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Abstract

Many computational applications need to look for informa-
tion in a database. Nowadays, the predominance of non-
conventional databases makes the similarity search (i.e.,
searching elements of the database that are “similar” to a
given query) becomes a preponderant concept.

The Spatial Approximation Tree has been shown that it
compares favorably against alternative data structures for
similarity searching in metric spaces of medium to high di-
mensionality (“difficult” spaces) or queries with low selec-
tivity. However, for the construction process the tree root
has been randomly selected and the tree ,in its shape and
performance, is completely determined by this selection.
Therefore, we are interested in improve mainly the searches
in this data structure trying to select the tree root so to re-
flect some of the own characteristics of the metric space to
be indexed. We regard that selecting the root in this way it
allows a better adaption of the data structure to the intrin-
sic dimensionality of the metric space considered, so also it
achieves more efficient similarity searches.
Keywords similarity search, metric spaces, databases

1 Introduction

The new-generation databases must handling exotic data
types, such as images, fingerprints, audio clips, where the
concept of exact search is of no use and we search instead
for similar objects. Similarity searching has applications in
a vast number of fields [19, 23]. Some examples are non-
traditional databases (for example, storing images, finger-
prints or audio clips, where the concept of exact search is of
no use and we search instead for similar objects) [1, 22];
text searching (to find words and phrases in a text database
allowing a small number of typographical or spelling er-
rors) [20, 15]; information retrieval (to look for documents
that are similar to a given query or document) [18, 2]; ma-
chine learning and classification (to classify a new element
according to its closest representative) [10]; image quanti-
zation and compression (where only some vectors can be
represented and we code the others as their closest repre-
sentable point, as in the MPEG standard); computational
biology (to find homologous regions in a DNA or protein
sequence database) [21, 20]; and function prediction (to
search for the most similar behavior of a function in the
past so as to predict its probable future behavior).

All those applications share some common characteris-
tics. There is a finite dataset of objects belonging to a met-
ric space, where a distance function is used to assess sim-
ilarity. Similarity queries are posed to this dataset. These
consist basically in, given a new element of the space called

the query, looking for elements of the dataset that are simi-
lar enough to the query.

Formally, let U be a universe of objects, with a non-
negative distance function d : U × U −→ R

+ de-
fined among them. This distance satisfies the three ax-
ioms that make (U, d) a metric space: strict positiveness
(d(x, y) = 0 ⇔ x = y), symmetry (d(x, y) = d(y, x))
and triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)). The
smaller the distance between two objects, the more “simi-
lar” they are. We handle a finite dataset S ⊆ U, which is
a subset of the universe of objects and can be preprocessed
(to build an index). Later, given a new object from the uni-
verse (a query q ∈ U), we must retrieve all similar elements
in the dataset. There are two typical queries of this kind:

Range query (q, r): Retrieve all elements within distance r
to q in S. That is,{x ∈ S , d(x, q) ≤ r}.
Nearest neighbor query k−NN(q): Retrieve the k closest
elements to q in S. That is, a set A ⊆ S such that |A| = k
and ∀x ∈ A, y ∈ S − A, d(x, q) ≤ d(y, q).

The distance is assumed to be expensive to compute.
Hence, it is customary to define the complexity of the search
as the number of distance evaluations performed, disregard-
ing other components such as CPU time for side computa-
tions, and even I/O time. Given a dataset of |S| = n objects,
queries can be trivially answered by performing n distance
evaluations. The goal is to preprocess the dataset, building
an index, such that queries can be answered with as few dis-
tance evaluations as possible. This metric space approach to
handle similarity search problems is becoming widely pop-
ular [19, 23, 8].

