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HERMANN WEYL AND THE APPLICATION OF GROUP THEORY

TO QUANTUM MECHANICS

BY

GEORGE W. MACKEY

I was especially pleased to be invited to address this Congress

because Hermann Weyl ‘s work has had such an enormous influence on my

own. A large part of the latter, both on the general theory of unitary

group representations, and on its applications to quantum mechanics grew

out of my study of a celebrated paper by M.H. Stone (who some years

earlier had been my thesis advisor). This paper in turn seems to have

been directly inspired by the 1927 paper in which Weyl first sketched

his own ideas on the importance of group theory in quantum mechanics.

indeed the whole purpose of Stone’s paper was to give exact formulations

and announce rigorous proofs of two theorems suggested by Weyl ‘s

work. Moreover when I later embarked on a serious attempt to

understand quantum mechanics my most important sources were

von Neumann’s “Mathematische Grundlagen der Quantenmechanik’ and Chapter

II of the English translation of Weyl ‘s “Gruppentheorie und

Quantenmechanik”. Although we had very little personal contact I must

consider Hermann Weyl as one of my most important teachers.

Weyl’s work on the applications of group theory to quantum

mechanics was immediately preceded by important contributions to the

abstract theory of group representations including his far reaching

observations on the essentially group theoretical character of Fourier

analysis. To see all of this work in its proper perspective it will be

useful to begin with a sketch of the historical background.

During roughly the first quarter of the twentieth century three

exciting new developments were being pursued in mathematics and physics

which seemed to have nothing to do with one another. One was in

analysis, one in algebra and one in physics. They may be described
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briefly as follows:

(a) The work of Hubert on integral equations and the invention of the

lebesgue integral leading to the Riesz-Fischer theorem, Hilbert’s

spectral theorem and functional analysis.

(b) The work of Frobenius, Burnside and Schur in inventing and

developing the representation theory of finite groups.

(c) The development of the so called “Old quantum theory” by Planck,

Einstein and Bohr.

After making some remarks about each of these topics in turn I

shall sketch the remarkable events of the years 1925-1927 in which the

many anomalies and contradictions of the old quantum theory were removed

by the invention of quantum mechanics and in which it turned out that

the mathematical developments listed in (a) and (b) above were just

what was needed for the proper formulation and implementation of this

new and subtle refinement of classical mechanics. Moreover (a) and (b)

were not just brought together by their common application to (c). It

was found that Fourier analysis, spectral theory and the theory of group

representations could all be regarded as special cases of one far

reaching unified theory. In my opinion the work of Hermann Weyl was the

single most important factor in bringing about this startling

unification of these apparntly quite diverse topics.

Hilbert began his work on integral equations immediately after

hearing about Fredholm’s 1900 work on the same subject in the winter

semester 1900-1901. The Lebesgue integral was introduced in Lebesgue’s

thesis of 1902 and by 1907 had led to the celebrated Riesz-Fischer

theorem which put Fourier analysis in a much more satisfactory and

elegant form. The high point of Hilbert’s work on integral equations

was his celebrated spectral theorem for bounded self adjoint operators

in Hilbert space which was in turn suggested by his strategy of

exploiting the analogy between integral operators and the matrices of



3.

linear algebra.

Because of the far reaching role it will play in what follows we

pause to explain the nature of this theorem of Hubert’s and to introduce

some technical terminology. In broad terms it is an infinite

dimensional generalization of the classical theorem stating that every

nxn matrix 11a1I/ of complex numbers, which is self adjoint in the

sense that a1 = a) is diagonizable.

matrix \ 1J If which is “unitary’ in the sense that

I.is the identity matrix and such that II II
is a “diagonal’ matrix in the sense that a’ = 0 when

geometrical point of view one thinks of fl af1 as

operator TA in an n dimensional complex vector space

product” and then diagonizability means

of mutually orthogonal vectors each of

sense that TA / 4. where

restated in the form: TA is a direct s

This means that there exists a

tif 2 where

( If U1àlI k a II
iij. From a more

defining a linear

with an “inner

that there is a ba

which is an )‘eigenvector” in the

is a real number. This can be

um of “constant” operators each

acting in a one dimensional subspace. Of course the operator taking any

into is the constant operator in the th subspace.

When one replaces the finite dimensional space by a complete

infinite dimensional one—a so called Hilbert space the obvious

generalization of this theorem is no longer true. Many important self

adjoint operators have no eigenvectors except 0. To understand

Hilbert’s generalization it is useful to reformulate the classical

theorem in what may seem like a perverse manner. For each subset E of

the real line letk,, iKi be the eigenvalues of TA which happen

to lie in E and let denote the unique operator such that Fc- (ci

and P(ç)z when is not one of the
,?‘.

i.e. when is not

E. Then each is a self adjoint operator with the property that

Such self adjoint idempotent operators are called projections and is

in fact the projection of the whole space on the subspace spanned by the

eigenvectors c
* This projection valued set function

is easily seen to have the following simple

sis
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properties.

(1) P = 0 and = I where I is the identity operator, is the empty set

and R the whole real line.

EF = FE = FnE for all subsets E and F of R.

(3) If E1,E2.... are mutually disjoint subsets of R then -

=P_ +P +P- +t)

Moreover given this set function E-)PE we can easily reconstruct all the

matrix elements of TA and hence TA itself. Indeed for two arbitrary

vectors 4- and % one proves that (T;\ () ‘K( f() )
where denotes the set whose only element is , . Of course

except when/s, is one of the eigenvalues of TA and the sum on the right

hand side is actually finite and equal to ,K ) In our

perverse and awkward looking reformulation the classical diagonalization

theorem says that for every self adjoint operator TA in a finite

dimensional Hilbert space there exists a unique projection valued set

function EYPE having properties (1) (2) and (3) listed above such that

( (,
()qi)

Aef

The great advantage of this reformulation is that with minor

modifications it is also true for self adjoint operators in any

separable infinite dimensional Hilbert space; and in somewhat different

form this is what Hilbert proved for all bounded self adjoint operators.

