

 EVOLUTIONARY OPTIMIZATION IN DYNAMIC FITNESS LANDSCAPE ENVIRONMENTS

Aragón V. S., Esquivel S. C.,
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC) 1

Facultad de Ciencias Físico, Matemática y Naturales
Universidad Nacional de San Luis

Ejército de los Andes 950 – Local 106
5700 – San Luis Argentina.

{vsaragon, esquivel}@unsl.edu.ar

ABSTRACT

Non-stationary, or dynamic, problems change over time. There exist a variety of forms of
dynamism. The concept of dynamic environments in the context of this paper means that the fitness
landscape changes during the run of an evolutionary algorithm.
Genetic diversity is crucial to provide the necessary adaptability of the algorithm to unexpected
changes.
Two key concepts to maintain genetic diversity in the population are incorporated to the algorithm
and proposed here: macromutation operators and random immigrants.
The algorithm was tested on a set of dynamic testing functions provided by a dynamic fitness
problem generator. The main goal was to determine the algorithm ability to face changes and
dimensional or multimodal scalability in the functions.
The effectiveness and limitations of the proposed algorithm in diverse scenarios of a dynamic
environment is discussed from results empirically obtained.

Keywords: Evolutionary computation, dynamic fitness landscape, macromutation, random
inmigrants, multi-modal optimization.

1 The LIDIC is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to Promote
Science and Technology).

CACIC 2003 - RedUNCI 637

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296348812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. INTRODUCTION

In general the conditions of an optimization problem changes by one of the following reasons or a
combination of both [1]: 1) The objective function changes itself, 2) The constraints change. A
change in the objective function appears when the purpose of the problem changes. Here conditions
which were considered desirable before can turn out to be undesirable now and vice versa. Changes
in constraints, which modify feasibility of solutions, are related to resources and their availability.
Changes can be small or big, soft or abrupt, chaotic, etc. When changes are big, abrupt or chaotic
the similarity between solutions found so far and the new ones can be worthless. Even under these
hard environments Evolutionary Computation (EC) offers advantages, which are absent in other
heuristics when searching for solutions to non-stationary problems. The main advantage relies in the
fact that Evolutionary Algorithms (EAs) keep a population of solutions. Consequently, facing the
change, they allow moving from a solution to another one to determine if any of them are of merit
to continue the search from them instead of from scratch [2]. Goldberg and Smith [3], Cobb[4] and
Grefenstette [5] initiated the research related to the behaviour of EAS on dynamic fitness functions
between 1987 and 1992. Recently the interest in this area was dramatically incremented [6], [7], [8],
[9], [10], [11], [12], [13], [14], and [15]. The following sections are organized as follows. Section 2
presents a definition of dynamic environments studied in this work. Section 3 describes the dynamic
test functions used. Section 4 describes the EA. In section 5 the experiments performed are
described. In section 6 results are discussed and finally this document shows our conclusions,
current and future work.

2. DYNAMIC FITNESS PROBLEM DEFINITION

A general definition, which describes and characterizes a dynamic fitness function, is introduced
here. The approach we follow assumes that each dynamic function consists of a base static function
and a sequence of dynamic functions obtained from the base function and the application of a set of
dynamic rules.

Definition 1:

() otherwise ,),(

) I (

0 if)(

:follows as defined is
function fitness dynamicA . time theand vector a space, searching the beLet

1 tttt

t

t

t

schxDFg

DF

txfb

DFNtx

r

r

r

−

=

=

∈Ψ∈Ψ

where)(0 xfb r is the base static function with m possible features to be modified.
Function gt is a function having as arguments the dynamic fitness function at time t-1, a set cht of all
possible changes to be applied to that function at time t and a given severity of the change, and
returns a new fitness function at time t.

CACIC 2003 - RedUNCI 638

Definition 2: Function gt is more precisely defined as follows:

()),(___ ,),(11 LchDFonchangesapplyschxDFg tttttt −− =r

where the first argument of apply_changes_on_DFt-1:

{ }UU
m

i

n

j
ji

t FLcch
1 1

,
= =

=

is an ordered set of size mxn of all possible changes at time t. When building this set, ci indicates
which function characteristic changes and FLj indicates which part of the DFt-1 landscape will be
modified within the ith characteristic.

