
Interpreter Char t Diagram N-S

Marcia Mac Gaul, Patricia Aballay, Rodrigo Zamora, Marcelo Soria

Proyecto de Investigación C.I.U.N.Sa. Nº 1638,
Consejo de Investigación de la Univ. Nacional de Salta, Av. Bolivia 5.150, Salta, Argentina

Abstr ac. The team of researchers develops and implements technological
resources focused on a methodological strategy that supports its use. Our
investigation deals with the analysis beginner students’ competences attending the
Analisis de Sistema career at the UNSa, in order to solve different computing
problems such as the analysis of the design if the diagram N-S and the desktop test.
This work describes the process undertaken by the educational software design
called Diagramar. Its development and the searching activity are related to the
adopted methodologies: the Extreme Programming and Investigation-Action. The
pedagogical importance of Diagramar lies on finding an answer to students and
teachers’ needs, providing a technological resource developed to fit these needs. It
is mainly focused on the elaboration of the N-S diagrams. There are not many texts
that provide an specification of algorithm and translate a methodological strategy
able to support the staff of teachers from a continual investigation on its own
practice.

mmacgaul@cidia.unsa.edu.ar

Keywords: algorithms - Diagrams N-S - Educational Software - XP Methodology
- Methodology I-A

1. Introduction:

The team in charged of the project CIUNSa N° 1638, called “A Methodological
Strategy: the Use of the TICs in the Massive University Entry”, is integrated by
specialists in Information Technology, pedagogues, and teachers with a vast experience.
One of their objectives is to develop and implement the technological resources designed
on methodological strategy that supports its use. Besides it also aims at improving the
teacher’ practice through reflexive processes.

This work describes the first version of the product and reports the design of the
educational software Diagramar. The work is based on application of a workshop carried
out in July 2008, which objective was to inquire into the learning process carried out by
students in solving computing problems, their previous knowledge, the resources used
the strategies put in practice a the retrospective analysis that they apply in front to the
algorithms that design. The development of the software as well as the searching activity
of pedagogues and informatics recall to two adopted methodologies: the Extreme
Programming and the Investigation-Action.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296347064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Objectives:

The investigation aims at inquire into the beginner students’ competences in the
Licenciatura en Análisis de Sistema at the UNSa, in order to solve computing problems.
For this reason it is important to include an analysis problem stage, the algorithm design
through the diagram N-2 and the corresponding desktop test. These stages are integrated
in a spiral process of construction, until reaching a solution. The investigation had as
objective to analyze this process in depth as a necessary step for the development of the
educational software which makes possible the development of the phases mentioned
previously, contributing to a high quality design of algorithms and allowing the student
the edition of the documentation generated.

3. Method:

3.1 Investigation Stage:

During this stage the participants of the project gathered to debate about main topics,
such as the investigation framework, from the qualitative contributions. The searching
process set upon the Investigation-Action (I-A) as construction process and
reconstruction of the enquired object. The idea was to strive to promoting sensitivity
among the members of the group due to the complexity of the content, for this reason,
this work was complemented in seminars about strategies and contributions of the
qualitative investigation.

The sample was put in practice with thirteen students of Computing Elements, who
were given a number in order to guarantee the reliability and validity of the applied
elements. The team of investigation was composed of 10 researcher teachers.

Problems’ valuation: The sample was exposed to the reading of 8 computing problems
in order to be valued. The team of investigation built a scale based on two fundamental
categories: comprehension and resolution; both related to the students’ learning process.

The modality consisted on providing the assignments one by one to all the students
simultaneously. Each learner read the problem card and filled in the valuing paper. The
time assigned for this activity was of three minutes for each problem approximately.
Once all the students had finished the task, the paper was handed in and the process was
repeated but with another problem.

Problem Solving: The modality consisted of getting at random 2 from the 8 problems
previously valued (labeled A and B) and to assign students a team to work on both
problems.

Each team was composed of at least an informatics and a pedagogue. Each
investigator observed the problem solving process by taking notes. The time assigned for
the process was about 45 minutes each exercise. If the student needed more time to
fulfill the activity, they were given 15 minutes more. When the time was over the

assigned student had to rectify or ratify the previous problem valuation. For this reason a
personal card was handed out having a space for the identification number, the problem
and the valuation scale; a separated body in two zones: on the left to solve the problem
and on the right for the registration of the student’s construction process. At the end of
the page there is a place for the ratification or rectification of the previous problem
valuation, once the solution was designed.