A particular case of this problem arises when the space
is a set of D-dimensional points and the distance belongs to
the Minkowski Lp family: Lp = (

P

1≤i≤D |xi − yi|p)1/p.
For example p = 2 yields Euclidean distance. There are
effective methods to search in those spaces [12, 5] such
as: Kd–trees [3, 4] or R-trees [13]. However, for roughly
20 dimensions or more those structures cease to work well.
We focus in this paper on general metric spaces, although
the solutions are well suited also for D-dimensional spaces.
That is, the only information available are the objects and a
dissimilarity function stating the distance between the ob-
jects. Moreover, regarding a D-dimensional space as a
metric space reveals the true dimensionality of the dataset,
which may be much lower than D, without the need of ap-
plying dimensionality reduction techniques.

The dimensionality of a vector space is the number of
components of each vector. Although general metric spaces
do not have an explicit dimensionality, we can talk about
their intrinsic dimensionality, following the same idea that
in vector spaces. This is a very interesting concept since the
efficiency of the search methods is worse in metric spaces
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with a high intrinsic dimensionality [8, 6, 7]. In these arti-
cles it is shown the analytical reason for the so called “di-
mensionality curse”. Worthwhile to note that the concept
of dimensionality is related to the “facility” or “difficulty”
of searching in a D-dimensional vector space. It is said
that a metric space is generally “more difficult” (intrinsic
dimension higher) than another when its histogram distance
is more concentrated (with larger mean as the dimension
grows) than the other, making the work of any similarity
search algorithm more difficult. In the extreme case we
have a space where d(x, x) = 0 and ∀y 6= x, d(x, y) = 1,
where it is impossible to avoid a single distance evaluation
at search time.

Therefore, we need to count with indices to response
queries efficiently. There are a number of methods to pre-
process the set in order to reduce the number of distance
evaluations. All those structures work on the basis of dis-
carding elements using the triangle inequality. Note that
almost all these works aim at dividing the database, inherit-
ing from the classic divide-and-conquer ideas of searching
typical data (e.g., binary search trees). A recently proposed
data structure of this kind [16], which is based on a novel
concept: rather than dividing the search space, approach the
query spatially, that is, start at some point in the space and
get closer and closer to the query. It has been shown that
the SAT behaves better than the other existing structures on
metric spaces of high dimension or queries with low selec-
tivity, which is the case in many applications. The SAT is a
static structure, so the construction algorithm needs to know
all the elements of S in advance. Besides, it selects its root
randomly. The shape of the tree and its query performance
are completely determined by this choice [14, 17].

In this paper we study a possible optimization for this
data structure, trying to choose a better root for the tree,
in order to improve mainly the query performance. Thus,
our interest was to select the tree root differently, in a way
that reflects some of the characteristics of the metric space
indexed. We believe that worthwhile strive to make a better
choice of the tree root, and allowing that the structure adapts
itself to the intrinsic dimension of metric space, so resulting
in more efficient searches.

The rest of the paper is organized as follows: Section 2
introduces the Spatial Approximation Trees, Section 3 de-
scribes the methods to select the root considered, Section
4 illustrates the experimental results and their analysis, and
finally Section 5 brings our conclusions and future research
trends in this area.

2 Spatial Approximation Tree (SAT)

We describe briefly in this section the static SAT data struc-
ture [16]. Unlike most other structures, based on dividing
the search space, the SAT is based on the idea of approach-
ing the query spatially, that is, starting at some point in the
space and getting closer and closer to the query. The SAT
is experimentally shown to offer better space-time tradeoffs
than other data structures in several spaces. It needs O(n)
space, O(n log2 n/ log log n) construction time, and search
time: O(n1−Θ(1/ log log n)) in high dimensions and O(nα)
(0 < α < 1) in low dimensions.

In order to introduce the “spatial approximation”, we
consider the metric space (U, d), S ⊂ U as our database,
and we concentrate on 1-NN queries (we will solve all

types of queries at the end). Instead of the known algo-
rithms to solve proximity queries by dividing the set of can-
didates, we try a different approach here. In our model, we
are always positioned at a given element a ∈ S, randomly
chosen, and try to get spatially closer to the query q (i.e.,
move to another element b ∈ S which is closer to the query
than the current one, that is d(b, q) < d(a, q)). When this
is no longer possible, we are located at the nearest element
to q in the set.