The second argument of apply_changes_on_DFt-1, L is a binary vector of length mxn, which
depending on st indicates which members of cht are selected and which are not selected to modify
DF.

3. DYNAMIC TESTING FUNCTIONS

In this section we will see that the functions provided by the Test problem Generator [16] belong to
the dynamic functions defined in (I).
In this case we have:

The dynamic function DFt defined as in (I) with the base static function defined as:

() ()

−++−∗−= =

22
11,1)(t

nik
t
i

t
i

t
iki

t xxxxRHmaxxfb r

which specifies a “field of cones”, where k indicates the number of cones in the environment and
each cone is independently specified by its location (x1i , x2i , …, xni), its height Hi, and its slope Ri.
The components of the vector defining the cone location are xij ∈ [-1,1].
Each of these cones is combined together by means of the max function. Each time it is called the
generator creates a randomly generated morphology. The user specifies the range of random values
for the height, slope and location of cones:
Hi ∈ [Hbase, Hbase + Hrange], Ri ∈ [Rbase, Rbase + Rrange] and xij ∈ [-1,1].

In this case, when building the set cht of all possible changes, a characteristic ci ∈ {height, slope,
location} (m = 3) and FLj indicates which of the k cones of the DFt-1 landscape will be modified
within the ith characteristic. Consequently, when apply_changes_on_DFt-1operates, the
corresponding modifications in DF will be done only for those characteristics in the cones where
Lj+k(i-1) = 1, in the binary vector L, for 1 ≤ i ≤ m, 1 ≤ j ≤ k.

In this way we can see that the generator allows changing height, slope and location of one or more
cones in the field of cones, which represents the morphology of the fitness landscape.

. time theand vector a space, searching the NtRxR nn ∈∈=Ψ r

CACIC 2003 - RedUNCI 639

The severity of changes has many degrees, such that degree 1.0 corresponds to soft and/or small
changes and degree 4.0 to chaotic changes. The degree of severity is calculated by using the logistic
function:

)1(11 −− −∗∗== ppp
t YYAYs

where A is a constant indicating the degree of severity of the characteristic (height, slope, or
location) that will be modified and Yp is the value of the logistic function at iteration p. For more
details see [16].

4. EVOLUTIONARY ALGORITHM

We chose an evolutionary algorithm which combines and exploit various forms of macro-mutation
similar to both, the hyper-mutation and random immigrants initially designed by Grefenstette [5].

4.1. REPRESENTATION

The population P is composed of a constant number N of chromosomes. Each individual consists of
a single chromosome, where each gene is a real value in the interval [-1.0,1.0] representing a
coordinate in the search space. That is, the ith individual in the population P is represented by the
chromosome:

Pi = 〈 xi1, xi2, …, xil〉

where xij denotes the jth coordinate of the ith individual with j = 1,…,l and l is the chromosome
length.

4.2. OPERATORS

Conventional operators:

Selection: Couples of parents for the mating pool are selected by means of proportional selection.

Recombination: The conventional one point crossover is used to exchange genetic material
between parents. The operator is applied with a Pcross probability.

Mutation: Uniform mutation is used and it is applied with a Pmut probability. When an individual
undergoes mutation, each gene has exactly the same chance of undergoing mutation. As a result the
mutated gene has a new allele value randomly chosen from the domain of the corresponding
parameter (vector component).

Specialized operators for macromutation:

Recrudescence: This operator increments the probabilities of undergoing recombination and/or
mutation for a part of the population. It is applied in every generation with a probability Precru and
produces a radical genotypic reorganization on the individuals where it is applied. These individuals
are selected randomly with uniform probability.

Crisis: Acts as the recrudescence operator but it is applied on the whole population at determined
intervals during the initial stages of the evolution.

CACIC 2003 - RedUNCI 640

Random immigrants: A percentage z% of the population is replaced by individuals randomly
generated.

