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ABSTRACT 
 
Non-stationary, or dynamic, problems change over time. There exist a variety of forms of 
dynamism. The concept of dynamic environments in the context of this paper means that the fitness 
landscape changes during the run of an evolutionary algorithm. 
Genetic diversity is crucial to provide the necessary adaptability of the algorithm to unexpected 
changes. 
Two key concepts to maintain genetic diversity in the population are incorporated to the algorithm 
and proposed here: macromutation operators and random immigrants. 
The algorithm was tested on a set of dynamic testing functions provided by a dynamic fitness 
problem generator. The main goal was to determine the algorithm ability to face changes and 
dimensional or multimodal scalability in the functions. 
The effectiveness and limitations of the proposed algorithm in diverse scenarios of a dynamic 
environment is discussed from results empirically obtained. 
 
Keywords: Evolutionary computation, dynamic fitness landscape, macromutation, random 
inmigrants, multi-modal optimization. 
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1. INTRODUCTION 
  
In general the conditions of an optimization problem changes by one of the following reasons or a 
combination of both [1]: 1) The objective function changes itself, 2) The constraints change. A 
change in the objective function appears when the purpose of the problem changes. Here  conditions 
which were considered desirable before can turn out to be undesirable now and vice versa. Changes 
in constraints, which modify feasibility of solutions, are related to resources and their availability. 
Changes can be small or big, soft or abrupt, chaotic, etc. When changes are big, abrupt or chaotic 
the similarity between solutions found so far and the new ones can be worthless. Even under these 
hard environments Evolutionary Computation (EC) offers advantages, which are absent in other 
heuristics when searching for solutions to non-stationary problems. The main advantage relies in the 
fact that Evolutionary Algorithms (EAs) keep a population of solutions. Consequently, facing the 
change, they allow moving from a solution to another one to determine if any of them are of merit 
to continue the search from them instead of from scratch [2]. Goldberg  and Smith [3], Cobb[4] and 
Grefenstette [5] initiated the research related to the behaviour of EAS on dynamic fitness functions 
between 1987 and 1992. Recently the interest in this area was dramatically incremented [6], [7], [8], 
[9], [10], [11], [12], [13], [14], and [15]. The following sections are organized as follows. Section 2 
presents a definition of dynamic environments studied in this work. Section 3 describes the dynamic 
test functions used. Section 4 describes the EA. In section 5 the experiments performed are 
described.  In section 6 results are discussed and finally this document shows our conclusions, 
current and future work. 
 
2. DYNAMIC FITNESS PROBLEM DEFINITION 
  
A general definition, which describes and characterizes a dynamic fitness function, is introduced 
here. The approach we follow assumes that each dynamic function consists of a base static function 
and a sequence of dynamic functions obtained from the base function and the application of a set of 
dynamic rules.  
 
Definition 1: 
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where )(0 xfb r  is the base static function with m possible features to be modified. 
Function gt is a function having as arguments the dynamic fitness function at time t-1, a set cht of all 
possible changes to be applied to that function at time t and a given severity of the change, and 
returns a new fitness function at time t. 
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Definition 2: Function gt is more precisely defined as follows: 
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is an ordered set of size mxn of all possible changes at time t. When building this set, ci indicates 
which function characteristic changes and FLj indicates which part of the DFt-1 landscape will be 
modified within the ith characteristic. 
 
The second argument of apply_changes_on_DFt-1, L is a binary vector of length mxn, which 
depending on st indicates which members of cht are selected and which are not selected to modify 
DF. 
 
3. DYNAMIC TESTING FUNCTIONS 
 
In this section we will see that the functions provided by the Test problem Generator [16] belong to 
the dynamic functions defined in ( I ). 
In this case we have: 

The dynamic function DFt defined as in ( I ) with the base static function defined as:  
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which specifies a “field of cones”, where k indicates the number of cones in the environment and 
each cone is independently specified by its location (x1i , x2i , …, xni), its height Hi, and its slope Ri. 
The components of the vector defining the cone location are xij ∈  [-1,1]. 
Each of these cones is combined together by means of the max function. Each time it is called the 
generator creates a randomly generated morphology. The user specifies the range of random values 
for the height, slope and location of cones: 
Hi ∈  [Hbase, Hbase + Hrange], Ri ∈  [Rbase, Rbase + Rrange] and xij ∈  [-1,1]. 
 