This approximation is performed only via “neighbors”.
Each element a ∈ S has a set of neighbors N(a), and we
are allowed to move directly only to neighbors.

The natural structure to represent this restriction is a “di-
rected graph” where the nodes are the elements of S and
have direct edges to their neighbors. That is, there is an
edge from a to b if it is possible to move from a to b in a
single step. Therefore, in a vector space, the minimal graph
we seek corresponds to the classical Delaunay triangulation
(a graph where the elements which are Voronoi neighbors
are connected). The Delaunay graph, generalized to arbi-
trary spaces, would be the ideal answer in terms of space
complexity, and it should permit fast searching, too.

Unfortunately, it is not possible to compute the Delau-
nay graph of a general metric space given only the set of
distances among elements of S and no further indication
of the structure among elements of S. So, we make sim-
plifications to the general idea so as to achieve a feasible
solution, such that building a tree (called SAT) instead of a
graph. Then, it is combined the spatial approximation ap-
proach with backtracking so as to answer any query q ∈ U ,
for both range queries and nearest neighbor queries.

The construction process of SAT begins with the selec-
tion of a random element a ∈ S to be the root of the tree.
Then, it is selected a suitable set of neighbors N(a) satisfy-
ing:
Condition: (given a ∈ S) ∀x ∈ S, x ∈ N(a) ⇔
∀y ∈ N(a) − {x}, d(x, y) > d(x, a).

That is, the neighbors of a form a set such that any neigh-
bor is closer to a than to any other neighbor. Choosing near-
est neighbors owes to the concept of getting spatially closer
to the query, so that if we cannot get closer (with tolerance
r) from a tree node then we can stop the search there.

We begin with the initial node a and its “bag” B(a) hold-
ing all the rest of S. We first sort B(a) by distance to
a. Then, we start adding nodes to N(a) (which is initially
empty). Each time we consider a new node b ∈ B(a), we
check whether it is closer to some element of N(a) than to
a itself. If that is not the case, we add b to N(a). At this
point we have a suitable set of neighbors.

We now must decide, in which neighbor’s bag we put the
rest of the nodes. We put each node b ∈ S − (a∪N(a)) in
the bag B(c) of its closest element c of N(a). Observe that
this requires a second pass once N(a) is fully determined.
We are done now with a, and process recursively all its
neighbors, each one with the elements of its bag. So, the re-
sulting structure is a tree that can be searched for any q ∈ S
by spatial approximation for nearest neighbor queries.

Figure 1 depicts the construction process. It is firstly in-
voked as BuildTree(a,S − {a}) where a is a random
element of S, selected as root. The information stored by
the data structure is the root a and the N() and R() values
of all the nodes. The covering radius R(a) (i.e., the max-
imum distance between a and any element in the subtree
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rooted by a), is used to further prune the search, by not en-
tering subtrees such that d(q, a) > R(a) + r, since they
cannot contain useful elements.

BuildTree(Node a, Set of Nodes S)
1. N(a) ← ∅ /* neighbors of a */
2. R(a) ← 0 /* covering radius */
3. Sort S by distance to a (closer first)
4. For v ∈ S

5. R(a) ← max(R(a), d(v, a))
6. If ∀b ∈ N(a), d(v, a) < d(v, b) Then
7. N(a) ← N(a) ∪ {v}
8. For b ∈ N(a) S(b) ← ∅ /* subtrees */
9. For v ∈ S −N(a)
10. Let c ∈ N(a) that minimizes d(v, c)
11. S(c) ← S(c) ∪ {v}
12. For b ∈ N(a) BuildTree(b,S(b))

Figure 1: Algorithm to built a SAT.