4.3. EVOLUTIONARY ALGORITHM PSEUDOCODE

The structure of the proposed evolutionary algorithms follows:

0. t = 0 /* initial generation */
1. Generate fbt function and set DFt = fbt
2. Initialise Pt /* initial population */
3. Evaluate Pt
4. while (actual_number-changes < = total_number_changes) do
5. {
6. t = t + 1
7. if (crisis) and (t < number_gen_with_crisis) then
8. Apply_crisis_operator
9. Generate next population P’t using traditional operators and recrudecence if appropiate
10. Evaluate P’t
11. Calculate _statistics of P’t
12. Remember_the_best_of_generation /* elitism */
13. if (function_changes) then
14. {
15. Store_statistical_report
16. Build_vector_L
17. Apply_changes_on_DFt-1(ch, L) and obtain new DFt
18. }
19. if (occured_changes) then
20. { Evaluate P’t with new DFt
21. Calculate _statistics of P’t
22. Remember_the_best_of_generation /* elitism */
23. Apply_crisis_operator
24. }
25. if (finish_apply_crisis) then
26. {
27. apply_random_inmigrants_operator
28. Evaluate P’t
29. Calculate _statistics of P’t
30. Remember_the_best_of_generation /* elitism */
31. }
32. Let Pt = P’t
33. } /* end while */
34. Report_ statistics

In line 13, function_changes is responsible to detect if a change in dynamic fitness function must
occur. In our case changes occur at constant intervals, then this function only verifies if the
generation number corresponds to one where the change must occurs.

CACIC 2003 - RedUNCI 641

If a change must occur we store in the L vector what changes are to be done and in which cones on
the landscape to apply them (see line 16). Then the apply_changes function obtains a new dynamic
fitness function in line 17.
In the line 22, occured_function tests if a change effectively had occurred, in which case the
application of macromutation operators creates the necessary genetic diversity. Then a new
generation begins and so on, until the end condition is reached.

5. EXPERIMENTS DESCRIPTION

5.1. PARAMETERS OF THE EVOLUTIONARY ALGORITHM

The parameter settings for the EA remain fixed throughout all experiments and all scenarios, and
were determined as the best after some initial trials:

The population size |P| was set to 100 individuals. Pcross and Pmut were fixed at 0.25 and 0.5,
respectively. For recrudescence, Precru was set to 0.2, and the augmented probabilities of crossover
and mutation were fixed at 0.5 and 0.8, respectively. The crisis operator is applied to the 10% of the
number of generation, between two consecutive changes in the environment. The percentage of
random immigrants was fixed at 30% of the population. Immigrants are inserted when a change
was detected and after the application of the crisis operator. This decision prevents that new
immigrants be affected by the crisis operator. The individuals to be replaced by immigrants are
randomly selected with equal probability. A number of experiments were designed differing in the
function selected and the changes to perform on it. For each of these experiments 30 runs were
performed with distinct initial population. Values in tables of section 6 are mean values.

5.2. PARAMETERS OF THE FUNCTION GENERATOR

Table 1 shows the parameter settings for the generator for all functions.

Hbase Hrange Rbase Rrange A
30 70 1 12 3.3

The constant A is used by the logistic function to determine the change severity. The value chosen
for A creates a severity of degree between median and large (near to the upper limit of 4.0 required
by the simulator).

We worked on 5 different functions whose features of dimensionality and multimodality (number
of cones) are indicated in table 2.

Function dim-#cones dim-#cones dim-#cones dim-#cones dim-#cones dim-#cones
f1 2-5 2-30 5-5 5-30 10-5 10-30
f2 2-5 2-30 5-5 5-30 10-5 10-30
f3 2-5 2-30 5-5 5-30 10-5 10-30
f4 2-5 2-30 5-5 5-30 10-5 10-30
f5 2-5 2-30 5-5 5-30 10-5 10-30

Table 1. Parameter Settings for the Generator

Table 2. Functions used in the experiments

CACIC 2003 - RedUNCI 642

Because the generator randomly creates the functions, we adopted the following working
methodology. For example for function f1 (see table 3), first we select heights (H) and slopes (R)
with the greatest multimodality. C indicates the cone identifier.