In this case, when building the set cht of all possible changes, a characteristic ci ∈  {height, slope, 
location} (m = 3) and FLj indicates which of the k cones of the DFt-1 landscape will be modified 
within the ith characteristic. Consequently, when apply_changes_on_DFt-1operates, the 
corresponding modifications in DF will be done only for those characteristics in the cones where 
Lj+k(i-1) = 1, in  the binary vector L, for 1 ≤  i ≤ m, 1 ≤ j ≤ k. 
 
In this way we can see that the generator allows changing height, slope and location of one or more 
cones in the field of cones, which represents the morphology of the fitness landscape. 
 

.   time theand  vector a space, searching  the NtRxR nn ∈∈=Ψ r
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The severity of changes has many degrees, such that degree 1.0 corresponds to soft and/or small 
changes and degree 4.0 to chaotic changes. The degree of severity is calculated by using the logistic 
function: 

)1( 11 −− −∗∗== ppp
t YYAYs  

where A is a constant indicating  the degree of severity of the characteristic (height, slope, or 
location) that will be modified and Yp is the value of the logistic function at iteration p. For more 
details see [16]. 
 
4.  EVOLUTIONARY ALGORITHM 
 
We chose an evolutionary algorithm which combines and exploit various forms of macro-mutation  
similar to both, the hyper-mutation  and random immigrants initially designed by Grefenstette [5]. 
 
4.1. REPRESENTATION 
 
The population P is composed of a constant number N of chromosomes. Each individual consists of  
a  single chromosome, where each gene is a real value in the interval [-1.0,1.0] representing a 
coordinate in the search space. That is, the ith individual in the population P is represented by the 
chromosome: 

Pi = 〈  xi1, xi2, …, xil〉  
 
where xij  denotes the jth coordinate of the ith individual with j = 1,…,l and l is the chromosome 
length. 
 
4.2. OPERATORS 
 
Conventional operators: 
 
Selection: Couples of parents for the mating pool are selected by means of proportional selection. 
 
Recombination:  The conventional one point crossover is used to exchange genetic material 
between parents. The operator is applied with a Pcross probability. 
 
Mutation:  Uniform mutation is used and it is applied with a Pmut probability. When an individual 
undergoes mutation, each gene has exactly the same chance of undergoing mutation. As a result the 
mutated gene has a new allele value randomly chosen from the domain of the corresponding 
parameter (vector component). 
 
Specialized operators for macromutation: 
 
Recrudescence: This operator increments the probabilities of undergoing recombination and/or 
mutation for a part of the population. It is applied in every generation with a probability Precru and 
produces a radical genotypic reorganization on the individuals where it is applied. These individuals 
are selected randomly with uniform probability. 
 
Crisis: Acts as the recrudescence operator but it is applied on the whole population at determined 
intervals during the initial stages of the evolution. 
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Random immigrants: A percentage z% of the population is replaced by individuals randomly 
generated. 
 
4.3. EVOLUTIONARY ALGORITHM PSEUDOCODE 
 
The structure of the proposed evolutionary algorithms follows: 
 
 

0.   t = 0  /* initial generation */ 
1. Generate fbt function and set DFt = fbt 
2. Initialise Pt /* initial population */ 
3. Evaluate Pt  
4. while (actual_number-changes < =  total_number_changes) do 
5.  { 
6.     t = t + 1 
7.     if (crisis) and (t < number_gen_with_crisis) then 
8.         Apply_crisis_operator 
9.     Generate next population P’t using traditional operators and recrudecence if appropiate 
10.     Evaluate P’t 
11.     Calculate _statistics of  P’t 
12.      Remember_the_best_of_generation    /* elitism */ 
13.      if (function_changes) then 
14.     { 
15.         Store_statistical_report 
16.         Build_vector_L 
17.         Apply_changes_on_DFt-1(ch, L) and obtain new DFt 
18.     } 
19.     if (occured_changes) then 
20.     {  Evaluate P’t with new DFt 
21.         Calculate _statistics of  P’t 
22.         Remember_the_best_of_generation    /* elitism */ 
23.         Apply_crisis_operator 
24.      } 
25.      if (finish_apply_crisis) then 
26.      { 
27.          apply_random_inmigrants_operator 
28.          Evaluate P’t 
29.          Calculate _statistics of  P’t 
30.          Remember_the_best_of_generation    /* elitism */ 
31.       } 
32.          Let Pt = P’t 
33.  }            /* end while */ 
34. Report_ statistics 

