FK . It can be observed that ACO-nonB performed better on function FS than FK . Also it is important
to mention that all solutions found for both test cases were feasible. Further experiments showed that
no significant improvement on the performance of ACO-nonB could be reached after 30; 000 cycles.
However, by incrementing

n
FK FS

BK BF avg stdv OV BF avg stdv
20 0.8035530 0.7773011 0.7155215 0.017 1 0.9499982 0.9117287 0.03
50 0.8331937 0.7479732 0.7001415 0.013 1 0.9544134 0.9280344 0.015

100 NA 0.7307187 0.6659797 0.017 1 0.9005130 0.8466980 0.037

Table 1: ACO-nonB algorithm runs for 10; 000 cycles (function FK and FS). NA: Non Available.

the number of ants (50 and 100) with 10; 000 cycles, an improvement on the performance of the
algorithm was obtained. For example, the best values for FK by using 50 and 100 ants are showed
in Table2. For function FS no further improvement was achieved and the respective results are not
showed.

#ants
n (the number of variables)

20 50 100
50 0.7869859 0.8094464 0.8020497

100 0.7968856 0.8252584 0.8284985

Table 2: Improved performance of ACO-nonB algorithm with incremental number of ants.

On the other hand, Tables 3 and 5 show the obtained results for functions FK and FS respectively by
running ACO-B algorithm for 10; 000 cycles.

1
R = 10 for FK and R = 1 for FS .

CACIC 2003 - RedUNCI 748

n BK
Dynamic Ratio Fixed Ratio

BF avg stdv BF avg stdv
20 0.8035530 0.8036187 0.8003203 0.005 0.8036187 0.8033460 0.001
50 0.8331937 0.8352427 0.8335705 0.001 0.8352615 0.8332281 0.002

100 NA 0.8455312 0.8427354 0.002 0.8456039 0.8416628 0.002

Table 3: ACO-B algorithm runs for 10; 000 cycles (function FK). NA: Non Available.

The best found values for function FK (Table 3) with n = 20; 50 are better than the best obtained
values reported in [13]. Considering the fixed against dynamic search ratio, we can observe that when
n = 20 both of them get the same best results (0:8036187) . However, when the number of variables
get increased (n = 50 and n = 100), the fixed approach performed a little bit better. Additional
experiments by running the ACO-B algorithm for 30; 000 cycles yield some improvements regarding
the dynamic approach for n = 50 and n = 100 variables (Table 4).

n Dynamic Ratio Fixed Ratio
20 0.8036190 0.8036187
50 0.8352605 0.8352622

100 0.8456782 0.8456113

Table 4: Some improvements obtained after 30; 000 cycles for function Fk

Concerning function FS , we observe (Table 5) that either using the dynamic or fixed radius, ACO-B
algorithm get very good results. However its performance get a little bit decreased as the number of
variables of the problem get increased (n = 50; 100). Also it is remarkable the robustness of ACO-B
algorithm since the standard deviation is close to 0 for this test case.

n OV
Dynamic Ratio Fixed Ratio

BF avg stdv BF avg stdv
20 1.0 0.9999902 0.9999779 84� 10�7 0.9999995 0.9999989 5� 10�7

50 1.0 0.9997736 0.9996560 786� 10�7 0.9999890 0.9999794 65� 10�7

100 1.0 0.9984738 0.9975221 4740� 10�7 0.9998920 0.9998246 415� 10�7

Table 5: ACO-B algorithm runs for 10; 000 cycles (function FS)

Similar experiments involving additional number of cycles yielded improved results for function FS .
Table 6 shows how close to the optimum are the best values obtained by ACO-B algorithm.

n Dynamic Ratio Fixed Ratio
20 0.9999990 0.9999999
50 0.9999782 0.9999985

100 0.9997975 0.9999863

Table 6: Improved results for function FS (30; 000 cycles)

It is important to mention that when ACO-B algorithm uses an increased number of ants, no additional
improvements were obtained.

CACIC 2003 - RedUNCI 749

Additionally, in Fig.5 we show the convergence of function FS (best objective value in each cycle is
plotted) from the application of ACO-nonB and ACO-B respectively. It can be observed in the curve
for ACO-nonB the oscillation of the objective value around the optimal one. Many of those objetive
values correspond to infeasible solutions whereas for ACO-B only feasible solutions are evolved and
getting the best value much earlier than the best value obtained by the ACO-nonB version.