C H R C H R C H R
1 0.000000 0.000000 11 61.556893 5.811603 21 86.834253 6.018287
2 39.254461 13.425523 12 93.957383 2.548734 22 46.736654 7.188162
 3 88.798945 2.201534 13 60.579642 5.152966 23 48.702074 10.149014
 4 75.510408 3.834928 14 89.383742 8.525519 24 36.545954 11.617667
 5 30.118679 12.300053 15 46.533252 10.423104 25 91.210267 2.415192
 6 57.280549 13.325354 16 35.963361 2.647181 26 54.656304 3.071827
 7 90.701662 12.850853 17 84.346277 5.990322 27 39.453273 5.902942
 8 69.366403 12.017908 18 57.764563 3.513832 28 71.159464 5.190918
 9 83.719877 6.973150 19 31.260441 13.380469 29 86.679211 8.862785

 10 99.706369 2.875522 20 32.983730 12.417660 30 49.167685 7.235978

A similar table, not shown here for space limitations, is built for the 10 coordinates of each cone
(the greatest dimensionality) the data associated with the experiments are available for any
interested reader.

When scalability is to be modified, to work with lower dimensions and lesser number of cones we
obtain the required values from these tables. For example if we wish to work with f1 for 2-5, the
heights and slopes of the first five cones are retrieved from the tables only for the first two
dimensions of the tables of coordinates. Analogously we proceeded with the remaining functions.

This working methodology allowed us to study the adaptability of the algorithm to changes and its
behaviour when facing scalability in space dimension and number of cones.
Table 4 shows how, depending on dimensionality and multimodality, the intervals between changes
were fixed for all functions, the main goal here was to locate the optimum with an acceptable error.

dim-#cones Generations between changes
2-5 350
2-30 900
5-5 1000
5-30 3500
10-5 5000
10-30 10000

Each time the algorithm run as many generations as changes were desired to make. For all
experiments we fixed at 4 the number of changes. For example, for each of the functions with
dimensionalty-multimodality equal to 2-5 a total of 1400 generations were needed.

Table 3. Initial Heights and Slopes for f1b
0

Table 4. Change intervals.

CACIC 2003 - RedUNCI 643

5.3. TYPES OF CHANGE

Four scenarios were designed, each representing a type of change.

Scenario 1: Change in the height of all cones.
Scenario 2: Change in the height of the cone containing the optimum value.
Scenario 3: Change in the location of all cones.
Scenario 4: Change in the location of the cone containing the optimum value.

Also, experimentation was conducted with changes in the slope of one and all cones, but results on
these scenarios were very similar to those of scenarios 3 and 4. For this reason they are not shown
here.

5.4. PERFORMANCE METRICS

To measure precision and adaptability of the algorithm the following metrics were used:

Precision [17]: It is a metric specifically developed for non-stationary environments. It measures
the average difference, between the best individual in the population at the generation “just before
the change” and the optimal value, averaged to the number of changes. More precisely:

∑
=

−=
k

i
ibopt

K
(P)

1

)(1Precision

where:

K is the number of changes suffered by the fitness function.
opt is the mean value of optimal values found in each change.
bi is the best value found before the ith change.

Adaptability [17]: It is the difference between the value of the best individual found at each
generation and the average optimal value through the whole run. It is defined as:

∑ ∑
=

−

=

−=
k

i

t

j
ii bopt

tK
(A)

1

1

0

)(11tyAdaptabili

where:

K is the number of changes suffered by the fitness function.
opti is the optimal value found after the ith change.
bj is the best value found in the jth generation after the last change.
t is the amount of generations between two consecutive changes.

From definitions it is clear that small values of the metrics P and A indicate better results. In
particular a zero value for adaptability indicates that the algorithm finds the optimum before the
landscape morphology changes. On the other side, a zero value for precision means that the best
individual in the population is found as the global optimum in every generation.

CACIC 2003 - RedUNCI 644

6. RESULTS

Tables 5 and 6 summarize the results obtained. In these tables each entry indicates the number of
runs where the algorithm detected 100% or (at least) 75% of the changes. Consequently, CC
indicates the percentage of changes detected by the algorithm for each function. At the bottom of
these tables, PA and AA indicate the average mean values of precision and adaptability over all five
functions.

