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ABSTRACT Trust represents the belief or perception of an entity, such as a mobile device or a node, in
the extent to which future actions and reactions are appropriate in a collaborative relationship. Reputation
represents the network-wide belief or perception of the trustworthiness of an entity. Each entity computes
and assigns a trust or reputation value, which increases and decreases with the appropriateness of actions
and reactions, to another entity in order to ensure a healthy collaborative relationship. Trust and reputation
management (TRM) has been investigated to improve the security of traditional networks, particularly the
access networks. In 5G, the access networks are multi-hop networks formed by entities which may not
be trustable, and so such networks are prone to attacks, such as Sybil and crude attacks. TRM addresses
such attacks to enhance the overall network performance, including reliability, scalability, and stability.
Nevertheless, the investigation of TRM in 5G, which is the next-generation wireless networks, is still at
its infancy. TRM must cater for the characteristics of 5G. Firstly, ultra-densification due to the exponential
growth of mobile users and data traffic. Secondly, high heterogeneity due to the different characteristics
of mobile users, such as different transmission characteristics (e.g., different transmission power) and
different user equipment (e.g., laptops and smartphones). Thirdly, high variability due to the dynamicity
of the entities’ behaviors and operating environment. TRM must also cater for the core features of 5G (e.g.,
millimeter wave transmission, and device-to-device communication) and the core technologies of 5G (e.g.,
massive MIMO and beamforming, and network virtualization). In this paper, a review of TRM schemes in
5G and traditional networks, which can be leveraged to 5G, is presented. We also provide an insight on
some of the important open issues and vulnerabilities in 5G networks that can be resolved using a TRM
framework.

INDEX TERMS Next-generation networks, 5G, Cooperation, Trust and reputation management, Artificial
intelligence

I. INTRODUCTION

5G is the next-generation wireless network that aims to
improve spectral efficiency and energy efficiency in the

presence of a large number of mobile devices (or nodes)
and data traffic in order to increase data rate (or network
capacity), as well as to reduce latency and energy consump-
tion [1], [41]. Figure 1 shows a 5G network that must cater
for the next-generation network characteristics, including: a)
ultra-densification in which there is a significant increase in
the number of network entities (e.g., the number of small

cells, such as pico cells and femto cells, in an area); b) high
heterogeneity in which there are different network entities
(e.g., network cells and devices), network characteristics or
scenarios (e.g., indoor and outdoor), user requirements (e.g.,
quality of service), and so on; and c) high variability in which
bursty traffic (or network traffic that changes significantly)
causes insufficiency and surplus of bandwidth within a short
period of time. Network entities, such as network cells and
user devices, must cooperate and coordinate with each other
via message exchange to perform cooperative tasks in order
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to enhance the overall network performance (e.g., end-to-end
delay, successful packet transmission rate, and scalability).
Examples of cooperative tasks are: a) cooperative communi-
cation that enables neighboring nodes to cooperate with each
other and work as relays to forward information or packets
to intended destinations [42]; b) channel access that enables
neighboring entities to gather network information about
channel availability; and c) clustering that enables nodes to
segregate themselves into logical groups in order to enhance
network stability and scalability. While cooperation is im-
portant for network functionalities [22], [52], it has opened
door to various security vulnerabilities, particularly in access
networks. A successful cooperation must remove or reduce
the detrimental impacts of malicious or misbehaving entities
as time goes by. Trust and Reputation Management (TRM),
which is embedded in an entity, calculates the trust and
reputation values of another entity in an independent manner
[21], or in cooperation with neighboring entities [4], [5], or a
third party entity [50]. TRM rewards and increases the trust
or reputation values of legitimate entities, as well as punishes
and reduces the trust or reputation values of malicious or
misbehaving entities, as time goes by. This helps to identify
malicious or misbehaving nodes so that countermeasures,
such as to remove them from collaboration and to reduce their
detrimental impacts to cooperation, can be taken. The unique
characteristics of next-generation networks, including ultra-
densification, high heterogeneous, and high variability, have
brought about new challenges to the provision of TRM in 5G.

Traditional security measures, such as cryptography [2], [12],
and intrusion detection systems [12], [40], which provide
confidentiality, integrity and authentication, provide security
services to countermeasure external attacks (e.g., man-in-the-
middle [2] and eavesdropping [2], [40]) at the application
layer. In contrast, TRM provides security services to coun-
termeasure both external and internal attacks, such as crude
[33], [35], [53], wormhole [21], [50], [53], black hole [4], [5],
[35], and routing loop [5], [34], [50], attacks at lower layers,
particularly the network and data link layers (see Table 5,
for more details). For instance, TRM continuously monitors
the trust and reputation values of nodes despite a successful
initial authentication so that any changes of behaviors from
legitimate to malicious can be detected.

A. CONTRIBUTIONS
This paper presents a review of the state of the art of TRM
in 5G, as well as other networks, particularly cognitive radio
networks (CRNs), vehicular ad-hoc networks, and 4G, which
can be leveraged to 5G. This paper focuses on TRM in access
networks, rather than core networks. The review is neces-
sary as collaboration is essential to various schemes in 5G
access networks, including channel access, channel sensing,
interference mitigation, and collaborative applications that
require content sharing, and TRM has shown to detect mali-
cious nodes and manipulated data efficiently in collaboration.
Various aspects of TRM are covered, including objectives,

challenges, characteristics, attacks, and performance metrics;
and these aspects are related to the state of the art. This paper
also explains various open issues that can be explored to
further enhance TRM in 5G.

B. ORGANIZATION OF THE PAPER
The rest of this paper is organized as follows. Section II
presents background and the roles of TRM in 5G. Section III
focuses on the taxonomy of TRM in 5G. Section IV presents
a TRM framework covering the mechanisms of TRM. Sec-
tion V presents existing TRM schemes in 5G. Section VI
presents open issues, and finally Section VII concludes the
paper.

II. BACKGROUND AND THE ROLES OF TRM IN 5G
This section presents the background of 5G, including its
architecture and new features with emphasis on the security
vulnerabilities of the new features that are brought about
by their needs for collaboration in 5G. This section also
presents the background of TRM with the main interest on
the roles of TRM in addressing the security vulnerabilities
of the new features of 5G. Further description about TRM in
5G, including its challenges, is presented in Section III.

A. WHAT IS 5G?
5G is the next-generation wireless network aspired to achieve
high data rate (or network capacity), as well as low latency
and energy consumption. Table 1 summarizes some notable
differences and significant improvement in terms of network
performance in 5G as compared to 4G.

1) 5G Architecture
5G uses a control-data separation architecture (CDSA) in
which the control and data planes are available in separate
hardware devices in 5G. However, they are tightly coupled in
a single hardware device in traditional networks. The control
plane, which has controllers and network-wide information,
performs management and services, such as routing and
resource allocation, that impose policy on the data plane;
while the data plane performs data storage and forwarding
[1]. Specifically, the functions of the control plane are per-
formed using software running based on software-defined
networking (SDN) [14], [40], network function virtualization
[34], [40], and network slicing [14], and the functions of the
data plane are performed using less complex user devices
in 5G. Hence, 5G provides programmability and reconfigu-
ration. On the other hand, both control and data planes are
performed by specialized hardware devices, such as routers
and switches, in 4G.

Figure 2 shows that: a) macro cell, which serves as the
control plane, has the largest coverage at the expense of
lower data rate because lower frequency bands (e.g., less
than 2 GHz) are used; and b) small cell (i.e., pico and femto
cells), which serves as the data plane, has smaller coverage
although it has higher data rate because higher frequency
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FIGURE 1: The features and cooperative scenarios of 5G wireless networks. These include SDN, clustering, D2D communica-
tion, beamforming, CoMP, and CRN. The malicious users MU* are characterized by high heterogeneity and ultra-densification
in the presence of various kinds of network cells and user equipment (UE) such as mobile (MU), laptop, cluster head (CH) as
relay node, including macro cell, small cells (i.e., pico and femto cells), base stations (BSs)/controllers, and cloud.