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
e
s
t

F
o
u
n
d

Cycles

ACO-B
ACO-nonB

Optimum

Figure 5: Convergence of ACO-B and ACO-nonB for FS function.

6 Conclusions

This paper presented an alternative perspective of the ACO approach for continuous constrained
spaces based on boundary search. The ACO-B algorithm algorithm outperformed the best values
reported for Keane’s function (n = 20, best known: 0:803553 - n = 50, best known: 0:8331937)
and performed very well on function FS . Also, ACO-B showed the importance of boundary opera-
tors when is compared against the results obtained by ACO-nonB, i.e., the approach which penalize
the infeasible solutions. However, ACO-nonB algorithm performed well for function FS , but not for
function FK for which was necessary to increment the number of ants.
Our experiments showed the usefulness of the boundary mutation operators taken from the evolution-
ary techniques in the context of the ACO algorithms. These operators performed very well on the two
test cases considered, particularly on function FK for which new best known values were found.
The performance of ACO-B let us consider the possibility of defining very simple search operators to
be applied in the context of the ACO algorithms for constrained numerical optimization problems.

References

[1] Dorigo M., Di Caro G., Gambardella, L.M. (1999) “Ant Algorithms for Discrete Optimization” .
Artificial Life, 5(2):137-172 (Also available as Tech. Rep. IRIDIA/98-10, Universitè Libre de
Bruxelles, Belgium)

[2] Dorigo M. and G. Di Caro (1999). “The Ant Colony Optimization Meta-Heuristic” . In D. Corne,
M. Dorigo and F. Glover (eds), New Ideas in Optimization. McGraw-Hill, 1999. (Also available
as: Tech. Rep. IRIDIA/99-1, Université Libre de Bruxelles, Belgium.)

[3] Bilchev, G. & Parmee, I.C. (1995). “The Ant Colony Metaphor for Searching Continuous Design
Spaces” . Lectures Notes in Computer Science I993.

CACIC 2003 - RedUNCI 750

[4] Bilchev, G. & Parmee, I.C. (1995). “Natural Self-organizing Systems” . Plymounth Engineering
Design Centre Internal Report, PEDC-03-95.

[5] Bilchev, G. & Parmee, I.C. (1996). “Constrained Optimisation with an Ant Colony Search
Model”

[6] D. Cornea, M. Dorigo, and F. Glover (1999). “New Ideas in Optimization” . McGraw-Hill Inter-
national.

[7] Keane, A. (1994). “Genetic Algorithms Digest” , May 19 1994. v8n16.

[8] Leguizamón, G. & Michalewicz, Z. (1999). “A New Version of the Ant System for Subset
Problems” . Proceeding of the Congress on Evolutionary Computation. Washington DC, USA.
pp 1459-1464.

[9] Michalewicz, Z. (1996). “Genetic Algorithms + Data Structures = Evolution Programs” . 3rd
edition, Springer, Berlin.

[10] Michalewicz, Z. & Schoenauer, M. (1996). “Evolutionary Algorithms for Constrained Parameter
Optimization” . Evolutionary Computation 4(1):1-32.

[11] Michalewicz, Z., Nazhiyath, G. & Michalewicz, M. (1996). “A Note on Usefulness of Geo-
metrical Crossover for Numerical Optimization Problems” . Proceedings of the 5th Annual Con-
ference on Evolutionary Programming, San Diego, CA, 29 February - 3 March. MIT Press,
Cambridge, MA, 1996, pp.305-312.

[12] Reeves, C. (1993). “Modern Heuristic Techniques for Combinatorial Optimization Problems” .
Oxford, Blackwell Scientific Publications.

[13] Schoenauer, M. & Michalewicz, Z. (1996). “Evolutionary Computation at the Edge of Feasi-
bility” . Proceedings of the 4th Parallel Problem Solving from Nature, H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel (Editors), Berlin, September 22-27, 1996 Springer-Verlag,
Lecture Notes in Computer Science, Vol.1141, pp.245-254.

[14] Schoenauer, M. & Michalewicz, Z. (1998). “Sphere Operators and Their Applicability for Con-
strained Parameter Optimization Problems” . Evolutionary Programming 1998: 241-250.

CACIC 2003 - RedUNCI 751