After making a few preliminary definitions we shall give a precise

statement of this form of Hilbert’s theorem. We define a subset of the

real line to be a Borel set if it can be built up out of open intervals

by repeated application of the process of countable union, countable

intersection and the taking of complements. We then define a projection

valued measure on the line to be a function E—PE from the Borel subsets
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of R to the projection operators in some separable Hubert space H which

has properties (1) (2) and (3) listed above. Of course in (2) and (3)

we must restrict E,F,E1 ,E,... to be Borel sets. If there exists a

finite interval 3 = all r with —As A4 such that =1 one says

that the projection valued measure P has bounded support. Finally we

notice that if P is any projection value on R and z5 is any vector in the

Hilbert space H of P then E (Q’d)) is an ordinary numerical

measure on the Borel subsets of R and it makes sense to consider (1) ‘)

for suitably restricted complex valued functions i.e. to integrate f

with respect to the measure
— (pi) Qi). More generally one can

integrate f with respect to the complex valued measure L ‘( PL-(V’)’
With these preliminaries we may state:

Hilberts spectral theorem: Let T be any bounded self adjoint operator

in the separable HUbert space H. Then there exists a unique projection

valued measure with bounded support, E-P, defined on the Borel subsets

of R and whose values are projection operators in H such that for alLI5
and f’ in H we have the identity

Conversely it is rather easy to show that every projection valued

measure with bounded support is related in this way to a unique bounded

self adjoint operator I. One finds also that T has a basis of

eigenvectors as in the classical finite dimensional case if and only if

the corresponding P has countable support; that is if and only if there

exists a countable set E such that p =1. In that case

the ranges of the projections f constitute a direct sum

decomposition of the Hilbert space and in each of these T is a constant

times the identify. In the general case can well be zero for

every real number / and then one can think intuitively of the spectral

theorem as stating that the self adjoi nt operator is a “di rect integral”

of constant operators rather than a direct sum.
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Let us now turn to topic (b).

The theory of representations and their characters for finite groups was

invented in 1896 by G Frobenius. He did this in a more or less

deliberate attempt to generalize a much simpler notion that had been

used at least implicitly in number theory since its first appearance in

Gauss’ celebrated ‘Disquisitiones Arithmeticae” published in 1801. The

word character was introduced by Gauss. Let G be any finite commutative

group. Then by definition a character /1 of G is a complex valued

function on G such that 2( (L’/for all x and y on G. Gauss

considered only those characters t’ such that and only those

groups G which occurred in the number theory of binary quadratic forms.

One of his fundamental contributions was to show that the set of all

equivalence classes of forms with a given discriminant would be made

into a finite commutative group in a certain way and his characters’

were designed to distinguish between inequivalent forms with the same

discriminant. Dedekind generalized Gauss notion in 1878 by removing the

restriction that I and three years later Weber pointed out that it

made sense for arbitrary commutative groups. A large part of its

importance stems from the following simple theorem:

Theorem: Any complex valued function on the finite commutative group G

may be written uniquely in the form 41) /) where G denotes

the set of all characters of G. Moreover ihtecornp1ex coefficients C,&’

may be computed from f by the formula

C/i z
where o(G) is the number of elements in G.

While this theorem was not explicitly formulated until much later

one can, with hindsight, recognize its use as a key element in a number

of significant proofs in nineteenth century number theory.

The theory of higher reciprocity laws in number theory which was
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created by Gauss in 1828 and carried to a sort of conclusion by Kummer

in the 1850’s led more or less directly to Dedekind’s theory of general

algebrac number fields in 1870. The symmetry groups (Galois groups) of

these fields - unlike those considered by Kummer were not always

commutative and problems that Dedekind could solve in the commutative

case using characters as a tool remained baffling in the non

commutative case. Dedekind appealed to Frobenius for help and Frobenius

responded by showing how to generalize the theory of characters from

commutative to non commutative finite groups. Of course the definition

of character makes sense fOr non commutative groups but it does not go

far enough: Every finite group G has a largest normal subgroup N such

GIN is commutative. The classical characters of G are all trivial on N

and reduce essentially to characters of the commutative quotient group

G/N.

Frobenius’ solution is a little easier to explain in a second

version which he found a year later. One simply replaces complex

numbers by non singular nxn matrices and defines a matrix representation

of the finite group G to be a matrix valued function — A*)
defined on G such that A(xy) = A(x)A(y). When n is one we recover the

classical characters but now the non commutativity of matrix

multiplication makes it possible for our notion to be significant for

the non commutative part of G. If - U 1/ is a matrix

representation of G one defines the character of this representation to

be 2 L) . For those representations with n=l the characters in

this sense are precisely the classical characters of Gauss as

generalized by Dedekind and Weber. We shall refer to these henceforth

as one dimensional characters.

Just as with spectral theory it is often illuminating to think in

terms of linear transformations rather than matrices and to define a

representation accordingly. Since the diagonal sum is the

same for all matrix representations of the same linear transformation

there is no difficulty about defining characters just as before. A
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representation ‘ — G y linear transformations in some vector

space is said to be irreducible if there are no proper subspaces kA
of H(A) such that A1(t):’\ for all ‘Y . One proves that every

representation is a direct sum of irreducible representations in the

same sense that every self adjoint operator is a direct sum of constant

operators. Defining an irreducible character to be the character of an

irreducible representation one sees easily that every character is of

the form where are distinct irreducible

characters,j and the nj are positive integers. This decomposition is

unique. One proves also that) for each finite group G)the number of

distinct irreducible characters is finite— and in fact equal to the

number of conjugacy classes in the group.

Unlike the commutative case in which all irreducible characters

are one dimensional and quite easy to determine; finding the

irreducible representation5and corresponding characters of a finite non

commutative group can be very difficult. In the period 1896 to 1924 it

was an exciting new field of investigation. Even today there are

serious and interesting unsolved problems.

Topic (c) grew out of late 19th century attempts to explain the

spectrum of radiation from a so called ‘black body” by combining

electric magnetic theory with statistical mechanics. These attempts

were successful only when the temperature was large relative to the

frequency of the radiation. It is significant that other predictions of

statistical mechanics also failed at low temperatures. Then in 1900

Max Planck made the remarkable discovery that one could derive a formula

valid for all temperatures from the bizarre assumption that the energy

of a harmonic oscillator of frequencyY could not take on a continuum of

values but only values of the form nhT1 where h is a universal constant

(now known as Planck’s constant) and n 0,1,2,3... . In 1905 and 1906

Einstein used similar ad hoc ‘quantization’ hypotheses to explain the

low temperature behaviour of specific heats and the so called photo

electric effect. A bit later in 1913 H. Bohr found a similar
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explanation of the wave lengths occurring in the spectrum of atomic

hydrogen. There was success after success but no real understanding

because the various quantization hypotheses could not be reconciled with

the principles of classical mechanics. For a quarter of a century

physicists had to live with a level of logical incoherence which was

quite strange to them.