TABLE 1: Comparison between 4G and 5G

Category Details Performance enhancement
4G 5G

Performance

Data rate Up to 1 Gbps Up to 20 Gbps
Spectral efficiency 30 bps/Hz 120 bps/Hz
Latency 10 ms 1 ms
Mobility support Up to 350 Km/h Up to 500 Km/h
Energy efficiency 0.1 mJ/100 bits 0.1 µJ/100 bits

Channel Frequency band 2–8 GHz 2–300 GHz
Connection density 1,000/km2 1,000,000/km2
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bands (e.g., mmWave or more than 30 GHz) are used. TRM
has been investigated to improve the security of UE in access
network, whereby UEs form a multi-hop network and may
connect to BSs [6], [17], [39]. However, TRM has not been
investigated to improve the security of BSs in the network
core, whereby multiple BSs from different network cells
communicate with each other [16], [54]. Both macro cell
and small cells can use different frequency bands. As an
example, high transmission power and low frequency bands
are used to provide long-range transmission (as shown using
solid lines in Figure 2). As another example, low transmis-
sion power and high frequency bands are used to provide
short-range transmission (as shown using dotted lines in
Figure 2). The base station (BS) of each network cell has
different kinds of radio access technologies (RATs) to access
licensed (or cellular) and unlicensed (or cognitive) channels;
contributing to the heterogeneous nature of 5G. In addition,
the BS of the macro cell is connected to the cloud, which
provides access to a central controller. The central controller
collects network-wide information on traffic characteristics
(e.g., traffic pattern, congestion level, and interference level),
network performance, network resources (e.g., computing
and storage capabilities), and network services (e.g., medium
access control, route selection, and resource allocation).

Cognition (or intelligence) can be incorporated in macro
cells, small cells, and the central controller to make intel-
ligent decisions. Artificial intelligence approaches, such as
reinforcement learning (RL) [34], and its deep variant called
deep reinforcement learning (DRL) [25], [58], enable an
agent (or decision maker such as the central controller and
BS) to observe and learn from the operating environment.
In order to use the artificial intelligence approach, the three
main representations of RL and DRL, namely state, action,
and reward, must be designed. The state represents the deci-
sion making factors (e.g., the estimates of trust values) that
affect action selection and reward. The action represents a
selected action, such as a forwarding entity (or node). The
reward represents network performance (e.g., packet delivery
rate, malicious node detection rate, and false alarm) achieved
by the agent for taking the action under the state, which
may either improve or deteriorate. As an example, artificial
intelligence can be used by network cell BSs to choose the
right RAT so that they can establish communication with
their nodes with higher quality of service (QoS) and quality
of experience (QoE). The agent is embedded in each network
cell BS. The state represents radio frequency (i.e., lower or
higher frequencies), the action represents the selection of an
ideal radio technology to communicate, and the reward rep-
resents successful packet delivery rate, which is a QoS per-
formance metric. As another example, artificial intelligence
can be used by network cell BSs to adjust their transmission
power so that they can reduce inter-cell interference with both
neighboring and overlapping network cells, which helps to
improve channel sharing. Similarly, the agent is embedded
in each network cell BS. The state represents the coverage

or position of a user or network entity, the action represents
a beam towards the user or network entity, and the reward
represents the reduced interference level.

FIGURE 2: 5G architecture. Macro cell, pico cell, and femto
cell overlap among themselves. Macro cell handles the con-
trol plane and is connected to the cloud network, which
consists of the central controller or management node, via
backhaul. Dotted lines represent communication in a network
cell, such as data transmission from one UE (or network
device) to another UE via a relay UE (or service node). Solid
lines represent communication between network cells, such
as control message exchange between macro cell and small
cell BSs (or terminals). For simplicity, BS refers to terminal,
UE refers to network device, relay UE refers to service node,
and central controller refers to management node.

Table 2 summarizes the characteristics of macro cell, pico
cell, and femto cell. The macro cell has the largest coverage,
the highest transmission power, and the highest number of
users supported. The largest coverage is attributed to the
use of lower frequency bands that provide higher penetra-
tion power and longer propagation distance. The small cells
(i.e., pico cell and femto cell) have smaller coverage, lower
transmission power, and lower number of users supported.
The small cells are suitable for small areas. For instance,
pico cell can be used in the university and airport com-
pounds, and femto cell can be used in the indoor environ-
ment. Nevertheless, the small cells provide: a) higher data
rate because higher frequency bands (e.g., mmWave or 2-
300 GHz frequency bands) and beamforming with multiple
MIMO for directional transmission are used; b) lower delay
because of local processing at close proximaty BSs; c) lower
energy consumption because of communication among close
proximity BSs and nodes; and d) higher connectivity and
larger coverage because of its coverage extension. Small cells
can offload traffic from the macro cells.
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TABLE 2: Characteristics of network cells

Cells Coverage Transmission power Users
Macro 1-30 km 5-25 watts Upto 1000
Pico 100-250 m 250 mw 32-64
Femto 10-50 m 100 mw 8-16

2) 5G Features
Collaboration requires different network entities to share
information and make intelligent decisions based on collec-
tive information in order to improve network performance.
However, malicious entities can exploit collaboration to re-
duce network performance. One common method is that
the malicious entities manipulate the information being ex-
changed among the network entities in order to affect the
final decision. TRM assists network entities to calculate trust
or reputation values, identify, and isolate malicious entities
from collaboration. The security vulnerabilities of the collab-
oration required in various new features being introduced in
5G, as shown in Figure 1, can be exploited as shown below.

• Massive multiple-input and multiple-output (MIMO)
uses an array of antennas (e.g., 16 antennas per sector
[24]) at transceivers so that multiple mobile users can
communicate with a BS simultaneously, leading to a
higher beamforming gain, as well as spectral and energy
efficiencies. Nevertheless, the use of a large number
of antennas can increase interference, computational
complexity, and hardware cost. Cooperation enables
network entities (e.g., BS) equipped with antennas at
different locations to direct transmission in different lo-
cations in order to reduce interference using beamform-
ing. However, when malicious or misbehaving network
entities share and exchange manipulated information
(e.g., location information), direct transmission in the
inaccurate or wrong direction can cause interference.

• Millimeter wave (or mmWave) transmission allows
nodes to communicate in the frequency bands between 3
GHz to 300 GHz, providing a high data rate of up to 20
Gbps, which improves spectal and energy efficiencies.
This means that the operating frequency bands from
2 to 8 GHz in the conventional 4G networks must be
extended to higher frequency bands (i.e., 8-300 GHz)
[10], [36]. Nevertheless, mmWave has a high frequency
range and so it has short wavelength, resulting in poor
penetration through obstacles and high propagation loss
[36]. In other words, mmWave is suitable for short-
range communication. Collaboration enables network
entities to share channel availability information (e.g.,
channel sensing outcomes) so that transmission can
be made in the right channel. However, malicious and
misbehaving network entities can cause interference.
The malicious nodes share and exchange manipulated
channel availability information, and so the legitimate
network entities may not access available channels caus-

ing reduced bandwidth availability, and may access
unavailable channels causing interference.

• Device-to-device (or D2D) communication allows
neighboring nodes to communicate with each other di-
rectly without going through the BS in order to increase
data rate, as well as reduce latency and energy consump-
tion. Collaboration enables network entities to share in-
formation so that the proximal nodes, which are located
within a particular distance with each other, can benefit
from each other in a diverse range of applications (e.g.,
content sharing and public safety) via collaboration and
communication. However, when malicious nodes share
manipulated information with other nodes, the inaccu-
rate information or malicious codes can affect other
nodes’ trust value and deteriorate network performance.

• Dynamic channel access allows nodes to sense for and
use white spaces (or underutilized channels), which can
be in the conventional or mmWave frequency bands, in
order to improve spectral efficiency. Similar to cogni-
tive radio, distributed or cooperative channel sensing
enables unlicensed or secondary users (SUs) to sense
for underutilized channels and share sensing outcomes
amongst themselves in order to make final decisions on
channel access, which is more accurate as compared to
channel sensing performed by individual SUs [7], [13],
[31], [45]. The characteristics of 5G networks, including
ultra-densified, highly heterogeneous, and highly vari-
able, have posed new challenges to collaboration. For
instance, the highly variable data traffic that changes
abruptly and unexpectedly increase the difficulty to
detect malicious and misbehaving SUs. Cognition or
artificial intelligence has been the enabler for nodes to
make intelligent decisions. Collaboration enables SUs
to share channel availability information (e.g., channel
sensing outcomes) so that SUs can make the right deci-
sion on channel availability. However, when malicious
and misbehaving SUs share and exchange manipulated
channel availability information, they cause higher in-
terference (i.e., unavailable channels are reported to be
vacant and consist of white spaces) and lower band-
width availability or channel utilization (i.e., available
channels are reported to be occupied) to legitimate SUs
[13], [37], [45]. While existing works [13], [37], [45],
show that TRM is feasible and can be used to tackle
such security vulnerabilities, securing the exploration
and exploitation of white spaces, which is a new 5G
feature that does not exist in 4G, is yet to be solved.
TRM is still at its infancy in 5G and it must cater for the
5G characteristics.