The investigation team did not interact with students. The learner verbalized the ideas
by thinking aloud and/or took notes about the work that helped to interpret the reasoning
process. After the problem solving, an interview was carried out in order to enquire
students about the details that were explained about the process. This interview was
recorded in a digital format. The focus was on the tools used in the problem solving
activity and on the relevant information for the design of the future educational software.

3.2 Development stage:

Similar system searching: To know about other inter phases, some systems with similar
objectives were looked for. We can highlight the Raptor system; however, this system is
only useful for the creation of Flowing Diagrams, without having found software that
allows the realization of Diagrams N-S.

A Methodology Selection: The methodology chosen was Extreme Programming (XP),
which is the most important among the group of agile methodologies. This is based on
the motto “accept the change”, pointing to the idea of adaptation. It is proposed a great
integration with the client, making him feel part of the project.

This methodology proposes shot development interactions to be able to integrate
versions of the product. The programming in couples is allowed, exchanging roles
periodically; in this way the computer programmers integrate their points of view.

As this methodology does not have a previous analysis and design stage, it as a vital
part the development directed by the proofs. The rectification of the code is applied
continuously to increase the quality and to reduce its redundancy.

The pr inciples of methodology according to Kent Beck are developed here:
Simplicity: the design is simplify to fasten the development and to facilitate its
maintenance.

Communication: different forms are carried out. For the computer programmers the
simpler the code, the better it communicates. The code self documented is more reliable
than the comments, because the last ones are soon out of tune when the code is modified.
The comments should be focused only on what is not going to be changed. The emphasis
should be put only on what is not going to vary, such as the objective of a class or a
method’s functionality.

Feedback: As the client is integrated in the project, his opinion about the state of it is
known in real time.

Courage and bravery: the previous points have a common sense, so why courage? For
the managers, the programming in couples can be difficult to accept, it seems as if
productivity is going to be reduced to a fifty per cent because only half of the

programmers is writing code. It is important to be valiant to rely on the programming in
couples and to believe that it improves the code quality without having a negative effect
over productivity.

Respect: the members of the team respect each other, because the can not make any
changes due to the fact that the existent proofs may fail or make their partners’ work
delay.

Development Tools: After studying some programming languages, it was decided to
develop the system by using the Visual C# 2005 Express Edition, due to the fact that the
language is very complete, composed of modules that facilitate the realization of Unity
Tests and free access.

4. Outcomes:

Despite the fact that the principal outcome shown in this work is the software, it must
be considered that its development was accompanied by a continuous work of
investigation in which two methodologies were adopted: the XP and the I-A, the changes
in the requirements were conducted by the outcomes obtained from the qualitative
investigation carried out on the instruments applied in the investigation. The proof refers
to the once more to the documents’ inspection in order to value the degree of
concordance among the users’ expectations.

A description of the diagram is presented below.

4.1 Object Domain Model:

The model that emerged from the first interactions evolved thanks to the tests unity-
which was also improved- it was influenced by many decisions taken about the design
which tend to simplify the representation of the representation of the problem in class
models domain. The problem was divided into four questions: 1) the simple and
structured variable negotiation used in the diagram, 2) the handling of data, 3) the
interpretation and execution of different types of expressions.

The class that had the functionality related to the two first questions is the Variable
Handler. Getting profit from the fact that the diagram N-S exist in only one context for
the variables, the variable handler stores in memory all the names and values from the
variables involved in the diagram at the moment of execution.

The basic structures are in charged of starting and modifying the variable’s values.
These were classified according to their dimensions in Simple or Compounds and
according to the data type into Numbers and String. The variables can change the date
type during the cycle of life, but due to a proper restriction of the analysis phase that has
to do with the appropriate construction of diagrams N-S, the dimensions can not be
changed. Another important function of the Variable Handler is the ability to keep an
instantaneous copy of the variables’ actual values to obtain the desktop sample derived
from the program execution.

4.2 Representation of the Different Structures Used in a Diagram

As another question to be solved it is important to bear in mind the design of a group
of classes of control, called Basic Structures that include the behavior of the six types of
expressions to be known: Entrance, Exit, Assignment, Alternative, Conditional and
Unconditional course.

4.3 Different Expressions Processing

The class that is responsible of the third question to be solved is the Interpreter, that
has grammar integrated games which allows to solve different kind of expressions to be
known: Assignments that started or modified the variable values, Expressions of calculus
like “Way out” or the resolution of the logical value of a Boolean expression typical in
the condition of an Alternative.