So much for the historical background. We are now ready to talk

about the contributions of Hermann Weyl. These began in 1924 with his

work on extending the representation theory of finite groups to a class

of infinite continuous groups: the compact Lie groups. They culminated

in 1927 with Weyl ‘s work in (a) Unifying group representation theory

with Fourier analysis (b) Helping to clarify the structure of the new

quantum mechanics that emerged to replace the old quantum mechanics of

1900-1924 after the fundamental discoveries of Heisenberg and

Schrcdinger in late 1924 and early 1925 (c) Unifying spectral theory

with the theory of group representations while applying both to the new

quantum mechanics.

In 1924 I. Schur a student of Frobenius and one of the leading

early workers in the theory of group representations published a paper

indicating how one could generalize certain features of the theory for

finite groups to the orthogonal groups. The key idea was to replace

summing over the group elements by integrating over the (compact) group

manifold —using a definition of integration introduced earlier in

another connection by Hurwitz. Weyl immediately became interested and

wrote a letter to Schur indicating how one might go much further. This

was soon followed by a celebrated sequence of papers “Theorie der

Darstellung kontinuerlicher haib ennfacher Gruppen durch lineare

Transformationen, I, II, III” published in the Mathematische Zeitschrift

in 1925 and 1926. In these Weyl gave a very complete and elegant

account of the irreducible representations and their characters for all

of the compact semi simple Lie groups. Further details will be found in

Professor Freudenthal’s talk at this Congress as well as below where we
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will indicate certain connections with Weyl ‘s work on quantum mechanics.

A year later in 1927 Weyl published a further paper on the

representation theory of compact Lie groups; this one written in

collaboration with his student F. Peter. It was entitled ‘Die

Vollstandigkeit der primitiven Darstellungen eine geschlossener

kontinuerlich Gruppe” and contains the now celebrated Peter-Weyl

theorem. This theorem can be stated in several ways but can perhaps

best be understood here as a new and unexpected generalization of the

fact that quite general periodic functions on the real line may be

expanded in Fourier series 4 t where
TI

that is that the complex trigonemetric
fi1IJ) I’

functions . form a complete set of (orthogonal) function amongst

functions of period Observe now that the set of all real numbers

is a continuous group under addition and that the “quotient group” I obtained

by identifying numbers that differ by an integer multiple of 2Ti is a compact

continuous group. Observe also that a complex valued function of period 27

may be regarded as a complex valued function on T and that in particular

the functions ——- i-JO)! -t2 are characters of T; indeed

one can show that every continuous character of I is of this form. Thus

one can restate the completeness of the complex trigonometric functions

as the completeness of the continuous characters on a

certain compact commutative Lie group. The idea of Peter and Weyl was

that there should be an analogous result for any compact Lie group;

commutative or not with continuous irreducible representations replacing

continuous characters. More precisely one replaces characters by matrix

elements of irreducible representations. The proof of Peter and Weyl

made use of the theory of integral equations and yielded a new proof in

the classical Fourier case. It is interesting that their theorem can

also be interpreted in purely group representational terms where it

asserts that the so called regular representation of the group (which

for non finite groups isinfinite dimensional) may be decomposed as a

direct sum of irreducible representations and every irreducible

representation appears with a multiplicity equal to its dimension.
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The corresponding result for finite groups is much easier and was one of

the earliest theorems of Frobenius.

From the point of view of the general structure of mathematics the

Peter Weyl theorem is especially interesting in that it unifies Fourier

analysis with the theory of group representations and at the same time

points out and underlines the essentially group theoretic nature of

Fourier analysis. It is well known that Fourir analysis has been a

well nigh indispensible tool in mathematical physics since its

introduction by Fourier in 1807 — above all because of its power in

solving linear partial differential equations with constant

coefficients. Moreover as I have indicated in part (b) of my remarks on

the historical background for Weyl ‘s work, the characters of finite

commutative groups have played an almost equally important role in the

nineteenth century development of number theory—especially through

the use of the formula 4( tl) where C’t’ —-ç çt)L”1 c’

If the reader will compare these formulae with the formulae -tx)

where he or she will have no

difficulty in seeing that both pairs are special cases of one general

assertion about compact commutative Lie groups. In other words the

paper of Peter and Weyl can be regarded as showing that one of the most

important methods of nineteenth mathematical physics is in essence the

same as one of the most important methods in nineteenth century number

theory. If the reader knows of any earlier recognition of this

important fact the author will be most interested in hearing about it.

Of course the unification just described is only part of the

story. The Peter-Weyl theorem applies not only to commutative compact

Lie groups but to compact Lie groups in general. We have before us not

only a unification of the Fourier analysis of periodic functions on the

line with its analogue for functions on finite commutative groups but a

natural generalization in which the group T and the finite commutative

groups are replaced by arbitrary compact Lie groups. (We are here

extending the definition of Lie groups to include all topological groups
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in which the connected component of the unit element is a Lie group in the

restricted sense, In particular all discrete groups are included).

This suggests the possibility that this extended non commutative theory

might have applications even more far reaching than the nineteenth

century applications of the commutative theory to both physics and number

theory. In the ensuing half century this possibility has become an

important reality the full extent of which is far from widely

appreciated.

The applications to physics began in 1927, the very year in which

the Peter-Weyl theorem was published but before describing Weyl ‘s

remarkable contributions to this development we must go back to 1924 and

pick up another thread; the development of quantum mechanics out of the

“old quantum theory” which started in late 1924 and early 1925 with

remarkable discoveries of W. Heisenberg and E. Schrdinger respectively.

In what seemed to be quite different ways each had managed to derive the

discrete energy levels of the hydrogen atom without making a priori

discreteness assumptions as Bohr had done. The immediately ensuing

developments took place so rapidly that it is difficult to know what

happened. Much communication took place by word of mouth and private

letters and one cannot trace the course of events through an orderly

sequence of publications. Let it suffice to say that many individuals

were involved including not only Heisenberg and Schrodinger but also

Born, Bohr, Pauli, Jordan and especially Dirac. By 1927 physicists had

at their disposal a subtle refinement of classical mechanics which

(a) was internally consistent, (b) automatically implied the mysterious

“quantization rules” of the old quantum theory, Cc) reduced to classical

mechanics in the limiting case of large masses and energies and

Cd) explained much that was beyond the reach of both classical mechanics

and the old quantum theory. A key feature of this new mechanics was its

abandonment of the idea that the future of a system of particles was

determined by the values of the coordinates of the particles and their

rates of change at some particular time t. Indeed it was decided that
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exact simultaneous values for all coordinates and velocities could not

be determined, or rather did not in principle exist. It did make sense

however to assign simultaneous probability distributions to all

dynamical variables (observables) and the aim of the theory became that

of studying how these probability distribution changed with time—and

also which such distributions could exist simultaneously.