• Clustering segregates nodes into clusters or logical
groups in order to increase network scalability, reduce
control overhead and energy consumption, as well as
to support collaboration [47]. Each cluster consists of
a cluster head (CH) and cluster members (CMs). The
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CH is the leader of a cluster and CMs are the member of
the cluster. Clustering addresses heterogeneity, whereby
nodes with the same characteristics form clusters and
share information via D2D [28]. In the multi-hop sce-
nario, CMs can send data through CH that forward
packets towards the destination. There are two main
mechanisms in clustering, namely cluster formation and
cluster maintenance. Cluster formation selects CH and
CMs using metrics such as the residual energy level and
mobility of neighboring nodes, channel availability, and
so on. In this collaboration, channel sensing outcomes
can be sent from CMs to CH; subsequently, the CH
makes final decision on channel availability for channel
access. Cluster maintenance allows nodes to re-elect
CHs, as well as join and leave clusters as time goes
by. However, when the malicious nodes share and ex-
change manipulated clustering metrics and information,
malicious nodes: a) can be selected as clusterheads; and
b) can join a cluster. Subsequently, the malicious nodes
share and exchange manipulated information in a clus-
ter, affecting essential tasks that require collaboration
such as data aggregation [38].

• Network virtualization decouples control and data
planes in order to provide virtually centralized environ-
ment for processing and managing heterogeneous net-
works, devices, and resources. A controller, as the main
component of network virtualization, is used to make
policies for the control and data planes according to the
users/ applications requirements. The controller is flex-
ible and programmable, where interfaces can be modi-
fied according to the user/ application requirements. For
instance, mobile network operators can allocate network
resources to fulfill the user/ application low latency
requirement by providing radio access to the network
edge [49]. Cooperation enables multiple controllers to
share information and make globally optimized and con-
sistent decisions in multi-controller environment. How-
ever, malicious or misbehaving: a) controllers can share
and exchange manipulated information (e.g., inaccurate
policies for resource allocation); and b) applications can
provide manipulated information and codes via the open
programmable interfaces. Consequently, both vertical
(i.e., the controller itself in the control plane) and hor-
izontal (i.e., the other controllers and network entities
in the data plane) components can be affected, causing
inappropriate policy or decisions made for routing or
resource allocation [34], [40], [49].

• Coordinated multipoint (or CoMP) enables network
entities to share channel state information, which is
used to make intelligent decisions on the selection of
BSs to serve nodes in order to reduce inter-cell in-
terference [11], and improve spectral efficiency under
ultra-densified and heterogeneous environment. CoMP
is essential to reduce the high inter-cell interference
caused by the deployment of a large number of small

cells that communicate using low transmission power
and high frequency bands (i.e., the mmWave frequency
bands). The small cells provide short-range transmission
that provides higher data rate, as well as lower latency
and energy consumption, to cater for ultra-densification.
When malicious or misbehaving BSs share manipulated
information (e.g., bandwidth requirement) about UEs
with other BSs, and nodes associate with the BSs,
inter-cell interference and network performance can be
affected [8].

B. WHAT IS TRM?
The main difference between trust and reputation is that,
while trust is the belief of an individual entity in another
entity [23], reputation is the collective belief (or aggregated
opinion or global perception) of a group of entities in another
entity in a network community [32]. Nevertheless, both trust
and reputation depend on a node’s historical actions, and they
are directly proportional to each other; specifically, an entity
with a higher reputation value has a higher trust value, and
vice-versa.

TRM detects and removes malicious and misbehaving en-
tities that manipulate information from collaboration [41],
[52], in order to improve data authenticity and to minimize
the detrimental effects, including false positives (i.e., the false
detection rate of legitimate entities instead of the malicious
entities). TRM is necessary because mistrust can arise when
some entities behave maliciously in an intentional or un-
intentional manner to gain self-benefit (e.g., increasing the
trust values of the entities in order to promote themselves as
trusted entities) or to disrupt services. The reputation value
can be shared among entities in a collaboration.

C. WHAT ARE THE ROLES OF TRM IN 5G?
This section presents how TRM can solve and mitigate
security vulnerabilities in collaboration, which is essential to
5G (see Section II-A2). In general, there are three types of
malicious and misbehaving characters.

• Faulty in which entities have hardware or software mal-
functions.

• Selfish in which entities gain benefits at the expense of
other entities.

• Malicious in which entities influence other entities or
network operations/ activities negatively.

Cooperation among heterogeneous entities is anticipated in
5G. At the network level, there are different kinds of network
cells, particularly macro cells and small cells (i.e., pico cells,
and femto cells), to improve network capacity and coverage
in order to address ultra-densification. At the device level,
there are different kinds of network entities that cooperate to
perform essential functions in 5G, such as dynamic channel
access, clustering, CoMP, and D2D, that require information
sharing and exchange. The network entities can behave ma-
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liciously (e.g., sharing manipulated information) and affect
decisions made on collaboration in order to reduce network
performance. For instance, the malicious and misbehaving
entities can launch attacks, such as Sybil (A.1) and denial
of service attacks (A.3) against D2D. Due to the extensive
reliance on D2D, many essential functions such as traffic
offloading, packet forwarding, and information sharing, are
affected, resulting in reduced network performance (e.g.,
higher energy consumption and latency). TRM assists net-
work entities to calculate trust and reputation values in order
to identify and isolate malicious nodes from cooperation,
which is essential for information sharing and aggregation.

D. WHICH PART OF THE 5G NETWORK USES TRM IN
LOWER LAYERS?
TRM has been investigated to improve the security of both
application (or upper) and lower layers in 5G. In general,
the application layer uses traditional security measures, such
as cryptography and intrusion detection systems, to coun-
termeasure external attacks and ensure trusted systems. On
the other hand, the lower layers must calculate the trust and
reputation values to identify and isolate malicious nodes.
While TRM has been investigated in access networks, it has
not been well investigated in core networks. This is because
core networks are traditionally closed trusted networks es-
tablished by national or multinational corporations on the
basis of trust among network operators [44]. Since the core
networks are accessed by a few trusted network operators
only, security measures are not incorporated in some core
networks (e.g., SS7 core networks [44]). Moreover, core
networks can reject packets from malicious entities in the
access networks [51]. On the other hand, the access networks,
whereby UEs, which may not be trustable, form a multi-
hop network, and so such networks are easier targets for
attack and prone to trust and security challenges [51]. 5G
access network is distinguished from the existing cellular
networks which are centralized in nature, and is distinguished
from the traditional multi-hop networks due to its complexity
characterized by ultra-densification, high heterogeneity, and
high variability. The need to secure 5G access networks
becomes essential for the essential distributed schemes, such
as channel access, channel sensing, interference mitigation,
content sharing, and so on.

However, the belief of core networks being closed trusted
networks is no longer safe with the convergence and incor-
poration of new technologies, as well as deregulation, and
some works, particularly the application layer solutions, have
emerged recently [44]. While our focus is the access network,
we have provided some open issues related to the core
networks, particularly addressing security vulnerabilities in
network virtualization in Section VI-A.

E. WHAT ARE THE COMMON TECHNIQUES TO
IMPLEMENT TRM IN 5G?
This section presents different techniques that can be used
and leveraged to implement TRM in 5G networks. There are
four main techniques as follows:

• TRM approaches based on rules calculate trust values
based on various metrics, such as the energy level [5],
and compared the trust values with thresholds. In [21],
the reputation and trust values of entities are used to
adjust the contribution of the information received from
them.

• Probabilistic TRM approaches, such as the Dempster-
Shafer theory [25], calculate probabilities used to syn-
thesize trust values of entities. The probabilities are
calculated based on various metrics, such as packet
forwarding rate, delay, integrity, and so on. In [53], en-
tropy is used to minimize the subjectivity of monitored
metrics and maximize the accuracy of the decisions
made on identifying malicious entities.

• Artificial intelligence-based TRM learns about states
(e.g., trust value, channel condition, and computation
capability) from the operating environment or neighbor-
ing entities, takes actions (e.g., the selection of a col-
laborative entity in collaboration), and receives rewards
(e.g., revenue and performance enhancement) from the
operating environment [20].

• Blockchain-based TRM allows network entities to use
blocks to exchange and collect trust values about a
subject entity from neighboring network entities, and
calculate the trust value of the subject entity in a dis-
tributed manner. Subsequently, network entities with
credible information incorporate the trust value of the
subject entity into the block of the blockchain [50].

Further description about the TRM approaches is presented
in Section V.