Once that the tree, which allow us searching with spatial
approximation, is defined we explain the range queries with
radius r. The key observation is that, even if q 6∈ S, the
answers to the query are elements q′ ∈ S. So we use the
tree to pretend that we are searching for an element q′ ∈ S.
We do not know q′, but since d(q, q′) ≤ r, we can obtain
from q some distance information regarding q′ and by the
triangle inequality: it is known that ∀x ∈ U , d(x, q) ≤
d(x, q′) + d(q′, q), but d(q, q′) ≤ r, so it holds that for any
x ∈ U , d(x, q) − r ≤ d(x, q′) ≤ d(x, q) + r. So, we are
pruning all subtrees rooted at those b such that d(q, b) >
d(q, c) + 2r.

Hence, if we search for q ∈ U instead of simply going to
the closest neighbor, we first determine the closest neighbor
c of q among {a} ∪N(a). We then enter into all neighbors
b ∈ N(a) such that d(q, b) ≤ d(q, c) + 2r. This is because
the virtual element q′ sought can differ from q by at most
r at any distance evaluation, so it could have been inserted
inside any of those b nodes. In the process, we report all the
nodes q′ we found close enough to q.

As can be seen, what was originally conceived as a
search by spatial approximation along a single path is com-
bined now by spatial approximation along a single path is
combined now with backtracking, so that we search along a
number of paths.

A more sophisticated pruning criterion is obtained by
noticing that all elements inserted into child c of a are not
only closer to c than to a and N(a), but also closer to a than
to the parent of a and any neighbor of the parent of a. Ex-
tending the argument transitively, we see that c is closer to a
than to any ancestor of a and to any neighbor of any ances-
tor of a. Let us call A(a) the set of ancestors of a in the SAT
(we include a itself in A(a)), and N(A(a)) the set of neigh-
bors of ancestors of a (i.e., N(A(a)) =

S

a′∈A(a) N(a′)).
Therefore, we can take c as the closest element to q among
N(A(a)). Moreover, notice that, in an exact search for a
q ∈ S, the distances between q and the nodes we traverse
get reduced as we step down the tree. That is,
Observation: Let a, b, c ∈ S such that b descends from a
and c from b in the tree. Then d(c, b) ≤ d(c, a).

The same happens, allowing a tolerance of 2r, in a range
search with radius r. That is, for any b in the path from a to
q′ it holds d(q′, b) ≤ d(q′, a), so d(q, b) ≤ d(q, a) + 2r.
Hence, while at first we need to enter into all the neighbors
b ∈ N(a) such that d(q, b) − d(q, c) ≤ 2r, when we en-

ter into those b the tolerance is not 2r anymore but it gets
reduced to 2r − (d(q, b) − d(q, c)). Finally, the covering
radius R(a) is used to further prune the search, by not en-
tering subtrees such that d(q, a) > R(a) + r, since they
cannot contain useful elements.

Figures 2 and 3 illustrate more clearly the described sit-
uations, which can be found during range searches. The
algorithm in Figure 4 describes the search process afore-
mentioned.

(a) (b)

Figure 2: In (a) it is satisfied that d(a, q) > R(a) + r, so we
do not have to enter in the subtree of a because any of its element
will be in the range of the query. In (b) it is accomplished that
d(a, q) ≤ R(a) + r, so we must enter in the subtree of a because
it is possible (but not sure) that any of its elements lies into the
range.

Figure 3: In this case it is fulfilled that d(a, q) ≤ R(a) + r and
we have to enter in the subtree of a, although there is not exist any
element x in this subtree such that d(q, x) ≤ r.

RangeSearch(Node a, Query q, Radius r,
Distance dmin)

1. If d(a, q) ≤ R(a) + r Then
2. If d(a, q) ≤ r Then Report a

3. dmin ← min {dmin} ∪ {d(q, c), c ∈ N(a)}
4. For b ∈ N(a)
5. If d(b, q) ≤ dmin + 2r Then
6. RangeSearch(b,q,r,dmin)

Figure 4: Algorithm to search (q, r) in a SAT rooted at a.

In [16], it has been shown that the SAT gives an attrac-
tive tradeoff between memory usage, construction time, and
search performance, compared against another metric data
structures.