2 – 5 Scenarios 5 - 5 Scenarios 10 - 5 Scenarios f CC
1 2 3 4 1 2 3 4 1 2 3 4

100% 30 30 30 30 30 30 30 30 1 30 30 30 f1
 75% 0 0 0 0 0 0 0 0 29 0 0 0
100% 30 30 30 30 30 30 30 30 30 9 30 30 f2
 75% 0 0 0 0 0 0 0 0 0 21 0 0
100% 30 30 30 30 30 30 30 30 0 0 30 30 f3
 75% 0 0 0 0 0 0 0 0 30 30 0 0
100% 30 30 30 30 30 30 30 30 30 30 30 30 f4
 75% 0 0 0 0 0 0 0 0 0 0 0 0
100% 30 27 30 30 25 30 30 30 6 0 30 30 f5
 75% 0 3 0 0 5 0 0 0 24 30 0 0

 PA .0316 .0300 .1196 .0269 .8967 .7631 .7059 .7066 3.081 2.959 2.695 2.73
 AA .0595 .0504 .0562 .0556 1.110 .9532 .9209 .9139 3.405 3.261 3.022 3.08

2 – 30 Scenarios 5 - 30 Scenarios 10 - 30 Scenarios f CC
1 2 3 4 1 2 3 4 1 2 3 4

100% 30 29 30 30 30 30 30 30 29 0 30 30 f1
 75% 0 1 0 0 0 0 0 0 1 30 0 0
100% 30 30 30 30 18 30 30 30 0 30 30 30 f2
 75% 0 0 0 0 2 0 0 0 30 0 0 0
100% 30 30 30 30 16 30 30 30 30 6 30 30 f3
 75% 0 0 0 0 14 0 0 0 0 24 0 0
100% 30 30 30 30 30 5 30 30 30 0 30 30 f4
 75% 0 0 0 0 0 25 0 0 0 30 0 0
100% 30 30 30 30 30 17 30 30 30 30 30 30 f5
 75% 0 0 0 0 0 13 0 0 0 0 0 0

 PA .1945 .0238 .0221 .0232 .6458 .7121 .7935 1.291 2.749 2.103 2.041 2.01
 AA .0413 .0467 .0421 .0415 .8442 .9242 1.075 1.079 3.124 2.361 2.296 2.29

From a general analysis of both tables it come out that the harder scenarios for the EA are scenarios
1 and 2 (change in the height of all cones and the change in the height of the cone containing the
optimum value, respectively). The hardness of these changes resides in the fact that when they
happen, not only modify the height of the cone containing the optimum but also it can occur that
this cone does not contain the optimum any more. Consequently, there is a simultaneous combined
effect: change in the height of the cone that contains the optimum and its location. Even though, for
some functions in this hard scenarios the algorithm detect 100% of the changes performed through

Table 5. Percentage of changes detected, mean and average mean values for the performance
 metrics on 5 cones landscapes, dimensionally scaled

Table 6. Percentage of changes detected, mean and average mean values for the performance
 metrics on 30 cones landscapes, dimensionally scaled

CACIC 2003 - RedUNCI 645

the 30 runs, and in the worst case it is able to detect 75% of the changes through the 30 runs, with
precision ranging from 0.0 (very good) to 3.4 (acceptable).

Scenarios 3 and 4 resulted easy for the EA, because in all functions 100% of the changes were
detected.

6.1. SCALABILITY ANALYSIS AT DIMENSIONALITY LEVEL

Tables 5 and 6 indicate that, maintaining fixed the number of cones, when the dimensionality
augments the algorithm performance degrades in the hard scenarios and for most functions. Here
we can observe that CC decays from 100% to 75%.

6.2. SCALABILITY ANALYSIS AT MULTIMODALITY LEVEL

By contrasting tables 5 and 6, we can see that regarding the number of changes detected (100% or
75%) for a given dimensionality, the behaviour of the algorithm is almost similar.

Regarding P we see that an increment on the values of the metric are in correspondence with an
increment in dimensionality or in multimodality. This fact shows that the algorithm not always
succeeded to adapt itself to the 100% of the changes produced.

7. CONCLUSIONS

Results obtained by the proposed algorithm are promising when compared with those from previous
evolutionary approaches to dynamic environments [2]. The presented algorithm is less memory and
time consuming.

In the worst case, for some functions and harder scenarios (higher dimensionality and
multimodality), the algorithm is not successful to adapt to 100% of the changes (120 changes in 30
runs). But indeed, under these conditions, it is able to detect at least 75% of the changes (90
changes) produced in 30 runs.

In order to improve the performance of the algorithm under the hardest conditions, issues related to
self-adaptation of operator probabilities will be considered. Presently we are working
simultaneously in two problems: automatic detection of changes and an investigation to determine
if the algorithm is able to follow changes produced in very short intervals. Under this scenario the
important issue is not the precision achieved by the algorithm but its ability of creating at least one
individual following the course towards the optimum.