III. TAXONOMY OF TRUST AND REPUTATION IN 5G
WIRELESS NETWORKS
This section presents and explains the taxonomy of TRM in
5G as shown in Figure 3.

A. TRM OBJECTIVES
Collaborating entities establish trust to share information and
make reliable relationship. There are three main objectives of
TRM in 5G.

O.1 Trust establishment: Network entities, such as nodes
and BSs, may be heterogeneous and are connected to li-
censed or unlicensed RATs, and they may collaborate to
improve network performance. To establish trust in col-
laboration, they share direct or indirect information for
trust computation. However, malicious or selfish nodes
may manipulate the information prior to the dissemina-
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FIGURE 3: Taxonomy of trust and reputation in 5G.

tion of information leading to various kinds of attacks,
such as bad-mouthing (or ballot-stuffing) attacks [50],
and black hole attacks [4], [53]. For instance, malicious
nodes that launch bad-mouthing attacks provide false
recommendations of itself or other nodes in order to
raise its own trustworthiness and reduce other nodes’
trustworthiness. TRM detects and removes malicious
network entities from collaboration in order to establish
trust among network entities. This means that, while
malicious network entities may exist in a network, they
are functionally removed from the network.

O.2 Data reliability: Network entities share direct and
indirect information (e.g., opinion about other nodes)
in a collaborative environment to make the decision
impactful. The malicious or the selfish network entities
alter the information and propagate it for their advantage
or with malicious intention (e.g., increasing interference
with licensed or primary users or among network cells),
resulting in the degradation of network performance.
TRM detects and removes malicious network entities
from collaboration in order to increase the number of
legitimate network entities, and hence improves data
reliability (e.g., the accuracy of channel sensing out-
comes).

O.3 Scalability: Network entities despite being highly het-
erogeneous (e.g., possess different RATs and network
cells) and variable (e.g., traffic and requirements dy-

namics), collaborate among themselves to make intel-
ligent decisions while providing services and managing
resources to be more scalable in terms of the number
of supported users. For instance, the right RATs are
selected to fulfill the QoS and QoE requirements. Mali-
cious nodes may provide false information about chan-
nel access to increase interference among network cells,
whereby the scalability of the network is affected. TRM
detects and removes malicious nodes from collaboration
to improve scalability.

B. CHARACTERISTICS
There are two main characteristics for TRM.

R.1 Centralized: In a centralized TRM model, a central
entity, such as a macro cell BS, a fusion center (FC),
or a centralized server, collects and stores data, as
well as calculates, monitors, and distributes the globally
computed trust value of each network entity among the
network entities in the network, as shown in Figure
4a. Specifically, the central entity rewards and punishes
network entities based on their behaviors by reward-
ing legitimate network entities with higher trust values,
and punishing malicious network entities with lower
trust values. In [21], [30], [50], the central entity is
assumed to be trusted, and it provides data collection,
calculation, storage, and trust dissemination services;
however, due to the highly heterogeneous and dynamic
5G network, it affects QoS (e.g., delay and spectrum
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efficiency). In [30], the vehicles sense an event regarding
the traffic, and broadcast messages to other vehicles.
The credibility of the vehicles are checked and given
some feedback, which is then forwarded to the central
entity. The central entity calculates decision based on
the feedback, updates the trust value, and releases certifi-
cates to vehicles in the network. Nevertheless, there are
two main shortcomings: a) the centralized TRM model
must cater for the massive amount of heterogeneous and
highly variable data and network entities in the next-
generation networks; and b) it is prone to single point of
failure that can affect the availablity of TRM, resources,
and services.

R.2 Decentralized: In a distributed TRM model, distributed
entities, such as small cell BS, UE, or an edge server
in edge computing [21], collect and store data, as well
as calculate, monitor, and distribute locally computed
trust values of network entities among themselves in
the network, as shown in Figure 4b. Specifically, a UE
calculates the trust value of a neighboring UE either
through direct interaction with the UE, or using rec-
ommendations from other neighboring UEs, and prop-
agates the trust value of a particular neighboring UE
in the neighborhood. Nevertheless, there are two main
shortcomings: a) the trust values are computed based on
local knowledge only (or a small portion of the entire
network); and b) the trust values can be manipulated by
the UE itself, or neighboring UEs during propagation.

C. ATTACK MODELS
There are seven main types of attacks against TRM.

A.1 Sybil attacks: The malicious nodes use more than one
identity to confuse other nodes. They change to a fake
identity and launch attack to avoid detection. Once de-
tected, they change or impersonate others’ identities and
re-launch attacks. This process repeats until their inten-
tion is achieved (e.g., presenting themselves as trusted
entities or sharing manipulated information about the
operating environment).

A.2 Crude attacks: The malicious nodes forward incorrect
information to the decision FC (i.e., the nodes forward
manipulated information about themselves) in order to
maximize their trust values about another neighboring
node with the purpose of degrading the trust value of
the node.

A.3 Denial of service(DoS): The malicious nodes prevent
data forwarding and processing at legitimate nodes and
applications. If the malicious nodes take control over the
role of the controller(s), devices and applications in the
data plane may experience a complete denial of service.

A.4 Black hole attacks: The malicious nodes suggest them-
selves as good packet forwarding candidates but drop re-
ceived packets. For instance, when the malicious nodes

gain control of the controller in the control plane, the
forwarding function in the data plane can be manip-
ulated, whereby devices and their routing tables can
be manipulated with undesirable intention, particularly
dropping packets/ data in the network.

A.5 Routing attacks: The malicious nodes change routing
decisions, such as modifying the number of intermediate
nodes to the destination node, and the actual destination
address. The malicious controller(s) can modify the
routing table so that data/ packets can be routed to
manipulated destinations.

A.6 Bad-mouthing attacks: The malicious nodes make false
recommendations about other nodes which affect deci-
sions made. For instance, malicious nodes recommend a
legitimate node as malicious to reduce its trust value, or
recommend malicious nodes or itself as highly trusted
nodes to increase their respective trust values.

A.7 On-off attacks: The malicious entities keep changing
their behaviors (i.e., normal and malicious) from time to
time to remain undetected. The malicious nodes remain
undetected by confusing TRM with different behaviors
at different points of time. So, at one time, a node is
On (or malicious), while at another time, it is Off (or
legitimate).

D. PERFORMANCE METRICS
This section presents various performance metrics evaluated
in the TRM models.

M.1 Misbehavior detection: The network nodes or entities
misbehave to gain self-benefit or influence other entities
negatively. For instance, a node changes (impersonates)
its identity to fool the network or other nodes, or
manipulates the information about itself or others, to
fulfill its malicious intention like suggesting itself as a
good data forwarder. It increases with the detection of
misbehaving entities in a collaboration.

M.2 False/ true positive rate: The false positive rate shows
the false detection rate of legitimate entities instead of
the malicious entities, while the true positive rate shows
the correct detection rate of the malicious entities.

M.3 Energy consumption: The energy consumption of a net-
work entity is caused by various actions (e.g., exchang-
ing control messages and forwarding data packets to
neighboring nodes), which increases with more attacks
from malicious entities.

M.4 Latency: The end-to-end delay of packets/ information
from a source to a destination affects the time period
required for control message exchange, opinion dissem-
ination, and trust value propagation.

E. CHALLENGES

C.1 High heterogeneity: The presence of distinctive net-
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(a) Centralized (b) Distributed

FIGURE 4: Traditional TRM models.

work entities and characteristics contributes to network
heterogeneity. This includes network architecture that
consists of macro and small cells, access technologies
that consists of 5G, 4G, IEEE 802.11, types of UEs such
as tablets, computers, and smart mobile devices, charac-
teristics such as indoor and outdoor environment, as well
as inband and outband transmissions. The challenge is to
enable trust among heterogeneous devices and networks
for collaboration to enhance network performance and
perform network operations.

C.2 High dynamicity: The next-generation networks have
ultra-dense and heterogeneous characteristics, and this
leads to highly dynamic processes and data traffic that
can change abruptly and unexpectedly. Due to the ultra-
densification of network entities and devices, the behav-
ior and the traffic are unexpectedly changing instantly,
creating issues for controllers. The challenge is to pre-
dict, measure, and monitor the behaviors for evaluating
and managing trust dynamically.

C.3 High energy consumption: Moving from the traditional
tightly coupled planes to loosely coupled control and
data planes promotes cooperation among networks and
devices/ nodes that may be operating in a cellular or ad-
hoc mode. Entities with different types of network cells
(e.g., macro and small cells) can co-operate with each
other, and different types of communications (e.g., direct
communication in the cellular mode and D2D in the ad-
hoc mode) can be used to share information to enhance
network performance, such as meeting the capacity and
coverage requirements. Network entities consume en-
ergy while sharing information in cooperation.