3 Improving the SAT from the Root

As it is already mentioned, the construction of the SAT it is
completely determined by the selection of the root, that is if
the same database takes another object as root, the resulting
tree would be different. This selection is made randomly,
then it is possible to find good roots such that the generated
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tree possesses a better performance mainly during searches,
but also we can find less suitable roots.

Figure 5 shows an example for a given space of two pos-
sible trees generated from the selection of different roots.
However, the selection of the root at random is an attractive
method because it is cheap, the choice of the root is free
if we measured our costs in number of evaluations of the
distance function. Moreover, it seems reasonable to use in-
formation from the database in order to select a good root
although we pay a certain cost in distance computations,
at hope that it compensates by reducing mainly the search
costs, or at least the construction costs.
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Figure 5: (a) shows a given set of objects as our space, (b) de-
picts the SAT obtained with p6 as the tree root, (c) shows the SAT
obtained with root p12.

3.1 Selecting Roots

The assumption used in this paper is: a object selected as
root is better than another one if the tree obtained by it,
possesses mainly better search costs. Since the SAT is an
static data structure, modifying it is extremely difficult be-
cause it does not admit insertions and deletion, we are more
interested in the search costs. Moreover, the root selection
is made only once before the construction of the tree.

In this paper we study different methods to handle the
selection of an element as the SAT root, and by the experi-
mental analysis we determine which is the method with bet-
ter results. Although we are more interested in search costs,
we highlight for each method the cost of selecting the root,
measured in number of distance evaluations.

In some methods underlies ideas of Graph Theory, others
are adaptations of methods used in other data structures to
carry out similar processes and the CSA method (proposed
in [17]) which has been designed specifically for the SAT.

The considered methods for root selection are: Random,
CSA (Centroid Selection Algorithm), Sampling, M-LB-
DIST (Maximum Lower Bound on DISTance), mM-LB-
RAD (minimum Maximum Lower Bound RADius), and
mM-AVG-RAD (minimum Maximum Average RADius).

The last four methods have been developed as adapta-
tions of those used in the M–tree to select the center of a
new node after an split operation [9]. They were adapted for
being used in the selection of the roots for the SAT, while
reasonable costs are kept. To easily identify each of those
methods of we have maintained their original names.

The following is a brief description of each one. For the
analysis of the costs we assume that S ⊆ U is our database
and N = |S|.

3.1.1 CSA Method (Centroid Selection Algo-
rithm)

This method was proposed for selecting the root of SAT,
it was introduced by Penarrieta, Morriberón and Cuadros-
Vargas in [17]. The underlying idea is that an element which
could be a good root for SAT would be one who is close to
ideal centroid of the database. It is based on the algorithm
HF presented at the Omni Family [11] and is reflected in
the following algorithm:

1. Select a random element s ∈ S.

2. Find the farthest element e1 from s.

3. Find the farthest element e2 from e1.

4. Let c the element that minimizes |d(e1, c) − d(e2, c)|
and |d(e1, e2) − (d(e1, c) + d(e2, c))|.

The last step is very important because there may be sev-
eral elements candidates for c, but it is chosen one that min-
imizes the perimeter of the formed triangle between e1, e2,
and c, and also that it is not far from the center of the trian-
gle. Figure 6 shows the steps to develop in the algorithm.

s

c

e

e2

1

Figure 6: Geometric idea that gives rise to the CSA method.

3.1.2 Sampling Method

This is a random policy, but iterated over a sample of objects
of size s > 1. The s objects are randomly selected from the
database S and it is selected as the tree root the element
whose maximum distance to the other s − 1 elements is
minimum.

It is easy to see in this case that are performed
s ∗ (s − 1)

2
distance evaluations, giving us a cost of O(s2).

In order to keep this cost as linear regarding the cardinality
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of S, we choose s =
√

N ; and this method performs O(N)
distance calculations.

3.1.3 M-LB-DIST Method

This policy differs from previous ones in that it needs to use
all the elements into the set. An object x is randomly se-
lected and it is computed its distance to all of the remains
elements in the set. Then, is selected as the root the farthest
object from x. Formally, it is selected at random an element
x ∈ S, and then is determined the object y ∈ S, such that
d(x, y) = maxz∈S{d(x, z)}. Clearly, this process to ob-
tain the tree root takes about O(N) distance computations.