 
In line 13, function_changes is responsible to detect if a change in dynamic fitness function must 
occur. In our case changes occur at constant intervals, then this function only verifies if the 
generation number corresponds to one where the change must occurs.  
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If a change must occur we store in the L vector what changes are to be done and in which cones on 
the landscape to apply them (see line 16). Then the apply_changes function obtains a new dynamic 
fitness function in line 17. 
In the line 22, occured_function tests if a change effectively had occurred, in which case the 
application of macromutation operators creates the necessary genetic diversity. Then a new 
generation begins and so on, until the end condition is reached. 
 
5. EXPERIMENTS DESCRIPTION 
 
5.1. PARAMETERS OF THE EVOLUTIONARY ALGORITHM 
 
The parameter settings for the EA remain fixed throughout all experiments and all scenarios, and 
were determined as the best after some initial trials: 
 
The population size |P| was set to 100 individuals. Pcross and Pmut were fixed at 0.25 and 0.5, 
respectively. For recrudescence, Precru was set to 0.2, and the augmented probabilities of crossover 
and mutation were fixed at 0.5 and 0.8, respectively. The crisis operator is applied to the 10% of the 
number of generation, between two consecutive changes in the environment. The percentage of 
random immigrants was fixed at 30% of the population. Immigrants are inserted when a change  
was detected and after the application of the crisis operator. This decision prevents that new 
immigrants be affected by the crisis operator. The individuals to be replaced by immigrants are 
randomly selected with equal probability.  A number of experiments were designed differing in the 
function selected and the changes to perform on it. For each of these experiments 30 runs were 
performed with distinct initial population. Values in tables of section 6 are mean values. 
 
5.2. PARAMETERS OF THE FUNCTION GENERATOR 
 
Table 1 shows the parameter settings for the generator for all functions. 
 

Hbase Hrange Rbase Rrange A 
30 70 1 12 3.3 

                    
  
 
The constant A is used by the logistic function to determine the change severity. The value chosen 
for A creates a severity of degree between median and large (near to the upper limit of 4.0 required 
by the simulator). 
 
We worked on 5 different functions whose features of dimensionality and multimodality (number  
of cones) are indicated in table 2. 
 

Function dim-#cones dim-#cones dim-#cones dim-#cones dim-#cones dim-#cones 
f1 2-5 2-30 5-5 5-30 10-5 10-30 
f2 2-5 2-30 5-5 5-30 10-5 10-30 
f3 2-5 2-30 5-5 5-30 10-5 10-30 
f4 2-5 2-30 5-5 5-30 10-5 10-30 
f5 2-5 2-30 5-5 5-30 10-5 10-30 

       

Table 1. Parameter Settings for the Generator 

Table 2. Functions used in the experiments 
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Because the generator randomly creates the functions, we adopted the following working 
methodology. For example for function f1 (see table 3), first we select heights (H) and slopes (R) 
with the greatest multimodality. C indicates the cone identifier. 
 

 
C H R C H R C H R 
1 0.000000 0.000000  11 61.556893 5.811603 21 86.834253 6.018287 
2 39.254461 13.425523    12 93.957383 2.548734 22 46.736654 7.188162 
 3 88.798945 2.201534 13 60.579642 5.152966  23 48.702074 10.149014 
 4 75.510408 3.834928 14 89.383742 8.525519 24 36.545954 11.617667 
 5 30.118679 12.300053 15 46.533252 10.423104 25 91.210267 2.415192 
 6 57.280549 13.325354 16 35.963361 2.647181 26 54.656304 3.071827 
 7 90.701662 12.850853 17 84.346277 5.990322 27 39.453273 5.902942 
 8 69.366403 12.017908 18 57.764563 3.513832 28 71.159464 5.190918 
 9 83.719877 6.973150 19 31.260441 13.380469 29 86.679211 8.862785 

 10 99.706369 2.875522 20 32.983730 12.417660 30 49.167685 7.235978 
 

 
 
A similar table, not shown here for space limitations, is built for the 10 coordinates of each cone 
(the greatest dimensionality) the data associated with the experiments are available for any 
interested reader. 
 