C.4 High communication/ control overhead: Since infor-
mation is shared among participating entities in a co-
operation, communication overhead can increase. The
challenge is to minimize the communication/ message
overhead throughout the collaboration process to maxi-
mize network performance.

IV. TRM FRAMEWORK
TRM is a framework for detecting malicious entities, in-
cluding faulty, selfish, and malicious network entities, in a

collaboration. In general, there are six main stages as shown
in Table 3. More in-depth description about these stages for
different schemes are presented in Section V.

1) Bootstrapping
Bootstrapping (or initialization) initializes the trust value of
network entities during which their behaviors are unknown.
The network entities may be assigned the same trust value,
which is adjusted according to their behaviors as time goes
by. For instance, in [26], nodes are initialized in three ways,
either: a) neutral trust value; b) high trust value (i.e., trust-
worthy); or c) low trust value (i.e., untrustworthy). When the
interaction with a network entity is infrequent, its trust value
is updated infrequently, and so artificial (or dummy) beacons
can be generated to increase the number of interactions so
that its trust value reflects its behavior.

2) Information Gathering
Network entities gather information from neighboring net-
work entities through:

• Direct interaction information. A network entity gathers
information about a network entity through direct inter-
action with the network entity.

• Indirect interaction information. A network entity gath-
ers information about a subject network entity through
indirect interaction with other network entities. In other
words, the information about the subject network entity
is shared among network entities, and it is learned
through information exchange. Nevertheless, at least
a single network entity must learn about the subject
network entity through direct interaction.

3) Information Dissemination
Network entities propagate direct and indirect interaction
information with their neighboring network entities. The
direct interaction information becomes indirect interaction
information once it is propagated from one network entity
to another. The information can be propagated either:

• a) locally (i.e., with neighboring nodes); or b) globally
(i.e., with all nodes in the network).
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• a) proactively (i.e., every time interval); or b) reactively
(i.e., upon the occurence of an event or a significant
change to the network).

Nevertheless, malicious nodes can share:

• positive information whereby only good experiences
about a subject network entity is shared, resulting in
false praise attacks or ballot stuffing attacks [50].

• negative information whereby only bad experiences
about a subject network entity is shared, resulting in
bad-mouthing attacks [50].

4) Information Refinement
Network entities refine the direct and indirect interaction
information. There are two considerations:

• Credibility of information provider. Since the indirect in-
teraction information can be manipulated, the credibility
of the information provider (i.e., network entity that
provides the information) must be taken into consider-
ation to prevent false reporting. For instance, different
statistical distributions (e.g., Beta, Gaussian, Poisson,
and Binomial distributions [52]) and deviation tests have
been used to assess the credibility and consistency of the
information provider. The deviation test enables a node
to detect a malicious node if the difference between the
indirect information about a subject node given by the
malicious node and the direct information received by
the node is greater than a threshold.

• Recency of information. Weight factor can be calculated
because: a) the accuracy of the information reduces with
the passage of time, and so newer information is given
a higher weight factor compared to older information
[22], [52]; b) the significance of the information should
be taken into consideration (e.g., permanent link failure
is more significant compared to temporary link fail-
ure), and more significant information is given a higher
weight factor compared to less significant information.
The weight factor can be subsequently used to calculate
trust values.

5) Decision Making
Network entities calculate the trust and reputation values and
separate legitimate and malicious network entities in order
to choose the best possible network entities for interaction.
Network entities, such as BS and FC, can aggregate trust and
reputation values to provide collective and robust decisions.
The decision can be based on the following methods:

• Threshold is used to determine trustworthiness. As an
example, the trust value is higher (lower) than a thresh-
old for a legitimate (malicious) network entity.

• Ranking is used to rank network entities based on their
behaviors or trustworthiness. As an example, the neigh-
boring nodes are ranked according to the accuracy of

their channel sensing outcomes, which represent their
trustworthiness. As another example, the individual
nodes are ranked to select trusted routes for routing and
packet transmission.

• Weightage is used to assign a weight to an aggregated
information, which is received from network entities,
based on the conditions of the network and operating
environment. As an example, information received from
different sensor nodes are combined in a FC or BS
in order to provide a final judgment or summary on
the condition of the network and operating environment
being monitored.

6) Decision Dissemination
Network entities propagate the decisions made on a subject
network entity (i.e., being legitimate or malicious) with their
neighboring network entities either instantly or during the
next interaction. Network entities, such as centralized entities
(e.g., FC and BS), with high computational and storage
capabilities can store the decisions and share them with other
network entities, while network entities, such as sensors, with
low computational and storage capabilities can disseminate
the decisions (or trust values) to other nodes in distributed
networks.

V. STATE OF THE ART
This section presents the state of the art, classified on the
basis of common TRM techniques (see Section II-E). The de-
scription includes how the stages of the TRM framework (see
Section IV and Table 3) are implemented in each state-of-
the-art scheme. As TRM is at its infancy in the 5G networks,
there are limited existing work in the literature. A qualitative
comparison is given in Table 4.

A. TRM APPROACHES BASED ON RULES
This section presents two state-of-the-art schemes using the
TRM approaches based on rules.

1) Energy-based Trust System for Detecting Sybil Attacks
Noor Alsaedi et al. [5] propose an energy-based multi-level
trust scheme that detects malicious nodes at different levels
(i.e., CH, CM, and BS) in clustered networks [28], [47].
The proposed scheme achieves the objectives of trust estab-
lishment (O.1), ensuring data reliability (O.2), and ensuring
network scalability (O.3). The proposed scheme manages
trust in a distributed manner (R.2) to countermeasure Sybil
attacks (A.1). The proposed scheme addresses the challenges
of high heterogeneity (C.1) in the presence of heterogeneous
nodes (i.e., CM, CH and BS), and high dynamicity (C.2)
whereby the behaviors of different network entities change
with their available resources (i.e., residual energy) as time
goes by.

The entities from different levels have different roles in

VOLUME 4, 2016 xi



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2984318, IEEE Access

I. Ahmad et al.: Trust and Reputation Management in 5G Access Networks: The Road Ahead

TABLE 3: TRM Framework

NO. STAGE DESCRIPTION
1 Bootstrapping Initializes the trust value of network entities.
2 Information gathering Network entities gather information from neighboring network entities through direct

or indirect interaction.
3 Information dissemination Network entities distribute direct and indirect local or global information to neighbor-

ing network entities in a proactive or reactive manner.
4 Information refinement Network entities refine the received information based on the credibility of the

information provider and the recency of the information.
5 Decision making Network entities calculate trust values and separate legitimate and malicious network

entities. Network entities, such as BS and FC, can aggregate trust values to provide
collective decisions.

6 Decision dissemination Network entities distribute decisions made on subject entities with neighboring
network entities.

TABLE 4: Summary of objectives, characteristics, performance metrics, and challenges for different TRM schemes in 5G,
which is the next-generation wireless network.
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Xumin Huang et al. [21] 2017 × × × × × × × × × ×
Zhe Yang et al. [50] 2018 × × × × × × × × ×
Noor Alsaedi et al. [5] 2017 × × × × × × × ×
Osama Alfarraj et al. [4] 2018 × × × × × × × × × × ×
Yang Yu et al. [53] 2016 × × × × × × × ×
Ying He et al. [20] 2018 × × × × × × × ×

detecting malicious nodes that launch Sybil attacks. There
are two main stages. The first stage is information gathering,
whereby the CMs sense and gather information about events
in the operating environment (e.g., road accidents, fire, and
natural disaster), and send information about themselves
(e.g., their node IDs, geographical locations, and residual
energy levels) and the events to the CH. The second stage
is decision making, whereby the trust values are calculated
by the CH at the cluster level. The CH maintains the node
IDs, geographical locations, and residual energy of CMs in
its storage. The CH identifies legitimate nodes in two steps.
Firstly, the CH determines whether the information received
from CMs is legimate or not by verifying their respective
locations and node IDs stored in the CH. Secondly, the CH
calculates the trust values of legitimate CMs based on their
energy levels such that the trust value increases with the accu-
racy of the residual energy levels reported by the CMs. The

total energy Etotal = Eresidual + Econsumed is compared
with the previously saved total energy E. Specifically, when
E ≥ Σ(Etotal + λ1), where λ1 is the change in the total
energy of a CM, then the number of successful interactions
with the CM is increased, otherwise the number of unsuc-
cessful interactions with the CM is increased. Subsequently,
the CH forwards the legitimate CMs’ information to the BS.
Next, the similar processes in the second stage is applied
by BS to calculate trust values at the network level. So, the
BS maintains the node IDs, geographical locations, and the
residual energy levels of CHs in its storage, and identifies
legitimate CHs.