3.1.4 mM-LB-RAD Method

It randomly chooses an object x ∈ S, and they are calcu-
lated distances between all elements z ∈ S and x. Then, it
chooses as root the object y for which maxz∈S{|d(y, x) −
d(z, x)|} is minimum. This approach selects an object y
that is at an intermediate distance from x.

Although the manner in which it is selected an element
y as root is more complex than in the previous method, the
number of distance calculations is also O(N), since it only
assesses the distances from all elements of S to x.

3.1.5 mM-AVG-RAD Method

This method emerged as an alternative to the previous one
and tries to be neutral with respect to the information of
upper and lower bounds, taking the average and applying
the min−max selection criterion. So, we choose again
at random a x ∈ S, we estimate for every z ∈ S the
distance d(x, z) and select an element y as root such that
maxz∈S{(d(y, x)+d(z, x))/2} is minimum. This method
also needs O(N) distance calculations to select the root.

4 Experimental Results

To analyze the performance of each method for root selec-
tion of the SAT, the experiments were developed on dif-
ferent metric spaces, to study the behavior of each one
more objectively. We consider mainly the search costs, but
also we analyze what happens with construction costs, and
hence the cost of the root selection. The metric spaces are:
Strings: a dictionary of 69,069 English words. The distance
is the edit distance, that is, the minimum number of char-
acter insertions, deletions and substitutions needed to make
two strings equal. This distance is useful in text retrieval
spelling, typing and optical character recognition (OCR) er-
rors.
NASA images: a set of 40,700 20-dimensional feature
vectors, generated from images downloaded from NASA
(http://www.dimacs.rutgers.edu/Challenges/
Sixth/software.html).
The Euclidean distance is used on this space.
Color histograms: a set of 112,682 8-D color histograms
(112-dimensional vectors) from an image database
(http://www.dbs.informatik.uni-muenchen.de/
∼seidl/DATA/histo112.112682.gz).
Any quadratic form can be used as a distance, so we chose
Euclidean distance as the simplest meaningful alternative.
Documents:: a set of 1,265 documents under the Cosine
similarity, heavily used in Information Retrieval [2]. In this

model the space has one coordinate per term and documents
are seen as vectors in this high dimensional space. The dis-
tance we use is the angle (arccos of inner product) among
the vectors. The documents are the files of the TREC-3 col-
lection (http://trec.nist.gov).
Vectors: a space of 100,000 vectors in the real unitary cube
in dimension 15, using Euclidean distance. We generated
100,000 random points with uniform distribution [0, 1]15.
This is a hard space (concentrate histogram of distances).
We treat this just as a metric space, disregarding coordinate
information. This choice allows us to control the exact di-
mensionality we are working with, which is not so easy if
is a general or real metric space.

The experiments consist in building a SAT for each
method of root selection on every space considered, and
then we search on they. In all cases, we built the indices
with 90% of the objects of metric space and used the other
10% (randomly chosen) as queries. All our results are the
average of 4 executions of each experiment using different
dataset permutations.

Strings Space is the only one with a discreet dis-
tance function, so we used radii 1 to 4, which retrieved
on average 0, 00003%, el 0, 00037%, el 0, 00326% y
el 0, 01757% respectively. For the other spaces with
continuous distance functions we have considered range
queries retrieving on average 0, 01%, 0, 1%, 1% of the
dataset. This corresponds to the following radii:a) NASA
Images Space: 0.605740, 0.78 y 1.009,b) Color His-
tograms Space: 0.051768, 0.082514 y 0.131163,c) Docu-
ments Space: 0.189441, 0.222466 y 0.600048, and d) Vec-
tors Space: 0.686576, 0.833130 y 1.019767.