The answers to these questions about changing probabilities, as

formulated by the physicists, left something to be desired both in unity

and in mathematical precision. These deficiencies were removed by

J. von Neumann in an extremely influential paper published in 1927.

von Neumann observed that Hilbert’s spectral theorem, suitably

generalized to unbounded self adjoint operators was just the tool that

was needed. In his formulation the set of all observables in a quantum

mechanical system are in a definite one-to-one correspondence with the

(not necessarily bounded) self adjoint operators in a separable infinite

dimensional Hilbert space H and the possible states (possible

simultaneous probability distributions) similarly correspond one to one

to the unit vectors in H; except that 4 andQ correspond to the

same state whenever / is real. The significance of this correspondence

is as follows. If A is the self adjoint operator corresponding to some

observable (9 and 4) is a unit vector defining a state then the

probability that will be found to have a value in the set E of real

numbers when measured in the state s will be(P(4) Here

is the projection valued measure canonically associated to A by the

generalized spectral theorem. As noted above the function E
—

is a measure and when cflz it is a probability measure. Studying

how these probability measures change with time reduces to studying how

the state vectorsth change with time and this is accomplished by

integrating a differential equation of the form H(’P) where H

is a suitable self adjoint operator.

At very nearly the same time von Neumann pointed out to Wigner

that an analysis the latter had recently made in connection with
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the applications of quantum mechanics to the understanding of atomic
spectra could be clarified and extended by using the representation
theory of the group of all permutations of n objects. In the
applications n is the number of electrons in the atom in question and
Wigner had managed to deal with the case n=3 by elementary methods. In
taking up von Neumann’s suggestion and developing his own method
accordingly1Wigner became the pioneer in applying the representation
theory of finite groups to the new quantum mechanics. Soon thereafter
he discovered how to clarify the classification of spectral terms by the
angular momenta of the atomic states by using the representation theory
of the rotation group in three dimensions a non commutative compact
Lie group.

At this point we are ready to return to the work of Hermann Weyl.
In that magic year 1927, Weyl published a paper entitled
“Quantenmechanik und Gruppentheorie” in which he applied the theory of
group representations to quantum mechanics in a rather different way
than Wigner and at the same time contributed in a significant way to
von Neumann’s clarification of the conceptual foundations of this new
mechanics. While so doing he indicated that HUbert’s spectral theorem
could be regarded as a theorem about the unitary representation theory
of a certain non compact connected Lie group — the additive group of
the real line; thus pointing the way to encompassing the spectral
theory of self adjoint operators as a special case of an enlarged theory
of group representations.

In the introduction to his paper Weyl begins with the statement
that one can distinguish sharply between two questions in (the
foundations of) quantum mechanics.

(1) How does one arrive at the self adjoint operators which correspond
to various concrete physical observables? (2) What is the physical
significance of these operators; i.e. how does one deduce physical
statements? He goes on to say that question (2) has been satisfactorily
answered by von Neumann (in the paper we have just discussed) but that
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von Neumann’s treatment can be supplemented in certain ways. Coming

back to question (1) he asserts that it is a deeper question which has

not yet been satisfactorily treated and that he proposes to do so with

the help of group theory. “Hier glaube ich mit Hilfe der Gruppentheorie

zu einer tieferen Einsicht in den wahren Sachverhalt gelangt zu sein”.

This may be translated as “Here with the help of group theory I believe

I have succeeded in arriving at a deeper insight into the true nature of

things”. In a footnote he cites the work of Wigner and says

(Translation) “this connection with group theory lies in quite a

different direction than the researches of Mr. Wigner who

The part of Weyl’s article following the introduction is divided

into three parts of which part II will be our principal concern. In

part I Weyl introduces the fundamental distinction between mixed and

pure states. von Neumann found this independently)but did not publish

it in the paper cited above. Weyl acknowledges the overlap in a

footnote added in proof. The concept of mixed state, which is

fundamental for quantum statistical mechanics is usually mistakenly

attributed to von Neumann alone. For example one often speaks of the

“von Neumann density matrix”. In part II he addresses the first of the

two questions raised in the introduction. His particular concern is to

find some a priori justification for the fact that the self adjoint

operators which correspond to position coordinates

and momentum components respectively should satisfy the now celebrated

Heisenberg commutation relations ? Q — (where h is

Planck’s constant) with all other pairs commuting. To discuss this

problem he makes use of a fundamental connection between self adjoint

operators and continuous unitary representations of R; the additive

group of the real line. Indeed if A is a finite dimensional self

adjoint operator one can make sense of in several ways; in

particular by diagonalizing A and replacing each eigenvalue A by j

One sees easily that e so that QA

is such a unitary representation and it is not hard to show conversely

N.B. e and e should be considered the same
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that for every continuous unitary representation t —-- of R there

is a unique self adjoint operator A such that At In

fact A Weyl suggests that by using

Hubert’s spectral theorem one can probably extend this correspondence

to the infinite dimensional case with unbounded self adjoint operators

included. If so one can replace the Q and P by unitary

representations UL and V where U and

and attempt to rephrase the question in terms of commutation relations
* ‘Q, l’D.—for the and V . This is easily done and the answer is that i u--I

if and only if

for all real numbers s and t. It is of course more or less obvious that

two self adjoint operators A and B will actually commute with one

another if and only if and 9 commute with one another

for all t and s. Thus the Heisenberg commutation relations for a system

with n particle coordinates may be rewritten in the form

for all j and k.

Notice now that if w define

-

which we may do whenever the P, commute with one another then

( ‘ - OL , ‘-

so that - -- — is a unitary

representation of the commutative group Rn of all n tuples of real

numbers under addition. Similarly • - —
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is also a unitary representation of the commutative group in question.

Moreover assuming the truth of Weyl ‘s conjecture about the general

correspondence between self adjoint operators and unitary

representations of R the additive group of the real line one shows

easily that every (continuous) unitary representation of R may be
j- A -

written uniquely in the form ‘v”--- — i2

where the are mutually commuting self adjoint operators. In these

terms as Weyl observed one may restate the Heisenberg commutation rules

in the following terms. The Q and the commute among themselves and

the unitary representations U and V of R which this makes possible

satisfy

- -- -
2L

These are the Heisenberg commutation relations in “integrated’ or “Weyl”

form.

Let us observe next (with Weyl) that if we define

to be the operator then )

-
-

—(i o -
is not a unitary representation of R . The factor

interferes. However it is a so called projective or ray representation.