The proposed scheme has shown to: a) increase misbehav-
ior detection (M.1); b) improve the detection rate (M.2) of
the Sybil node; and c) reduce energy consumption (M.3)
by minimizing message exchanges between CMs and their
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respective CHs.

2) Distributed Reputation Management in Edge Computing
Huang et al. [21], propose a distributed reputation manage-
ment system (DREAMS) that manages reputation values at
edge server in a vehicular network. In edge computing, edge
servers have high computational capabilities and resources,
and so they can collect, aggregate, and compute reputation
values efficiently in order to identify and punish malicious
vehicular nodes. The proposed scheme achieves the objec-
tive of trust establishment (O.1) whereby the edge server
calculates and provides reputation values of the vehicular
nodes, ensuring data reliability (O.2) whereby the vehicu-
lar nodes receive reliable information about an event, and
ensuring network scalability (O.3) whereby the edge server
provides trust values to all vehicular nodes. The proposed
scheme manages reputation in a distributed manner (R.2) to
countermeasure crude attacks (A.2), black hole attacks (A.4),
and worm hole attacks. The proposed scheme addresses the
challenges of high dynamicity (C.2) whereby the vehicular
nodes communicate with the distributed edge server to re-
ceive quick response about the trustworthiness of the other
vehicular nodes, and high energy consumption (C.3) whereby
communication with the edge server, rather than the core
network, reduces energy consumption.

There are two main components based on their locations:
a) cloud server, which has higher computational capabilities
and resources, is located far away from vehicular nodes; and
b) edge servers are located at close proximity to vehicular
nodes. The edge server can: a) provide computing services
with improved network performance (e.g., lower end-to-end
delay) to the vehicular nodes; and b) communicate and share
information with the vehicular nodes. There are three main
stages. The first stage is information gathering, whereby the
edge server collects opinion metrics, which represents the
legitimacy about a subject vehicular node that newly joins the
network, from knowledgeable vehicular nodes. The second
stage is information refinement, whereby the edge server
uses the reputation value of the knowledgeable vehicular
nodes to calculate a weight factor in order to adjust the
opinion metrics given by the knowledgeable vehicular nodes.
The reputation value of the knowledgeable vehicular nodes
are obtained from the Cloud based on the historical and
new reputation values. The third stage is decision making,
whereby the edge server calculates the reputation value of the
subject vehicular node using the weighted opinion metrics
from the knowledgeable vehicular nodes. Knowledgeable
vehicular nodes with reputation values lower than a threshold
are considered malicious, and so they are either isolated or
blacklisted. Subsequently, the reputation values are used to
select vehicular nodes with high reputation values and to
allocate resources to them.

DREAMS has shown to increase misbehavior detection
(M.1) and reduce latency (M.4).

B. PROBABILISTIC TRM APPROACHES
This section presents a state of the art using the probabilistic
TRM approach.

1) Efficient Trust Evaluation Scheme for Internet of Things
Yang Yu et al. [53], propose an efficient quantitative model
for trust management in Internet of things (IoTs). The source
node calculates and monitors the trust value of the next-
hop and intermediate nodes based on various factors (e.g.,
whether the next-hop and intermediate nodes forward or drop
its packets) in multi-hop networks. The proposed scheme
achieves the objectives of trust establishment (O.1) whereby
the source node calculates trust values of next-hop and
intermediate nodes, ensuring data reliability (O.2) whereby
packet integrity is monitored, and ensuring network scala-
bility (O.3). The proposed scheme manages reputation in a
distributed manner (R.2) to countermeasure crude (A.2), DoS
(A.3), and black hole (A.4) attacks. The proposed scheme
addresses the challenge of high energy consumption (C.3)
whereby the exchange of control messages in a distributed
environment is reduced.

There are two main stages. The first stage is information
gathering, whereby the source node monitors the behavior
of the relay node that has different forwarding characteristics
(i.e., constant or variable forwarding and repetition rates
causing different amount of delays). The second stage is
decision making, whereby the source node calculates trust
values based on the different forwarding characteristics using
entropy. Entropy calculates different weight factors for dif-
ferent trust values to reduce the uncertainty of information.
The direct trust value between node i and a next-hop node
j is given by TD

i,j =
∑M

k=1WkTk, where the weight factor
is 0 ≤ Wk ≤ 1 and Tk is a forwarding characteristic
of the entropy. The indirect trust values are gathered from
neighboring nodes, and then aggregated with the direct trust
value using the Dempster-Shafer theory [19], which merges
information from independent (or different) nodes to mini-
mize uncertainty.

The proposed scheme has shown to: a) increase malicious
detection (M.1); b) reduce energy consumption (M.3); and c)
minimize latency (M.4), whereby trust values are shared and
communicated directly with next-hop or relay nodes rather
than going through the BS.

C. ARTIFICIAL INTELLIGENCE-BASED TRM
This section presents two state of the art schemes using the
artificial intelligence-based TRM approach.

1) Trusted Neighbor Node Selection for Secure Routing
Osama Alfarraj et al. [4], propose an activation function
based on artificial neural networks, which use risk assessment
and route probability, to calculate trust values of neighboring
nodes in order to maintain a secured route between a source
node and a destination node. The proposed scheme achieves
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the objectives of trust establishment (O.1), ensuring data
reliability (O.2), and ensuring network scalability (O.3). The
proposed scheme manages trust in a distributed manner (R.2)
to countermeasure DoS (A.3), black hole (A.4), and routing
attacks (A.5). The proposed scheme addresses the challenges
of high dynamicity (C.2), whereby there is a dynamic se-
lection of trusted neighbors and less exchange of control
messages (C.4), whereby it is a lightweight technique for
constrained environment.

The proposed scheme has two main mechanisms in decision
making. Firstly, the source node maintains the trust values of
its neighboring nodes as time goes by so that malicious nodes
can be identified and a new route can be discovered. The
source node i calculates the trust value of its neighbor node j
at time instant t is St

i,j = F t
i,j/R

t
i,j , where F t

i,j represents
the number of packets forwarded, and Rt

i,j represents the
number of packets arrived (or received). Secondly, the source
node performs risk assessment on routes by calculating a
probability, which takes account of the interaction quality
(i.e., the number of communication) and response time (i.e.,
the time duration between sending a route request and re-
ceiving a route response). The risk assessment is performed
after sending packets to the destination node whereby the
trust value of the route is known, which is calculated by
verifying the trustworthiness of each hop in the shortest route.
Higher interaction quality indicates higher consistency of the
quality of a route, while lower response time indicates lower
packet loss caused by malicious nodes. A node is considered
legitimate if it: a) has a trust value St

i,j higher than the trust
value of a route; b) has a trust value St

i,j higher than a
threshold; and c) has a residual energy level higher than half
of its initial energy level. If a malicious node is identified in a
route, the source node initiates a route discovery mechanism
to establish a new secured route among the available routes.

The proposed scheme has shown to: a) increase misbehavior
detection (M.1); b) reduce false positive (M.2); and c) reduce
energy consumption (M.3).

2) Deep Q-Learning based Secure Social Networking in 5G
Ying He et al. [20], propose a social trust scheme for mobile
social networks, which provide social relationship in social
platforms (e.g., facebook and twitter) among users of various
applications and services (e.g., content sharing). The pro-
posed scheme achieves the objectives of trust establishment
(O.1) based on social trust, ensuring data reliability (O.2)
whereby data is monitored for manipulation, and ensur-
ing network scalability (O.3). The proposed scheme man-
ages reputation in a centralized manner (R.1) The proposed
scheme addresses the challenges of high dynamicity (C.2)
whereby the users have dynamic requirements, and high
energy consumption (C.3) whereby the social trust values
are exchanged with the nearest mobile edge server, which
provides computational resources to close proximaty mobile
users at the edge of the wireless mobile network.

