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A Novel RPI Set Computation Method for Discrete-time
LPV Systems with Bounded Uncertainties

Junbo Tan1,2, Sorin Olaru2⇤, Konstantinos Ampountolas3, John Jairo Martinez Molina4, Feng Xu5

Abstract— Set invariance plays a fundamental role in the
analysis and design of linear systems. This paper proposes a
novel method for constructing robust positively invariant (RPI)
sets for discrete-time linear parameter varying (LPV) systems.
Starting from the stability assumption in the absence of distur-
bances, we aim to construct the RPI sets for parametric un-
certain system. The existence condition of a common quadratic
Lyapunov function for all vertices of the polytopic system is
relaxed in the present study. Thus the proposed method enlarges
the application field of RPI sets to LPV systems. A family of
approximations of minimal robust positively invariant (mRPI)
sets are obtained by using a shrinking procedure. Finally, the
effect of scheduling variables on the size of the mRPI set is
analyzed to obtain more accurate set characterization of the
uncertain LPV system. A numerical example is used to illustrate
the effectiveness of the proposed method.

I. INTRODUCTION
Many control and fault diagnosis problems can be nat-

urally formulated, analyzed, and solved in a set-theoretic
framework [1]. Sets are naturally involved in control and
fault diagnosis fields by considering system uncertainties
and physical constraints. Especially, invariant sets play an
important role in the solutions of many control and fault
diagnosis problems in complex systems [2] [3].

LPV systems, as a bridge connecting linear and nonlinear
systems, have gained a great deal of attention in recent
years [4]. Many control analysis and comprehensive design
problems for LPV systems are involved in the invariant set
theory, which is a fundamental tool in this field. In [5], a
robust ellipsoidal invariant set method was proposed with
respect to maximizing the inclusion of some given reference
direction by considering additive disturbances injected into
the system dynamics. In [6], based on a H1 observer gain
design and linear matrix inequality (LMI) conditions, an
ellipsoidal RPI set is computed, the evolution of which is
characterized to bound the estimation error at each time
instant. However, regarding both methods in [5] and [6],
there is a precondition that a common quadratic Lyapunov
function of all vertex matrices of LPV systems must exist,
which is a strict assumption hard to be satisfied for several
LPV systems.
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For linear discrete-time systems affected by bounded
uncertainties, in [7], an interesting method was proposed
to compute an mRPI set by using a contractive procedure
starting from an initial RPI set. Based on the work in [7], we
propose a novel RPI set computation method for perturbed
discrete-time LPV systems. The concept of poly-quadratic
stability is employed to construct the RPI sets. Poly-quadratic
stability aims to check asymptotic stability of a polytopic sys-
tem by mean of polytopic quadratic Lyapunov functions [8].
In this case, the existence of a common quadratic Lyapunov
function for all vertices of the polytopic system is absent.
Compared with the existing methods computing RPI sets for
discrete-time LPV systems, the proposed method does not
need to satisfy any other requirements only requires that the
system is poly-quadratically stable. Furthermore, a family of
outer-approximations of the mRPI set are obtained by using
a shrinking process, which are also positive invariant at each
step of iteration.

The remainder of this paper is organized as follows.
Section II presents the discrete-time LPV dynamics affected
by bounded uncertainties and stability analysis of the system
based on LMIs. In Section III, a novel initial RPI set
construction method is proposed and a sequence of outer-
approximations of the mRPI set are obtained with a shrinking
index established to evaluate the approximation precision by
using the shrinking process. Some extensions regarding the
mRPI set of discrete-time LPV dynamics are further analyzed
in Section IV. A numerical example is used to illustrate the
effectiveness of the proposed method in Section V. Some
conclusions are summarized in Section VI.

II. SYSTEM MODEL

This section mainly introduces a general model of discrete-
time LPV systems with bounded uncertainties and analyzes
the stability of the system.

A. System Model

Consider the following discrete-time LPV system:

xk+1 = A(⇢k)xk + wk, (1)

with k = 0, 1, 2, . . . the discrete time index, A(⇢k) 2
Rnx⇥nx is the system matrix dependent on a scheduling
vector ⇢k 2 Rn⇢ , and xk 2 Rnx is the system state at time
instant k. The uncertain input signal wk 2 Rnw (including
process disturbances, modeling errors, etc.) is bounded by
a known closed, convex set W containing the origin, i.e.,
wk 2 W.
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It is assumed that the scheduling variable ⇢k is bounded
by a known, convex and compact set P generating
from the convex hull of its vertices, i.e., ⇢k 2 P =
Conv{⇢1, ..., ⇢i, ..., ⇢N }, where N is the number of ver-
tices. Therefore, a linear affine function A(⇢k) of ⇢k is also
bounded by a polytopic set and can be written as the sum
of vertex matrices of this set:

A(⇢k) =
XN

i=1
�i(⇢k)Ai, (2)

where Ai is the i-th vertex matrix of the set A(P) and the
weighting coefficients �i satisfy

XN

i=1
�i(⇢k) = 1; 0  �i(⇢k)  1. (3)

B. Stability Analysis

Since wk is an additive term in (1) and is contained in the
known bounded set W, this does not affect the bounded-
input, bounded-output stability of the system (1). Moreover,
let us directly consider the stability of the nominal system:

xk+1 = A(⇢k)xk. (4)

We recall the following theorem related to the stability
analysis of (4) and readers can refer [8] for more details.

Theorem 2.1: The dynamics (4) is poly-quadratically sta-
ble if and only if there exist symmetric positive definite
matrices Si, Sj , and matrices Gi of appropriate dimensions
such that


Gi +G

T
i � Si ⇤

AiGi Sj

�
� 0, 8 i, j = 1, 2, ...,N , (5)

where the symbol ⇤ denotes the transpose of AiGi. In this
case, the time-varying parameter-dependent Lyapunov func-
tion for the stability is given as V (xk, ⇢k) = x

T
kP(⇢k)xk,

with P(⇢k) =
PN

i=1 �i(⇢k)S
�1
i .

For the structural point of view, the next results in [9]
provides a link between stability conditions and additional
structural properties of Lyapunov functions for dynamics
(4). The necessary and sufficient condition regarding the
poly-quadratically stability of (4) is equivalent to that there
exists a scheduling-variable dependent Lyapunov function
V (xk, ⇢k) = x

T
kP(⇢k)xk satisfying Theorem 2.1, which is

considerably less conservative than the condition that there
exists a common quadratic Lyapunov function for all vertex
matrices of A(⇢k) [5] [6]. The subsequent computation
of RPI sets assumes the fulfilment of this necessary and
sufficient stability condition.

C. Robust Positively Invariant Sets

Here we first introduce the basic set invariance notions,
which are the important basis of the proposed approaches in
this paper.

Definition 2.1: A set X is a positively invariant (PI) set of
the dynamics xk+1 = A(⇢k)xk, if 8⇢k 2 P, for any xk 2 X ,
one has xk+1 2 X for all k � 0.

Definition 2.2: A set X is an RPI set of the dynamics
xk+1 = A(⇢k)xk + !k, if 8⇢k 2 P, for any xk 2 X and
any !k 2 W , one has xk+1 2 X .

Definition 2.3: The mRPI set of the dynamics is defined
as an RPI set contained in any closed RPI set and the mRPI
set is unique and compact.

III. COMPUTATION OF RPI SETS

This section proposes a novel invariant-set construction
method by using set-theoretic notions for discrete-time LPV
systems (1) and approximates the mRPI set with an arbitrar-
ily prior given precision based on a iterative procedure.

A. Convex hull of the mRPI set

In general, the mRPI set of the dynamics (1) is not a
convex set [10]. The robust positive invariance on the convex
hull of the mRPI set of dynamics (1) can be guaranteed by
the following theorem.

Theorem 3.1: Suppose the dynamics (4) is stable. Then,
the convex hull of the mRPI set of the dynamics (1) for
arbitrary ⇢k 2 P is an RPI set.

Proof: Let ⌦̄ denote the mRPI set of the dynamics (1)
and the convex hull of ⌦̄ is ⌦1 := Conv{⌦̄}. Since ⌦̄ is
the mRPI set of the dynamics (1), based on Definition 2.2
and Definition 2.3, we have

✓XN

i=1
�i(⇢k)Ai

◆
⌦̄�W ✓ ⌦̄. (6)

For any ✓ 2 ⌦1, there exist ✓1, ✓2 2 ⌦̄ and 0  ↵  1,
such that ✓ = ↵✓1 + (1� ↵)✓2. Furthermore,

XN

i=1
�i(⇢k)Ai✓ + !k

=
XN

i=1
�i(⇢k)Ai↵✓1 +

XN

i=1
�i(⇢k)Ai(1� ↵)✓2 + !k

=↵

✓XN

i=1
�i(⇢k)Ai✓1 + !k

◆

+ (1� ↵)

✓XN

i=1
�i(⇢k)Ai✓2 + !k

◆
(7)

Let us note that there exist ✓̃1, ✓̃2 2 ⌦̄ such that:

✓̃1 =

✓XN

i=1
�i(⇢k)Ai✓1 + !k

◆
,

✓̃2 =

✓XN

i=1
�i(⇢k)Ai✓2 + !k

◆
.