Quite generally if G is a group and t —a L is a linear operator

valued function on G one says that L is a projective (or ray)

representation if ot óL’-t where 6(o,4) is a complex

number depending on s and t. When f’) I the definition reduces

to that of group representation as given earlier. For finite groups

projective representations were studied in some depth by I. Schur in

papers published in 1904 and 1907. Weyl points out that projective

representations are especially relevant in quantum mechanics because
9-

whenever V and V are unitary operators in a Hilbert space H and
1

V L V where e is a real number then V and V define exactly

the same permutation of the pure states of the system. It follows that
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in dealing with groups of symmetries each unitary operator defining a

symmetry is determined only up to a phase factor’ and so the

identity Lt L L must be relaxed to read L & L1 L

where is a complex number of modulus one.

Weyl observed not only that the Heisenberg commutation relations

are equivalent to the statement that W is a projective unitary

representation of the commutative group R2n with respect to the , )
“multiplier” where c( ±,, ‘ — “ ‘

A, i9 -

—

but that to within a certain natural equivalence 6 is the only possible

“non degenerate” multiplier for R2n. Thus Weyl demonstrated that one is

led naturally to self adjoint operators satisfying the Heisenberg

commutation relations if one simply considers the most general

projective unitary representation of the m parameter commutative Lie

group R2L (One can show that no non degenerate multipliers exist for
R6n+l). He attached great significance to this fact and to the fact (of

which he gave a heuristic proof) that to within unitary equivalence

there is only one projective unitary representation of R2n which is

irreducible and has non degenerate multiplier C Correspondingly of

course there is to within unitary equivalence only one irreducible 2-

tuple of self adjoint operators satisfying the Heisenberg commutation

rules. As Weyl expressed it “The kinematical structure of a physical

system is expressed by an irreducible group of unitary ray

representations in system space”.

In close connection with the above Weyl showed that the smallest

and simplest commutative group with a non degenerate projective

multiplier cr is the four element group z2 x z2. Once again there is an

essentially unique projective representation. It is two dimensional and

the four two by two matrices concerned may be taken as
1

and the

three matrices() ( ,) 9 now familiar as the Pauli spin

matrices. -

These remarks constitute Weyl ‘s contribution to the first of the
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two problems stated in the introduction to his paper. While more

suggestive than persuasive or logically compellingthey are of

importance as perhaps the first step in the program of deriving

fundamental relationships in quantum mechanics from group theoretical

symmetry principles in a program which I feel it appropriate to call

WeyPs program and to distinguish fairly sharply from the related

important program inaugurated and much developed by Wigner. (Later of

course each made contributions to the others programs).

As suggested in the introduction to this account of Weyl s

contributions and as will be explained below Weyl’s uniqueness theorem

as rigorized by Stone and von Neumann in 1930) admits a sequence of

natural generalizations; the last of which may be used to give a much

more logically compelling deduction of the Heisenberg commutation

relations— and quite a bit more besides. These developments show the

fundamental soundness of Weyl ‘s intuition as expressed in his semi

mystical answer to problem 1.

As far as the third and final secti on of Weyl ‘s paper is concerned

we shall mention only his emphasis on the point that when one integrates

the Schrdinger equation 4j; one obtains

so that unitary representations of the real line enter once again: The

change of a state with time is explicitly described by the action of

such a representation.

Last but not least w: come to Weyl ‘s celebrated book

“Gruppentheorie und Quantenmechanik’ published in 1928 and based on a

course of lectures given at the E.T.H. in Zurich during the winter

semester 1927-28. Of the five chapters of this book I and III largely

consist of mathematical preliminaries. The first contains an exposition

of the theory of (mainly) finite dimensional Hilbert spaces and the

third an exposition of the unitary representation theory of finite

groups and compact Lie groups. The heart of the book lies in Chapters

II, IV and V. Chapter II contains one of the earliest systematic

coherent accounts of quantum mechanics as a whole. Perhaps only Dirac
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had as complete an overall view earlier, but his early accounts are less

complete and well organized. The section of this chapter dealing with

the notion of a particle in an electromagnetic field contains the

following words (quoted from the English translation of the second

edition “The field equations for the potentials and of the

material and electromagnetic waves are invariant under the simultaneous

replacement of 41 and ;

here 1L is an arbitrary function of the space-time coordinates. This

“principle of gauge invariance” is quite analogous to that previously

set up by the author on speculative grounds, in order to arrive at a

unified theory of gravitation and electricity. But I now believe that

this gauge invariance does not tie together electricity and gravitation

but rather electricity and matter in the manner described above.” This

enunciation of the principle of gauge invariance is again a remarkable

anticipation of future work. A quarter of a century later it was

generalized by Yang and Mills in a now famous paper and in its

generalized form has revolutionized elementary particle physics since

the middle 1960’s.

Chapter IV entitled “Application of the theory of groups to

quantum mechanics” is divided into four parts. Part A, subtitled “the

rotation group” is a complete and detailed exposition of how the unitary

representation theory of the rotation group explains, organizes and

illuminates the theory of atomic spectra. This is the application

mentioned above which was discovered and worked out by Wigner and

von Neumann. Part B, “the Lorentz group is based on Dirac’s celebrated

paper of 1928 presenting a relativisticaly invariant quantum mechanical

theory of the electron. However it is much more than a simple

exposition of Dirac’s work. Weyl presents the material in a different

way and discusses its significance and implications in depth. Part C

“the permutation group’ is concerned with the implications for the

quantum mechanics of n interacting identical particles of the natural

action of Sthe permutation group on n things on the tensor product
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of n copies of the single particle Hilbert

space. For each permutation 71 in S there is a unique unitary operator

JJ which maps the vector in 9- -

into - and the mapping Tr— W- is a

unitary representation of S. When one decomposes this representation

as a direct sum of multiples of the various irreducible representations

of Sone obtains a direct sum decomposition of H x H .... x H)two

components which play a special role in quantum mechanics. These are the

components defined by the two one dimensional representations the

identity representation I and the representation J which takes every

‘odd” permutation into —1 and every even representation into 1. One

calls the subspace corresponding to I the symmetric subspace and that

corresponding to J the anti symmetric subspace. Moreover one refers to

these subspaces as the symmetrized and anti symmetrized tensor products

respectively. It is a fact of great importance that the Hilbert space

of states for a system of n identical particles (with one particle space

H) is not H x H .... x H as one might be inclined to suppose but either

the symmetric or the anti symmetric subspace. Since either case may

occur one has a fundamental division of all particles into two

categories. Nowadays one speaks of them as bosons and fermions

respectively. Weyl discusses how this circumstance implies that

interchanging two identical particles makes no physical difference

whatever, how the fact that electrons are fermions implies the Pauli

exclusion principle, how the latter together with the fact that

electrons have spin explains the periodic table and how “quantizing a

field” leads to particles (field quanta) which are bosons or fermions

according as one uses the Heisenberg commutation relations or the anti

commutation relations of Jordan and Wigner. The final part D “quantum

kinematics” is an exposition of part II of the paper of Weyl discussed

at length above.