When scalability is to be modified, to work with lower dimensions and lesser number of cones we 
obtain the required values from these tables. For example if we wish to work with f1 for 2-5, the 
heights and slopes of the first five cones are retrieved from the tables only for the first two 
dimensions of the tables of coordinates. Analogously we proceeded with the remaining functions. 
 
This working methodology allowed us to study the adaptability of the algorithm to changes and its 
behaviour when facing scalability in space dimension and number of cones. 
Table 4 shows how, depending on dimensionality and multimodality, the intervals between changes 
were fixed for all functions, the main goal here was to locate the optimum with an acceptable error. 
 
 

dim-#cones Generations between changes 
2-5 350 
2-30 900 
5-5 1000 
5-30 3500 
10-5 5000 
10-30 10000 

 
 

 
Each time the algorithm run as many generations as changes were desired to make. For all 
experiments we fixed at 4 the number of changes. For example, for each of the functions with 
dimensionalty-multimodality equal to 2-5 a total of 1400 generations were needed. 
 
 
 
 

Table 3. Initial Heights and Slopes for  f1b
0 

Table 4. Change intervals. 
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5.3. TYPES OF CHANGE 
 
Four scenarios were designed, each representing a type of change. 
 
Scenario 1: Change in the height of all cones. 
Scenario 2: Change in the height of the cone containing the optimum value. 
Scenario 3: Change in the location of all cones. 
Scenario 4: Change in the location of the cone containing the optimum value. 
 
Also, experimentation was conducted with changes in the slope of one and all cones, but results on 
these scenarios were very similar to those of scenarios 3 and 4. For this reason they are not shown 
here. 
 
5.4. PERFORMANCE METRICS 
 
To measure precision and adaptability of the algorithm the following metrics were used: 
 
Precision [17]: It is a metric specifically developed for non-stationary environments. It measures 
the average difference, between the best individual in the population at the generation “just before 
the change” and the optimal value, averaged to the number of changes. More precisely: 
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where: 
 
K is the number of changes suffered by the fitness function. 
opt is the mean value of optimal values found in each change. 
bi is the best value found before the ith change. 
 
Adaptability [17]: It is the difference between the value of the best individual found at each 
generation and the average optimal value through the whole run. It is defined as: 
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where: 
 
K is the number of changes suffered by the fitness function. 
opti is the optimal value found after the ith change. 
bj is the best value found in the jth generation after the last change. 
t is the amount of generations between two consecutive changes. 
 
From definitions it is clear that small values of the metrics P and A indicate better results. In 
particular a zero value for adaptability indicates that the algorithm finds the optimum before the 
landscape morphology changes. On the other side, a zero value for precision means that the best 
individual in the population is found as the global optimum in every generation. 
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6. RESULTS 
 
Tables 5 and 6 summarize the results obtained. In these tables each entry indicates the number of 
runs where the algorithm detected 100% or (at least) 75% of the changes. Consequently, CC 
indicates the percentage of changes detected by the algorithm for each function. At the bottom of 
these tables, PA and AA indicate the average mean values of precision and adaptability over all five 
functions. 
 

2 – 5 Scenarios 5 - 5 Scenarios 10 - 5 Scenarios f CC 
1 2 3 4 1 2 3 4 1 2 3 4 

100% 30 30 30 30 30 30 30 30 1 30 30 30 f1 
  75% 0 0 0 0 0 0 0 0 29 0 0 0 
100% 30 30 30 30 30 30 30 30 30 9 30 30 f2 
  75% 0 0 0 0 0 0 0 0 0 21 0 0 
100% 30 30 30 30 30 30 30 30 0 0 30 30 f3 
  75% 0 0 0 0 0 0 0 0 30 30 0 0 
100% 30 30 30 30 30 30 30 30 30 30 30 30 f4 
  75% 0 0 0 0 0 0 0 0 0 0 0 0 
100% 30 27 30 30 25 30 30 30 6 0 30 30 f5 
  75% 0 3 0 0 5 0 0 0 24 30 0 0 