Thus ultimately we have
XN

i=1
�i(⇢k)Ai✓ + !k =↵✓̃1 + (1� ↵)✓̃2

2 Conv{⌦̄} = ⌦1. (8)

Based on Definition 2.2, this implies that ⌦1 is an RPI set
of the dynamics (1).
Since the convex hull of the mRPI set is the tightest
convex set containing the mRPI set of the dynamics (1), its
characterization will represent the objective of the remaining
of the paper. In the following sections, all analyses and
computations are dealing with the convex hull ⌦1 instead
of the mRPI set ⌦̄ and we also denote (with an abuse of
notation) ⌦1 as the mRPI set of the dynamics (1).
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B. Computation of an Initial RPI Set

If the condition of Theorem 2.1 is fulfilled, then the system
(4) is stable. Moreover, wk in (1) is bounded, i.e., wk 2 W.
Therefore, there exist a family of RPI sets for the dynamics
(1). More information on the relationship between system
stability and set invariance can be found in [11].

Theorem 3.2: Under the condition of Theorem 2.1, con-
sider an arbitrarily given initial convex set X0 ◆ (1+�)⌦1,
where ⌦1 is the mRPI set of dynamics (1) and � > 0. By
computing the following iteration:

X̄k+1 =Conv
�
[N
i=1AiXk

 
�W, (9a)

Xk+1 =Conv
�
X̄k+1 [Xk

 
, (9b)

there exists a finite k
⇤ 2 N+ such that Xk⇤+1 = Xk⇤ .

Moreover, Xk⇤ is an initial RPI set for the dynamics (1).
Proof: Let us first consider the following sequence:

X̃k+1 =Conv
n
[N
i=1AiX̃k

o
�W. (10)

For a stable dynamics (1), if (1 + �)⌦1 ✓ X̃0, then there
exists a specific positive k

⇤ such that X̃k ✓ X̃0, 8k � k
⇤ .

Then let us notice that

Xk = Conv
n
[k
i=0X̃i

o
, (11)

with X̃0 = X0. For k = k
⇤ + 1, we have

Xk⇤+1 = Conv
n
Xk⇤ [ X̃k⇤+1

o
. (12)

Since X̃k⇤+1 ✓ X̃0 ✓ Xk⇤ , we have Xk⇤+1 =

Conv
n
Xk⇤ [ X̃k⇤+1

o
= Xk⇤ .

Thus, according to (9b), we can further obtain

Xk⇤ = Conv
�
X̄k⇤+1 [Xk⇤

 
,

which indicates that X̄k⇤+1 ✓ Xk⇤ holds. By combining
(9a) and (9b), we can further obtain,

X̄k⇤+1 =Conv
�
[N
i=1AiXk⇤

 
�W ✓ Xk⇤ . (13)

If xk 2 Xk⇤ , then

xk+1 =
NX

i=1

�⇢
i,kAixk + wk

2 Conv
n
[N

i=1AiXk⇤

o
�W ✓ Xk⇤ . (14)

Therefore, Xk⇤ is an RPI for the dynamics of (1).
Corollary 3.1: If the initial set X0 is contained in the

mRPI set ⌦1, i.e., X0 ✓ ⌦1, then the existence of finite
k
⇤ such that Xk⇤+1 = Xk⇤ can not be guaranteed. In this

case, Xk is not a RPI set at any iteration and only represents
an inner approximation of the mRPI set of the LPV system
(1). For further details, readers can refer the works in [12].

Considering the mRPI set ⌦1 is convex, compact and
unique, we can always find a proper X0 such that (1 +
�)⌦1 ✓ X0. We use X0 as an initial set for iteration (9) and
in this case, we can always find a proper Xk⇤ as an initial
RPI set for dynamics (1). A practical method to construct a
proper X0 will be further illustrated in Section III.D.

The alternative procedures in [5] and [6] use LMI condi-
tions to construct an RPI set under the precondition that there
exists a common quadratic Lyapunov function for all vertex
matrices of system. Here we provide a more practical way to
construct an RPI set based exclusively on convex operations
over sets. Moreover, if W and X0 are polyhedral sets then
(9a) and (9b) provide a sequence of polyhedral sets and Xk⇤

is polyhedral.
Next we will be concerned with the shrinking of a given

RPI set in order to obtain closer outer approximations of the
mRPI set and iteratively converge towards to the mRPI set
by following the idea in [7].

C. Shrinking Procedure

Considering that the uncertain inputs wk are bounded
within a convex set, i.e., wk 2 W, we can recursively build
a sequence of RPI sets starting with the initial RPI set Xk⇤

according to the following theorem.
Theorem 3.3: Given an initial RPI Xk⇤ for (1), the se-

quence ⌦k :

⌦k+1 =Conv
�
[N
i=1Ai⌦k

 
�W, (15a)

with ⌦0 = Xk⇤ , ensures that at each iteration ⌦k is an RPI
set and

⌦1 ✓ ⌦k+1 ✓ ⌦k ✓ ⌦0 (16)

holds for k � 1, and the set ⌦1 = lim
k!+1

⌦k is the exact
mRPI set of the dynamics (1).