The final Chapter V is widely considered to be the most difficult
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part of the book. Its starting point is Wigner’s observation about the

utility of the representation theory of the permutation group on the

analysis of atomic spectra. However Weyl carries the work much further

and applies it to the structure of molecules and the elucidation of the

chemical notion of valence. This program requires a considerable purely

mathematical development and around seventy percent of the chapter can

be read as pure mathematics. It will be easier to explain more fully

after we have explained the notions of ‘induced representation” and

“system of imprimitivity” which arise naturally when one generalizes the

Stone-von Neumann rigorization of Weyl ‘s theorem on the uniqueness of

the irreducible solutions of the Heisenberg commutation relations.

Considering the comprehensiveness of Weyl’s book, the early date

at which it was written and the wealth of original ideas which it

contains one cannot fail to be tremendously impressed by Weyl ‘s

achievement or to understand why it is considered one of the great

classics of mathematical physics.

We turn our attention now to an account of how later developments

inspired directly or indirectly by Weyl ‘s paper of 1927 “Quanten

mechanik und Gruppentheorie” led ultimately to a considerable

improvement of Weyl ‘s answer to problem I. It is interesting (and

instructive) to note that the intermediate stages as well as the final

result seem far removed from physics and that the final result has other

applications some of which :re also important for quantum mechanics.

The first step came in 1930 with the publication of a celebrated

short note by M.H. Stone entitled “Linear transformations in Hilbert

space III. Operational methods and group theory”. In this note Stone

announces two mathematical theorems with a sketch of their proofs and

states that an account of their significance for physics will be found

in the above cited paper of Weyl. One of them is a theorem about

arbitrary continuous unitary representations of the additive group of

the real line R and bears the same relationship to the decomposability

theorem for finite dimensional group representations as Hilbert’s
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spectral theorem bears to the diagonizability theorem for finite

dimensional self adjoint matrices. Just as in the spectral theorem one

associates to each such representation t—V. a unique projection valued

measure E>PE defined on R. However here the relationship (ft(y4 s.) a

S d(3(% 3t’) is replaced by (&y, +-) a Le4td((v,)
the equation holding for all real t. The theorem goes on to state that

the representation V and the projection valued measure P determine one

another uniquely and that every P occurs. It will be convenient to

refer to this theorem as the spectral theorem for unitary

representations of R.

Consider now the two one to one correspondences set up by the

spectral theorems for self adjoint operators and continuous unitary

representations of R respectively. Having a common term (the projection

valued measures on R) they define a one-to-one correspondence between

self adjoint operators H and continuous unitary representation t—.V. of

R. It is not difficult to check that H and V correspond in this way if and

only if Vt = eitH for all t. The fact that every V is so related

to some unique H is usually referred to as “Stone’s theorem”. The other

theorem stated by Stone is simply the uniqueness theorem for operators

satisfying the Heisenberg commutation relations in the form involving

group representations given it three years earlier by Weyl. Stone did

not publish his proof and the first published proof is due to

von Neumann. One speaks of the Stone von Neumann theorem.

The second step came n 1933 when A. Haar proved that every

separable locally compact group admits a measure which is invariant

under right (left) translation. That this measure is essentially unique

was proved slightly later by von Neumann. The significance of this

result Is that it paved the way for extending the theory of unitary

group representations from compact Lie groups to arbitrary compact

topological groups and on to topological groups which are not even

compact provided that they are locally compact in the sense that every

point has a compact neighbourhood. Haar himself observed that using his
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existence theorem one could extend the Peter Weyl theorem to all compact

topological groups.

The third step came in 1934 when L. Pontryagin and E.R. van Kampen

developed their celebrated duality theorem for locally compact

commutative groups. Let G be a locally compact commutative group. Let
A

G denote the set of all continuous characters of G i.e. the group of all

continuous functions,’U’ from G to the complex numbers of modulus one such

that . The product of two continuous characters

is evidently again such and under this operation G is again a

commutative group. It is even a locally compact topological group with

respect to a topology which may be loosely be described as the topology

of uniform convergence on compact subsets. One calls it the

haracter group of G or the dual group of G. Of course one may now form

Gthe dual of the dual and ask about its relationship toAG. It is

immediate that we may almost think of G as contained in G. Indeed for
/ ,i A

each the function on G is in fact a continuous
A

character on G and hence a member of G which we may denote by i . The

mapping x- f, is clearly multiplication preserving and if it happens to

be one-to-one we have an isomorphism of G onto a subgroup of . The

duality theorem originated by Pontryagin and completed on various points

by van Kampen asserts that x - f is always one to one that the subgroup

of G onto which it maps G on the whole of G and that this isomorphism of

G with G is an isomorphism of topological groups. In other words

locally compact commutative yroups occur in dual pairs; each member of

any pair being the dual of the other. In some cases G and G may be

isomorphic as topological groups so that G is self dual; for example

this is so when C is finite and when G is the additive group of a finite

dimensional real vector space. In general however this is not so. In

particular C is compact whenever G is discrete and vice versa.

The fourth step came a decade later in 1944. Stone’s formulation

and proof of the spectral theorem for continuous unitary representations

of P was, in effect, an extension of the theory of group representations
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to one particular non compact group. Of course R is locally compact as

well as commutative and it is natural to wonder if one can go further

and extend this theory to all locally compact commutative groups. One

can and this was realized independently at about the same time by

Ambrose in the U.S.A., Godement in France, and Naimark in the Soviet

Union, All of these mathematicians published their work in 1944. To

see how to generalize the formula (V ()‘)
one has only to realize that for each real the function t e is

a character)of R and that ,(- is an isomorphism of R with R.

Using this isomorphism, E — P can be thought of as a projection valued

measure on R and one can rewrite Stone’s formula as

(&)‘
= I :

This formula of course makes equal sense when R is replaced by any

locally compact commutative group G and R by G the Pontryagin dual of G.