4.1 Comparing the Different methods

We compare every method in each particular space to ob-
serve which of them performs fewer of distance evaluations
during searches. They was added in the plots the results of
methods of minimum and maximum distances that although
were not considered as alternative methods in this study be-
cause they are too expensive, they serve as reference for
other methods.

4.1.1 Strings Space

The comparison shows that, of all methods considered,
those with lower search costs are CSA and Sampling. Noted
that the Random selection method of the root does not seem
to get a good tree, from the standpoint of searches. Since,
almost all other ways of selecting the root, overcome it for
the four radii considered. Figure 7 shows these results.

4.1.2 NASA Images Space

In this space the method that had better performance
in searches is the M-LB-DIST. The methods mM-LB-
RAD and mM-AVG-RAD obtained identical performances.
Again, here it can see that the Random method does not
produce the best tree. Figure 8 illustrates this analysis.

4.1.3 Color Histograms Space

In this metric space we found that the most cost-effective
method for searches was the Random method and then, with
very little difference, the CSA method. It is striking to note
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Figure 7: Comparison of search costs on Strings Space.
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Figure 8: Comparison of search costs on NASA Images.

that the Random method produces the lowest search costs
in distance evaluations, though it is an algorithm that makes
O(1) distance calculations and extremely simple. Undoubt-
edly the characteristics of this space make that it was unpro-
ductive the use of our techniques, but clearly this has not
been the case in most of other spaces used. Figure 9 reflects
these facts.
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Figure 9: Comparison of search costs on Color Histograms.

4.1.4 Documents Space

In this space, the best method in searches for all radii and
also obtaining a good construction costs is the CSA method,
although the differences between CSA and the other meth-
ods are not too significant. We can observe that these dif-

ferences between the best and the worst cost, for all search
radii, is close to 50 distance evaluations. In Figure 10 it is
possible to note this situation.
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Figure 10: Comparison of search costs on Documents.

4.1.5 Vectors Space

In the experiments we can observe that there is a great sim-
ilarity between the search costs for almost all methods, ac-
tually there is not differentiation between them. The only
method that stands out as the fewest costly, with small dif-
ferences in the number of distance evaluations in respect
to other methods, is CSA in all radii considered. However,
the CSA method is the worst in terms of construction costs.
If you are not interested in paying so much in construc-
tion, Sampling would be a good option because their per-
formance is so similar in searches and its construction cost
is much lower. Figure 11 depicts these results graphically.
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Figure 11: Comparison of search costs on Vectors.

5 Conclusions and Future Work

The Spatial Approximation Tree has been shown that it
compares favorably against alternative data structures for
similarity searching in metric spaces of medium to high
dimensionality (“difficult” spaces) or queries with low
selectivity[16]. A detailed analysis shows that the selection
of the tree root is one of the processes that could be opti-
mized, because the SAT is completely determined by it and
this selection originally was done at random [14]. Other au-
thors have been devoted to this topic [17]. However we be-
lieve that our work provides more information because we

JCS&T Vol. 8 No. 2                                                                                                                                  July 2008

116



studied and compared more methods, most of which were
designed or adapted by us for this structure, and more ex-
periments were conducted.

We have achieved to build a tree more efficient for
searches, only paying some additional distance calculations
regarding the original SAT and maintaining the correctness
of the data structure. We experimentally demonstrate that
greater knowledge about the particular metric space allows
us improving the data structure. The algorithms proposed
for selecting the root permit to improve both search and con-
struction costs with respect to the original SAT.

While our results are applicable mainly to SAT, some of
them might be adequate to other arboreal data structures. In
the same way that we have improved the static version of
SAT selecting the tree root in a different form to the original
one, we could try to adapt some of the methods to the dy-
namic version of SAT. So far the SAT works in main mem-
ory; so the possibility that the selection of a better root gives
us as a result a more balanced tree, could allow to store it
efficiently in the secondary memory.
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[7] E. Chávez and G. Navarro. Towards measuring the
searching complexity of metric spaces. In Proc. Mex-
ican Computing Meeting, II, 969–978, México, 2001.
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