8. ACKNOWLEDGEMENTS

We acknowledge the co-operation of the project group for providing new ideas and constructive
criticisms. Also to the Universidad Nacional de San Luis and the ANPCYT from which we receive
continuous support.

9. BIBLIOGRAPHY

[1] Michalewicz, Z. and Fogel, D.B, - “How to Solve It: Modern Heuristics”, Springer, 2000

CACIC 2003 - RedUNCI 646

[2] Branke, J. - “ Evolutionary Optimization in Dynamic Environments”, Kluwer Academic
Publishers, 2002.

[3] Golberg, D. E. and Smith, R. E. – “Nonstationary Function Optimization using Genetic
Algorithms with Dominance and Diploidy”, Proceedings of the Second International
Conference on Genetic Algorithms, pp. 59-68, Lawrence Erlbaum Associates, 1987.

[4] Cobb, H.G. – “An Investigation into the use of Hypermutation as an Adaptive Operator in
Genetic Algorithms having Continuous, Time_Dependent Non-Stationary Environmentes”,
Technical Report 6760, Naval Research Laboratory, USA, 1990.

[5] Grenfenstette, J. J. – “Genetic Algorithms for Changing Environments”, Proceedings of the
Second Conference on Parallel Problem Solving from Nature”, pp. 137 – 144, North Holland,
1992.

[6] Mori, N. S. et al. – “Adaptation to Changing Environments by means of the Memory Based
Thermodynamic Genetic Algorithm”, Proceeding of the Seventh International Conference on
Genetic Algorithms, pp 299 – 306, Morgan Kaufmann, 1997.

[7] Lewis, J., Hart, E. and Ritchie, G. – “ A Comparision of Dominance Mechanism and Simple
Mutation in Non-Stationary Problems”, Proceeding of the Seventh International Conference on
Genetic Algorithms, pp 138-148, Morgan Kaufmann, 1997.

[8] Bäck, T. – “On the Behaviour of Evolutionary Algorithms in Dynamic Fitness Landscapes”,
Proceeding of IEEE International Conference on Evolutionary Algorithms, pp 446-451, IEEE
Service Centre, 1998.

[9] Wile, C. O. - “Evolutionary Dynamics in Time-Dependent Environments”, PhD. Thesis, Institut
für Neuroinformatik, Ruhr-Universität, Bochum, Germany, 1999.

[10] Trojanoswky, K. and Michalewicz, Z. – “Searching for Optima in Non-Stationary
Environments”, Proceeding of Congress on Evolutionary Computation, pp 1843-1850, IEEE
Service Centre, 1999.

[11] Wicker, K. and Weicker, N. – “ On Evolutionary Strategy Optimization in Dynamic
Environments”, Proceeding of Congress on Evolutionary Computation, pp 2039-2046, IEEE
Service Centre, 1999.

[12] Liles, W. and De Jong, K. – “The Usefulness of Tag Bits in Changing Environments”,
Proceeding of Congress on Evolutionary Computation, pp 2054-2060, IEEE Service Centre,
1999.

[13] Yi, W., Lin, Q. and He, Y. – “Dynamic Distributed Genetics Algorithms”, Proceeding of
Congress on Evolutionary Computation, pp 1132-1135, IEEE Service Centre, 2000.

[14] Nanayakkara, T., et al. – “ Adaptive Optimization in a Class of Dynamic Environments
using an Evolutionary Approach”, Journal of Evolutionary Computation, 7(1):45-68, 1999.

[15] Morrison, R. W. – “ Designing Evolutionary Algorithms for Dynamic Environments”, PhD
Thesis, George Mason University, USA, 2002

[16] Morrison, R. W. and De Jong, K. – “A Test Problem Generator for Non-Stationary
Environments”, Proceedings of Congress on Evolutionary Computation, VIII, pp 2047 – 2053,
Washington DC, USA, IEEE Service Center, 1999.

[17] Trojanowsky, K. – “Evolutionary Algorithms with Redundant Genetic Material for Non-
Stationary Environments”, PhD. Thesis, Institute of Computer Science, Warsaw, University of
Technology, Poland, 1994.

CACIC 2003 - RedUNCI 647