The theorem of Ambrose, Godement and Naimark now simply asserts the

existence of a one to one correspondence between all continuous unitary

representations V of G and all projection valued measures E P on the

dual G such that (( ‘) j 1, /) (‘i)’) for all t G and all

and t! in H(V) the Hilbert space of V.

The fifth step came in 1919 when the present author published a

paper in the Duke Mathematical Journal entitled ‘On a theorem of Stone

and von Neumann”. It was based on the following sequence of

observations.

(1) The factor e51tl ± ... sntn) which occurs in the Weyl form of

the Heisenberg commutation relation can be interpreted as 2(t)
where t = t.t,. . .t is an element of the group of all n tuples of

real numbers under addition and l’is the character

2



the Heisenborg commutation relations have

n which may be written down for a pair U, V

whEre U is a continuous unitary representation of an arbitrary

locally compact commutative G andAV is a continuous unitary

representation of the dual group C. This generalization reads:

U ViUr for all i C and all C C.

(3) Using the generalized spectral theorem of Ambrose, Godement and

Naimark one has a projection valued measure on C = C canonically

associated to V and an elementary argument shows that V and U

satisfy the commutation relation Q’V’ if and

only if U and P satisfy the commutation relation

I’

LE iif

— —I
for all ( and E where EJ denotes the translate of E by

Because of (3) studying pairs U, V which satisfy the generalized

commutation relation written down under (2) can be reduced to

studying pairs. U, P which satisfy the commutation relation

ftj—’ 1,v written down under (3). However both

and P are defined on the same group C; no reference whatever being

given to the dual C of C. Moreover this new form of the

commutation relation makes sense even when C is non commutative.

This raises the question of proving a generalization of the

Weyl-Stone-von Neumann uniqueness theorem that applies not only to

dual pairs of locally compact commutative groups but to arbitrary

locally compact groups — commutative or not. This can be done and

the generalized theorem is the main result of the Duke Journal

paper cited above. In this paper the group G is assumed to have a

countable basis for the open sets but this restriction was removed

by Loomis in 1962.

It is perhaps worth stating

as to pre5ent a concrete example

(2) With this i

an obvious

26.

nterpret at i on

general i zati o

(4)

U

the theorem explicitly in such a wy

of a pair satisfying the commutation
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relation, Let 0 be a locally compact group and let tbe a right

invariant Haar measure for G. Form the Hilbert space of all

square summable complex valued functions on G. For each in 0 let U1
denote the unitary operator which takes f into g where g(y) = f(yx).

Then is a continuous unitary representation of G known as

the regular_representation. Next for each Borel subset E of 0 let

denote the projection operator which takes f into g where g is the

function which agrees with f on E and is zero outside of E. One

verifies that E P is a projection valued measure on G and a

straightforward computation shows that

r
t137-I >,

for all - and E. Finally one can prove that the pair U, P° is

irreducible in the sense that no proper closed subspace of )
is invariant under all U.° and all P. Now let U be any unitary

representation of 0 and let P be any projection valued measure on 0 such

that the P[ and the U% operate in the same Hubert space H. Suppose

that U and P satisfyand are jointly irreducible. Our generalized

uniqueness theorem then asserts that there exists a unitary operator W

mapping H onto so that WPW = P and W U1W’ = U for all

and E.

Shortly after this paper was submitted the author noticed that a

still further generalization was conceivable. One can replace the

projection valued measure EP on 0 by a projection valued measure

defined on some space S on which 0 acts as a transformation group. The

commutati on rel ati on U P = i U. still makes sense provided that we

interpret ]-y as the transform of s in S by x in G. Moreover it

reduces to the one discussed above when S=G and J’ 4% is just group

multiplication. The question that now presents itself is the following.

Js the uniqueness theorem stated above still true at this new level of

generality? The answer is no. However in an important special case
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one can analyze the non uniqueness completely and so produce a theorem

that generalizes the uniqueness theorem stated above. More specifically

one can find all possible solutions of the commutation relation in

questi on. The special case in which this can be done is that in which S

is the homogeneous space’ G/K defined by some closed subgroup K of G;

that is the space whose elements are the right K cosets K’ and the

transform of K’ by y is the right coset Ky’. It is evident that the

action of G on G/K is ‘transitive” in the sense that given K- and K*in

0/K there cxi sts z in G such that j k We need only choose

z=xy. Conversely every transitive 0 space S with suitable regularity

properties is isomorphic to a coset space 0/K. When S = G/K what one

finds instead of uniqueness is that the possible solutions of the

commutation relation above have equivalence classes that correspond one

to one in a natural way to the equivalence classes of unitary

representations of K. Moreover a solution of the commutation relations

is irreducible if and only if the corresponding unitary representation

of K is irreducible. Of course when K = so that S = G there is only

one irreducible representation of K. That is why there is uniqueness

when S 0.

To gain sonic insight into the situation and a new point of view

regarding the meaning of the commutation relation it is useful to

consider the special case in which there are only a discrete countable

infinity of right K cosets so that S is a countable disc,ete set of

points, In that case the projection valued measure E 4 P- is completely

determined by the projections assigned to the one point subsets

of S. Moreover the ranges of these projections constitute a

direct sum decomposition of the underlying Hilbert space H.

H4 where H,D is the range of P . A very
/_)

simple computation now shows that the commutation relation UI- %frJI

holds if and only if each U. carries the subspace H onto the subspace Hj

Thus the operators U while they do not leave the subspace S

H invariant in general, they do preserve their identity; merely
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ons reduces, in this case at least, to finding all

asses of continuous unitary representations of the

if U is a unitary representation of a group G and

is a direct sum decomposition of the underlying

refers to this decomposition as a “system of

representation U provided that each U, simply

H among themselves. If in particular, for each

an’ such that U(H) H one refers to a

mprimitivity. This terminology is suggested by a

closely related notion in the theory of permutation groups. The fact

that a unitary representation of a finite group G together with a

tcinsitive system of imprimitiv’ty for it is determined by a unirary

repiesentation L of a subgroup of G WdS already kno’n to Frobenius We

may now think of Frobenius’s result as finding the most general solution

of our last generalization ef the Heisenherg commutation relations in

the very special case of finite G and S. The fact that Frohenius’s

result has a more or less complete generalization to the case in which G

is a general separable locally compact group and K is an arbitrary

closed subgroup is the content of a paper published by the present

author in 1949 arid entitled “Imprimitivity for representations of

localy compact groups I”. It will be useful to refer to the main result

of this paper as the “imprimitivity theorem”. In its replacement of a

discrete system of imprimitivity by a projection valued measure it is

strongely reminiscent of the passage from the classical diagonalization

permuting them among themselves Now consi der the special case in vh ch

s = K, the right coset s containing the identity. Then for ‘ H L))i)
so that k—a U defines a unitary representation L of the subgroup K by

operators in the subspace H . A little reflection should convince the

reader that once one knows K and the unitary representation L of K the

pair U, P can be reconstructed and is uniquely dete”mined by K and L

Thus finding all unitary equivalence classes of pairs U, P satisfying

the commutation relati

unitary equivalance cl

subgroup K.