    PA .0316 .0300 .1196 .0269 .8967 .7631 .7059 .7066 3.081 2.959 2.695 2.73 
    AA .0595 .0504 .0562 .0556 1.110 .9532 .9209 .9139 3.405 3.261 3.022 3.08 

 
 
 
 

2 – 30 Scenarios 5 - 30 Scenarios 10 - 30 Scenarios f CC 
1 2 3 4 1 2 3 4 1 2 3 4 

100% 30 29 30 30 30 30 30 30 29 0 30 30 f1 
  75% 0 1 0 0 0 0 0 0 1 30 0 0 
100% 30 30 30 30 18 30 30 30 0 30 30 30 f2 
  75% 0 0 0 0 2 0 0 0 30 0 0 0 
100% 30 30 30 30 16 30 30 30 30 6 30 30 f3 
  75% 0 0 0 0 14 0 0 0 0 24 0 0 
100% 30 30 30 30 30 5 30 30 30 0 30 30 f4 
  75% 0 0 0 0 0 25 0 0 0 30 0 0 
100% 30 30 30 30 30 17 30 30 30 30 30 30 f5 
  75% 0 0 0 0 0 13 0 0 0 0 0 0 

    PA .1945 .0238 .0221 .0232 .6458 .7121 .7935 1.291 2.749 2.103 2.041 2.01 
    AA .0413 .0467 .0421 .0415 .8442 .9242 1.075 1.079 3.124 2.361 2.296 2.29 

 
 
 

 
From a general analysis of both tables it come out that the harder scenarios for the EA are scenarios 
1 and 2 (change in the height of all cones and the change in the height of the cone containing the 
optimum value, respectively). The hardness of these changes resides in the fact that when they 
happen, not only modify the height of the cone containing the optimum but also it can occur that 
this cone does not contain the optimum any more. Consequently, there is a simultaneous combined 
effect: change in the height of the cone that contains the optimum and its location. Even though, for 
some functions in this hard scenarios the algorithm detect 100% of the changes performed through 

Table 5. Percentage of changes detected, mean and average mean values for the performance  
              metrics on 5 cones landscapes, dimensionally scaled 

Table 6. Percentage of changes detected, mean and average mean values for the performance  
              metrics on 30 cones landscapes, dimensionally scaled 
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the 30 runs, and in the worst case it is able to detect 75% of the changes through the 30 runs, with 
precision ranging from 0.0 (very good) to 3.4 (acceptable). 
 
Scenarios 3 and 4 resulted easy for the EA, because in all functions 100% of the changes were 
detected. 
 
6.1. SCALABILITY ANALYSIS AT DIMENSIONALITY LEVEL 
 
Tables 5 and 6 indicate that, maintaining fixed the number of cones, when the dimensionality 
augments the algorithm performance degrades in the hard scenarios and for most functions. Here 
we can observe that CC decays from 100% to 75%. 
 
6.2. SCALABILITY ANALYSIS AT MULTIMODALITY LEVEL 
 
By contrasting tables 5 and 6, we can see that regarding the number of changes detected (100% or 
75%) for a given dimensionality, the behaviour of the algorithm is almost similar.  
 
Regarding P we see that an increment on the values of the metric are in correspondence with an 
increment in dimensionality or in multimodality. This fact shows that the algorithm not always 
succeeded to adapt itself to the 100% of the changes produced. 
 
7. CONCLUSIONS 
 
Results obtained by the proposed algorithm are promising when compared with those from previous 
evolutionary approaches to dynamic environments [2]. The presented algorithm is less memory and 
time consuming.  
 
In the worst case, for some functions and harder scenarios (higher dimensionality and 
multimodality), the algorithm is not successful to adapt to 100% of the changes (120 changes in 30 
runs). But indeed, under these conditions, it is able to detect at least 75% of the changes (90 
changes) produced in 30 runs.  
 
In order to improve the performance of the algorithm under the hardest conditions, issues related to 
self-adaptation of operator probabilities will be considered. Presently we are working 
simultaneously in two problems: automatic detection of changes and an investigation to determine 
if the algorithm is able to follow changes produced in very short intervals. Under this scenario the 
important issue is not the precision achieved by the algorithm but its ability of creating at least one 
individual following the course towards the optimum. 
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