4.4 User Interphase and Tests of Acceptance:

The graphic interpreter is an application of desktop type that allows to create, edit and
perform the N-S diagram and to visualize a desktop test that is obtained as a result of a
diagram execution. It worked on the organization of different areas which compose the
screen, defining the central area or Drawing Area, a left area containing the Gallery of
Blocks that builds the diagram and the right area of Properties in which all the structures
that compose the algorithm are specified. (See Fig. 1)

Figure 1: Diagram main screen

In figure 1 we can identify a Tool Mouse with a quick access to the option in Menu

which is more frequently used.

4.5 Distinction between

 A distinction was made the Blocks and Structure classes, being the last one the
umbrella of Conditional, Cycle, Meanwhile, Way Out and Assignment. The kind of
block symbolizes a group of structures (e.g. an object of course in the Cycle class that
contains a block as member)

4.6 Panel of Proper ties:

This is located on the right of the Drawing Area. Once the structure has been inserted
in the drawing area (Diagram N-S) if you click any of the structures drawn you can
visualize the attributes that each structure has (see Fig. 2), which must be edited in they
way they should.

Fig 2. Elements from the unconditional cycle.

4.7 In the Drawing Area we observe the diagram of block that is being created or

edited. In fig. 3 the diagram corresponds to a solution for the problem “given a natural
number K, it shows the two consecutive natural numbers A and B so K (A!,B!)”

Fig. 3 Example of a diagram edited by Diagramar

Diagram N-S Execution: Once the different types of structures were programmed, the
execution of the diagrams was decoded, integrating the blocks, the structures and the
Variable Handler and Evaluator. The drawing of the diagram was also decoded. In this
way the execution at the moment of executing the grammar functionality, the block is
highlighted. In Fig. 4, the block of data entry (in blue) corresponds to the entry of the K
data, asked to the user in the emergent window.

Fig. 4 Execution of the diagram in Fig. 3

In successive versions three section were included in the inferior area, one to show the

desktop test that the user can execute about the algorithm designed by the user or
selected among a collection of diagram models solved and explained. The other areas are
only the ones that document these models, providing recommended test cases and a
justification of the aspects of design that were taken into account when the diagram was
developed. These three sections are presented as flaps. (See Fig. 5)

Fig. 5 Desktop test corresponds to the execution of diagram in Fig. 4

Desktop Test: it provides the result of the last execution that has been carried out in the
diagram. This allows having a register of the changes in the different variables defined.
In our example, for the K=30 data entry from figure 5, the exit of values a=4 and
(a+1)=5 are natural consecutives so that 30 (4!,5!)

Test Cases: it offers a series of recommendations in order to execute the test trying to
put in practice different ways of execution.
Justification: it allows the user to edit the notes taken about the work generating a
document that supports the graphic developed.

5. Some Conclusions:

The great pedagogical importance of the development of the educational software
Diagramar does not only reside on the construction of the product; it responds to the
students and teachers’ needs by providing the technological resources. It is mainly
focused on the elaboration of diagrams N-S, poorly documented in the literature about
the specification of algorithms and translates the methodological strategies that support
the teacher staff by the continuous investigation of their own practice.

The students are benefited by the incorporation of the TICs that facilitate the
construction of their learning process. For this reason, the investigation establishes that
the most important aspect for the student is to verify the design of algorithms. That is
why we believe that Diagramar allows the visualization step by step of the functional
activity of the design, empowered by the document. In this sense, we can affirm that
Diagramar is the real interpreter of the students’ logical productions.

The teachers who will use this software will do it with the objective of searching more
deeply in the learning process of their students.

On the other hand, it is important to mention the adequate interaction between the
development of methodologies and the investigation adopted. One example is the way in
which the incorporation of the diagram model was solved. This change in the
requirements came from the reflexive process oriented towards the construction of the
software. It was considerate the incorporation of inferior sections containing the test and
the justification of the diagrams, paying attention to the functionality. In this way, we
believe that it was successfully explained the common requirement of students when
they pronounced the following: “when I see a problem, I use Diagramar in order to solve
the problem again”

Finally, other positive aspect is the investigation group cohesion, that provides, from
another point of view, it is the construction of a methodological strategy and the use of a
resources.

References

1. Mac Gaul, M. - del Olmo, P. - Rivera, A.: Software Educativo para diseño de Algoritmos:
Del problema al diagrama N-S. Cuadernos FHYCS, 180--181 (2008)

2. Saltalamacchia, H.R. Del proyecto al análisis: aportes a una investigación cualitativa
socialmente útil. Primer tomo. Ed. El Artesano (2005)

3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. 2da. Edición.
Addison-Wesley (2004)