Quite generally

HW) = H, + H

Hilbert space H(U) one

imprirnitivity” for the

permutes the subspaces

pair i and j, there is

transitive system of i
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theorem for matrices to Hubert’s spectral theorem.

On the face of it the imprimitivity theorem seems to have left its

original inspiration far behind and to have very little connection with

physics. However as we shall now indicate and as was promised earlier

it is just what is needed to give a more satisfying answer to Weyl’s

problem I. Let S denote physical space and letE denote the group of

all isometries of S. Then in the usual Euclidean model for space (and

in certain other models as well) E acts on S as a transitive

transformation group. Consider now the quantum mechanical model of a

single free particle. Let H be the Hilbert space of pure states in the

von Neumann formulation. The position coordinates and the velocity or

momentum components will then be associated with certain self adjoint

operators in H. Which operators? That is Weyl’s problem I. To answer

it we begin with the observation that the position coordinate

observables may be discussed in a coordinate free way by replacing them

with two valued observables which take on the value one or zero

according as the particle is observed to be in a certain region E of

space or not. Each such two valued observable will necessarily

(according to the von Neumann scheme) be associated with a projection

operator ft and it is easy to argue that E4 ft must satisfy the

conditions defining a projection valued measure on S. Once P is known

it is easy to deduce the projection valued measure associated with any

real valued coordinate i.e. any real valued Borel functic4on S. It is

just the projection valued measure E- on the real line R. In

these terms Weyl’s problem I becomes (in part) What projection valued

measure P on S has nature chosen (or must nature choose). The answer is

based on the hypothesis that nature’s choice will reflect the symmetry

of space as reflected in the action of the group £ on 5; that the laws

of nature must be independent of position and orientation in space. It

is not hard to argue that this principle implies the existence for each ‘V

in E of a certain unitary operator U1 which describes the transformation

of the states associated with a rigid motion of space and that the
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mapping ‘ U is a projective unitary representation associated with

some multiplier 6 Of course U and P cannot be independently chosen

they must be so related that rigid motions change the position

observables in the appropriate way. Analysis of this leads to the

conclusion that U and P must be so related that U P U is just PJ f’

But this relation is equivalent to our generalized commutation relation

U P- = and we may apply the imprimitivity theorem (which is

valid also for projective representations). The conclusion is that, up

to unitary equivalence there is just one possible pair P, U for each

projective unitary representation L of the subgroup K of E. leaving fixed

an ‘origin s3 in space. K is of course just the compact group of all

rotations about a fixed point and it is well known that it has precisely

one irreducible unitary projective representation of every positive

integer dimension. Thus one has an overall view of all possible pairs

P, U and one sees in particular that there are only a discrete countable

set of such, Given P, U one not only knows the operators corresponding

to the coordinate observables but also the operators corresponding to

the linear and angular momentum observables. The latter are derived

from U by the general principle valid in both classical and quantum

mechanics relating integrals of the motion to one parameter symmetry

groups. In the special case in which the representation L of K is one

dimensional one is led to the classical form for the operator

corresponding to position and momentum observabies for a particle

without spin. More generally if L is the projective representation of

dimension j = 1,2,3,’ one is led to the classical form for the operators

corresponding to the position and momentum observables for a particle of

spin i.L. In particular one is led automatically to the Pauli matrices

for particles of spin . For further details including the extension to

interacting particles and references to related work of Wigner and of

Wightman the author is referred to the middle sections of the author’s

book ‘Unitary group representations in physics, probability and number

theory’ W.A. Benjamin 1978.
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We conclude with some very brief indications concerning

connections of the above with the fifth chapter of Weyl ‘s book. First

of all given any unitary representation L of any closed subgroup K of

any separable locally compact group G there always exists a pair P, U

for the action of G on G/K such that the defining representation of K is

L. The representation U is uniquely determined by L and is known as the

unitary representation of G induced by L. It is convenient to denote
L

this induced representation by the symbol U . One finds that many

interesting locally compact groups G have most if not all their

irreducible representation of the form UL where L is a lower dimensional

representation of a proper subgroup. Moreover the imprirnitivity theorem

is a useful tool in proving such things. Indeed one can often detect a

transitive system of imprimitivity for the representation in question

and this implies that the representation is induced.

In his fifth chapter Hermann Weyl is concerned with the tensor

product of n replicas of the same Hilbert space H. This Hilbert space

is the space of states of a single particle moving in a potential field

and is also the space H(V) of a unitary representation V of a compact

group K. As explained earlier in this paper there is a natural unitary

representation W of the symmetric group S in HiH ... x H. Now

V x V .... x V is a representation of the product group K x K x K ... x<

where in each case there are n factors and W and V x V ... x V both act in

the same product HUbert space H x H .. x H. These two representations

combine to define a representation VW of a certain twisted’ product of

the two groups K x K .. x K and S. Here we define the product of

,
i and to be i(2)) - - -

One is interested in determing the structure of the restriction of VkW

to the subgroup of the twisted product consisting of all -i --
Y_-t. 7C

with x = x ... = xh. This subgroup is of course isomorphic to K x S.

Consider now a decomposition of V into irreducibles H(V) = H + H2 +

where each H is an invariant subspace. Then each product space

H) x H ... x H. will be a subspace of H x H ... x H and all of these
I’ -k
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subspaces together constitute a direct sum decomposition of H x H .. x H

These subspaces are of course invariant under the representation Vttof

K x K ... x K but not under the representation VW of the twisted

product of K x K ... x K with 5k However, and here is the key point,

they do constitute a discrete system of imprimitivity for ?W. it is

not a transitive system but one may decompose it into transitive pieces

and thus decompose V”W as a discrete direct sum of induced

representations. The general theory of induced representations tells

one how to study the restrictions of these induced representations to

subgroups and in particular to K” X Sn where K” is the “diagonal”

subgroup of K x K ... x K mentioned above.

Weyl does not explain what he is doing in these terms. However if

one does so and is familiar with the theory of induced representations

one finds oneself led automatically to many of the main arguments. The

writer hopes some day to explain all this in detail in an article

entitled “Weyl’s fifth chapter revisited”.