The proposed scheme has two main stages. The first stage
is information gathering, whereby a central entity (e.g., a
BS, which is equipped with mobile edge computing (MEC)
and cache, that provide high computational and storage ca-
pabilities at close physical proximity to users): a) uses the
Bayesian inference model, which is a statistical method that
computes the probability of receiving more evidences (or
information) [34]. The Bayesian inference model is used
to calculate the direct trust value TD

i of a subject node i
based on direct interaction experience (e.g., either forward,
discard, or manipulated data); and b) uses the Dempster-
Shafer approach, which combines evidences about a subject
node from multiple nodes in order to improve the accuracy of
the trust value of the subject node [19], [53]. The Dempster-
Shafer approach is used to calculate indirect trust value T I

i

of a subject node i based on its direct trust value and indirect
trust values gathered from neighboring nodes, which helps
to identify malicious nodes that exhibit different behaviors
towards different nodes. The second stage is decision making,
whereby the BS calculates the trust value of a subject node i
using Ti = W × TD

i + (1 −W ) × T I
i where 0 ≤ W ≤ 1

represents a weight factor. The BS uses deep Q-learning
(refer to [46]) to make decisions on which BS or D2D trans-
mitter is assigned to serve a request (e.g., for a video) from a
user based on various factors and characteristics, including
the channel state (e.g., whether the channels are available
or unavailable), version (e.g., whether the requested version
is compatible and can be played at the requesting node),
computational capabilities (e.g., whether the serving network
entity, such as a BS or a node, is capable of computing,
decoding, and sending the requested video), and trust value
of a network entity. The trust value is used to make intelligent
decision about the need for collaboration and communication
for the required services (e.g., video content streaming).

The proposed scheme has shown to: a) increase malicious
user detection (M.1); and b) reduce energy consumption
(M.3) by receiving services from a close proximity D2D
transmitter with high trust value.

D. BLOCKCHAIN-BASED TRM
This section presents a state of the art using the blockchain-
based TRM approach.

1) Blockchain based Distributed Trust Managment in
Vehicular Networks
Zhe Yang et al. [50], use blockchain among road side units
(RSUs) for trust management. Blockchain is a peer-to-peer
shared and distributed database that consists data and in-
formation in blocks [58]. RSUs are computing devices with
higher resources and computational capabilities deployed at
the road side [21], to collect information (e.g., geographical
location and traffic condition) from vehicles. The proposed
scheme achieves the objectives of trust establishment be-
tween vehicular nodes (O.1), ensuring data reliability (O.2)
whereby the credibility of the messages are verified, and
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ensuring network scalability (O.3) upon the detection and re-
moval of malicious entities from the network. The proposed
scheme manages reputation in a distributed manner (R.2) to
countermeasure crude (A.2) and bad-mouthing (A.6) attacks.
The proposed scheme addresses the challenges of high dy-
namicity (C.2) by managing trust at close proximity to RSU,
high heterogeneity (C.1) by managing network entities with
different computational capabilities on the road, and high
energy consumption (C.3) by exchanging messages with the
nearest RSU.

In general, a RSU receives opinions about a subject vehicular
node from other vehicular nodes, computes the trust values
of the subject vehicular node, and adds them to the block.
There are three main stages. The first stage is information
gathering, whereby RSUs collect messages about events and
occurrences on the road from vehicular nodes. The second
stage is information refinement, whereby RSUs calculate the
credibility value of the vehicular nodes based on the distance
between the vehicular nodes and the event, where a +1 value
indicates a credible message, and a −1 value indicates a
message with low trustworthiness. The third stage is deci-
sion making, whereby a RSU aggregates the creditability
values from vehicular nodes to calculate a weighted offset
trust value. This is necessary because the RSU may receive
different number of +1 and −1 values. The RSUs elect a
miner among themselves. The RSU with a higher number
of stakes can find a nonce, which is a single-use random
number used to calculate the hash of a block. The RSU
with a hash value below a threshold, which is similar for all
RSUs, wins the election. A miner has higher computational
and storage capacities that can solve complex problems and
perform complex tasks, such as proof-of-work that provides
consensus strategies among miners while solving complex
problems that require high computational capability, proof-
of-stake that represents the sum of the stakes (or the amount
of the trust value offsets), and proof-of-capacity that provides
consensus strategies among peers to publish a block of trust
value offsets [25], [58]. Upon receiving blocks from a miner,
the RSU verifies the validity of the nonce, and then appends
the block to the blockchain.

The proposed scheme has shown to: a) increase misbehavior
detection (M.1) by verifying the credibility of the messages;
b) reduce energy consumption (M.3) by using RSUs for
complex calculations; and c) low latency (M.4) by communi-
cating with nearby RSU rather than the core network.

VI. OPEN ISSUES AND FUTURE DIRECTIONS
This section presents open issues that can be further inves-
tigated in this research area. Collaboration is significant to
various network functionalities, however at the same time, it
opens doors to different security vulnerabilities. This section
presents open issues, covering use of TRM to detect and
remove malicious entities in collaboration schemes, which
have not been investigated in the literature. Future directions
of the use of TRM in our context are also presented.

A. ADDRESSING SECURITY VULNERABILITIES IN
NETWORK VIRTUALIZATION
Network virtualization decouples a network into control and
data layers to enable programmability, whereby requirements
can be incorporated into networks elastically using 5G tech-
nologies, such as SDN and network slicing. The control layer
consists of controllers that generate and exchange control
messages comprised of commands and instructions, while
the data layer consists of BSs, UEs and switches that receive
control messages and follow the commands and instructions
required for data forwarding. There are two main security ad-
vantages: a) data traffic monitoring in which controllers have
global network information to determine whether a network
entity is malicious or non-malicious; and b) vulnerability
robustness in which the programmable nature of the network
allows rapid response to security vulnerabilities and attacks.

Nevertheless, controllers must communicate and cooperate
with each other to ensure the consistency of the network
information in a multi-controller environment, including in
core networks. Controllers can be manipulated by malicious
entities and behave maliciously, such as providing manipu-
lated policies for data forwarding and resource allocation, to
reduce network performance. Two examples are presented.
Firstly, a controller offers many open programmable inter-
faces to the application layer, which allows user applications
to customize and modify the controller policies and opera-
tions according to the requirements and needs. This means
that user applications can manipulate the interfaces, such
as embedding malicious codes to the controllers that can
affect the virtualized environment in a horizontal (i.e., other
controllers in the same control layer) and vertical (i.e., the
BSs, UEs, and switches in the data layer) manners. Secondly,
the controllers in the control layer and the BSs, UEs, and
switches in the data layer communicate with each other in
order to exchange control messages; however, the communi-
cation can be intercepted by malicious entities that launch at-
tacks either on the controllers, BSs, UEs, or switches. While
the vulnerabilities of open programmable interfaces and the
collaboration among controllers (or operators) have been
investigated in [9] and [15], respectively, they have not been
investigated in the 5G context. Research and investigation
could be pursued to secure the network entities in the control
and data layers to detect malicious entities.

B. ADDRESSING SECURITY VULNERABILITIES IN
BEAMFORMING
With a higher frequency band (i.e., 2-300 GHz), mmWave
provides a higher bandwidth to support an increased number
of users. Nevertheless, mmWave has high penetration loss
through walls and obstacles. Beamforming tracks a particular
user’s location and transmits packets to the user in a beam
to reduce interference and penetration loss. BSs at different
locations must exchange messages and cooperate with each
other to focus beams towards their respective users while
reducing interference. BSs can be manipulated by malicious
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TABLE 5: Trust and reputation attacks

Authors Year TRM attacks

Sybil

D
enialofservice

C
rude

B
lack

hole

R
outing

W
orm

hole

B
ad-m

outhing

W
hite

w
ashing

Yang Yu, et al. 2016 × × ×
Ing-Re Chen, et al. 2016 × ×
Xumin Huang, et al. 2017 × ×
Noor Alsaedi, et al. 2017 × × ×
V.Ram Prabha, et al. 2017 × × × ×
Osama Alfarraj, et al. 2018 × ×
Zhe Yang, et al. 2018 × ×
Weizhi Meng, et al. 2018 × ×
Ying He, et al. 2018 × ×
Bilal Mughal, et al. 2018 × × × ×

entities and behave maliciously. Two examples are presented.
Firstly, malicious entities generate and share manipulated
information (e.g., the required beam and bandwidth, as well
as the location, of a user) to increase interference and re-
duce spatial reuse. Secondly, malicious entities can intercept
the location information in the communication among the
BSs and exploit a user’s privacy. While the vulnerabilities
of beamforming have been investigated in [18] and [57],
respectively, they have not been investigated in the 5G con-
text. Research and investigation could be pursued to detect
malicious entities and secure beamforming using security
measures including TRM.

C. ADDRESSING SECURITY VULNERABILITIES IN
ACCESSING MMWAVE FREQUENCY BANDS
Using mmWave transmission can help to access underutilized
channels in the high frequency bands in order to increase
network capacity, which has been limited by the fixed tradi-
tional spectrum allocation policy. This helps to cater for the
increasing data traffic under ultra-densification scenario in
5G. Each network entity must sense for channel availability.
Cooperation enables network entities to share and exchange
channel information (e.g., channel availability) among net-
work entities so that they can make intelligent decisions
on channel access in an autonomous manner. Nevertheless,
network entities and channel sensing outcomes can be manip-
ulated by malicious entities and behave maliciously to reduce
network performance. As an example, malicious entities
generate and share manipulated channel information (e.g.,
channel availability). This causes network entities to access
unavailable channels or miss opportunities to access available
channels. Consequently, this can increase interference, as
well as reduce bandwidth and spatial reuse. While the vul-
nerabilities of the access to mmWAve frequency bands have
been investigated in [59] and [48], respectively, they have not

been investigated using TRM in the 5G context. Research and
investigation could be pursued to detect malicious entities
and secure dynamic channel access in mmWave frequency
bands in order to secure channel access in an intelligent and
collaborative manner.

D. USING SUBJECTIVITY OF DATA IN TRM
The subjectivity of data provides opinion about a network en-
tity based on one’s personal experience and recommendation
while interacting with the network entity. Hence, a network
entity’s opinion about another network entity may differ
dependent on the perception generated from an interaction,
which may or may not provide accurate recommendations.
Malicious entities can use subjectivity for their malicious
benefits. As an example, if a subject node i has a high
trust value, and a recommender node j provides false rec-
ommendation or negative opinion to reduce the subject node
i’s trust value. Hence, assigning accurate weight to opinion
or recommendation affects the trust evaluation process. A
node can use statistical theorems and mathematical models to
reduce the misleading effect of inaccurate recommendations
in trust evaluation. In [55], a node uses a regression technique
to evaluate the recommendations received from neighboring
nodes, and an alignment mechanism to counteract biases in
the recommendations substantially. The aligned recommen-
dations are propagated among neighboring nodes so that the
effect of inaccurate recommendations can be minimized. In
[3], a node uses triangular fuzzy numbers [43], to represent
the weights of different trust criteria used to evaluate a trust
value so that more accurate criteria are given higher weight
values. Despite the abundance of literature on trust and rep-
utation, the subjectivity issue has not been well investigated
[27], particularly in the 5G context. Specifically, mechanisms
to address the effect of ultra-densification, high heterogene-
ity, and high variability, to the accuracy of recommendations
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as a result of subjectivity is yet to be discovered. Research
could be pursued to investigate statistical theorems and math-
ematical models for trust evaluation and management in
order to manage subjectivity and its effects.

E. ADDRESSING SECURITY VULNERABILITIES IN
NETWORK SLICING
Network slicing separates resources into various parts (or
slices) to meet different user and network requirements on
resources and services (e.g., the RAN requirements for re-
mote surgery and driverless vehicles). The requirements can
be incorporated into networks elastically using 5G tech-
nologies, such as SDN and network function virtualization
[14], [56]. The controller manages and updates the slices
on the fly to fulfill the specific requirements. Controllers
must communicate and cooperate with each other to ensure
the consistency of network information in a multi-controller
environment. Controllers can be manipulated by malicious
entities and behave maliciously, such as providing manip-
ulated policies for resource allocation, to reduce network
performance. Research could be pursued to secure network
slicing, particularly the controllers that manage resources in
the control layer.

F. ADDRESSING QUANTITATIVE ANALYSIS
COMPLICATIONS
Due to the different characteristics and features of TRM
schemes proposed in the literature, as well as the underly-
ing network initialization settings and topologies, there is
lack of study on qualitative comparison among the TRM
schemes. The characteristics of 5G networks, including ultra-
densification, high heterogeneity, and high variability, con-
tribute to the diversity of the investigations made in this
research topic. While traditional security schemes, such as
cryptography [2], [12], are mathematically tractable, the
TRM schemes proposed in the literature [20], [31], that
are based on artificial intelligence approaches are not math-
ematically tractable. This means that qualitative compari-
son among the security schemes can be non-mathematically
tractable, such as using Monte Carlo simulation, yet the
investigation must be comprehensive to minimize security
vulnerability. Further research could be pursued to conduct
a fair qualitative comparison among the schemes under
a comprehensive set of network initialization settings and
topologies.

G. FUTURE DIRECTIONS
5G access network is expected to be: a) highly dynamicity,
whereby the network requirements of the network entities
change dynamically and are unpredictable; and b) highly
heterogeneous, whereby the network entities have different
natures and characteristics. High dynamicity and heterogene-
ity increase security vulnerabilities due to the complexity of
managing the network. We present two future directions of
research in TRM applied to 5G access networks as follows:

1) Hybrid TRM Framework
Centralized and distributed TRM schemes [4], [5], [53],
have been proposed to handle dynamicity and heterogeneity,
respectively. The centralized TRM schemes are embedded in
a central entity, such as FC, BS, and CH, to manage and
disseminate trust values among network entities in order to
assess their behaviors in a centralized manner. On the other
hand, the distributed TRM schemes are embedded in differ-
ent network entities, such as nodes and RSUs, to manage
and exchange trust values among themselves. Nevertheless,
due to the highly dynamic and heterogenous 5G network
scenarios, the traditional centralized and distributed TRM ap-
proaches are insufficient. The centralized approach requires
network-wide information which may not be able to cater for
real-time response; while the distributed approach requires
local information only which may not be optimal for making
network-wide decision. In addition, the centralized approach
can handle low dynamic aspects, while the distributed ap-
proach can handle highly dynamic aspects. Hence, a hybrid
framework that incorporates both centralized and distributed
approaches is needed to cater for dynamic schemes (i.e., from
low to high dynamicity) and heterogeneous schemes (i.e.,
from real-time to delay tolerant schemes) that requires differ-
ent levels of responses. Moreover, the hybrid framework can
address security vulnerabilities at both local (i.e., node) and
global (i.e., BS) levels of a 5G access network. Hence, more
investigations on a hybrid framework for TRM is expected in
5G access networks.

2) Application of Artificial Intelligence to TRM
Artificial intelligence approaches, such as reinforcement
learning [20] and the Bayesian approach, have been incor-
porated into TRM to learn and detect malicious entities, as
well as to make security decisions, with increased accuracy in
the presence of dynamic operating environment. Dynamicity
changes the operating environment that warrants different
policy (or sets of actions) for achieving optimal network
performance. Nevertheless, traditional artificial intelligence
approaches may not be sufficiently efficient and flexible to
cater. While the centralized approach (e.g., embedded in
BS) can use more complex artificial intelligence approaches,
such as deep learning [29], [46] to handle complex network
scenarios, the distributed approach (e.g., embedded in UEs)
can only use less complex artificial intelligence approaches.
Meanwhile, the malicious entities can also use artificial in-
telligence approaches to learn the best strategy to launch at-
tacks. Hence, more investigations on the use of artificial intel-
ligence to TRM, as well as to address artificial intelligence-
based attacks, are expected in 5G access networks.

VII. CONCLUSION
This article presents a review on the limited works on trust
and reputation management (TRM) in 5G. 5G is envisioned
to address the limitations of traditional cellular networks (i.e.,
low network capacity, high latency, inefficient data forward-
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ing, and low scalability) and to cater for the characteristics of
next-generation network scenarios (i.e., high heterogeneity,
ultra-densification, and high variability). Collaboration has
become indispensable to support important functions in 5G,
particularly dynamic channel access, device-to-device com-
munication, network virtualization, and coordinated multi-
point in order to enhance spectral efficiency, network capac-
ity, QoS performance (e.g., latency), and energy efficiency.
Nevertheless, collaboration is susceptible to security vulner-
abilities and attacks, such as Sybil, crude, denial of service,
black hole attacks, and so on. TRM has been proposed to
establish trust among collaborating entities, as well as to
improve data reliability and scalability. Nevertheless, TRM
must address challenges brought about by 5G, including
high heterogeneity, dynamicity, energy consumption, and
overhead. Traditional TRM must be enhanced to be applied
in 5G networks. This article discusses how TRM can improve
5G networks, and open research opportunities. Future inves-
tigation could be pursued to apply TRM to enhance security
in 5G networks, including channel access and sharing, beam-
forming, D2D communication, and network virtualization.
In addition, future investigation could also be pursued to
improve TRM approaches, such as extending the centralized
and distributed approaches to the hybrid approach, and to use
more advanced learning approaches, such as deep learning.
Certainly, this article has laid a solid foundation and opened
up new research interests in this area.
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