Proof: Suppose ⌦0 = Xk⇤ is an RPI set of the
dynamics (1). ⌦1 can be computed as

⌦1 =Conv
�
[N
i=1Ai⌦0

 
�W, (17)

which characterizes the set of all possible x1 starting from
the initial x0 2 ⌦0. Since ⌦0 is an RPI set, we have

⌦1 ✓ ⌦0. (18)

Furthermore, by combining (18) and (15a), we can obtain

⌦2 =Conv
�
[N
i=1Ai⌦1

 
�W

✓ Conv
�
[N
i=1Ai⌦0

 
�W = ⌦1, (19)

which means that all x1 starting from ⌦1 will evolve into
⌦2 ✓ ⌦1. Thus, ⌦1 is also an RPI set. Similarly, we can
conclude that ⌦k+1 computed from (15a) is an RPI set,
provided that ⌦k is an RPI set and ⌦k+1 ✓ ⌦k ✓ ⌦0.

Thus ⌦k describes a monotonic sequence (in terms of set
inclusions) of RPI sets. This is lower bounded by the mRPI
set which is contained in any RPI set by definition. The
monotonic and lower bounded sequence is thus convergent.
In order to prove that the limit set ⌦1 is the mRPI and not
only a RPI set, it should be noted that

⌦1 =Conv
�
[N
i=1Ai⌦1

 
�W (20)

and ⌦k+1 $ ⌦k whenever ⌦k 6= ⌦1. Exploiting the fact
that the mRPI set is known to be unique and to verify (20),
the proof is complete.
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D. Outer-approximation of the mRPI Set with Prior Given

Precision

According to Theorem 3.3, the computation of the mRPI
⌦1 will be achieved at the limit of an iterative proce-
dure, which is overwhelming and practical impossible in
most of the cases. In the following, we propose an outer-
approximation method of the mRPI set with arbitrarily prior
given precision. Based on the finite convex set operations
(15a), we can obtain

⌦k+1 = A(⌦k)�W, (21)

with A(·) is a set mapping function and defined as

A(S) := Conv
�
[N
i=1AiS

 
.

Thus, the recursive equation (21) can be written in a more
explicit way by iterating from ⌦0, a polyhedral RPI set as
follows:

⌦k = Ak(⌦0)�
Xk

i=1
Ai�1(W). (22)

By defining the set �k :=
Pk

i=1 Ai�1(W), considering the
fact that �1 = lim

k!1
�k =

P1
i=1 Ai�1(W), we can obtain,

�1 =
⇣X1

i=k+1
Ai�1(W)

⌘
��k. (23)

Thus, we can conclude that

�k ✓ �1. (24)

In addition, by combining (22) and (23), we have

⌦k = Ak(⌦0)��k ✓ Ak(⌦0)��1. (25)

Furthermore, considering the fact that

lim
k!1

Ak(⌦0) = 0,

we can find that �1 = ⌦1 is the mRPI set of the dynamics
(1).

The recursive set iteration computation (15a) can be ter-
minated when there exists a k

† 2 N+ such that

Ak†
(⌦0) ✓ Anx

p (✏), (26)

with Anx
p (✏) := {x 2 Rnx : kxkp  ✏} is a prior given

ball with arbitrary small size. Therefore, based on (25), we
can conclude that the set ⌦k† is not only an RPI set of the
dynamics (1) but also an outer approximation of the mRPI
set �1 with the precision Anx

p (✏). That is

�1 ✓ ⌦k† ✓ Anx
p (✏)��1. (27)

In order to further characterize the velocity of shrinking to
the mRPI set, we define a relative shrinking index as follows:

�k =
radius(⌦k)� radius(⌦k+1)

radius(⌦0)
, (28)

where radius(·) computes the radius of the Chebyshev ball
of a polyhedron. Note that, as a shrinking index, �k can also
characterize the achieved precision of mRPI set approxima-
tion as a function of the iteration number k. That is, we can
stop the iterative approximation procedure to the mRPI set
once �k  �✏, where k = k

†
� is the number of iterations and

�✏ is an arbitrary given positive scalar.

IV. EXTENSIONS REGARDING RPI SETS

In the previous sections, the computation of RPI sets
approximating the mRPI set for the dynamics (1) has been
done by considering the convex hull of vertex matrices to
guarantee the robustness of computed RPI sets but without
utilizing any other information on the scheduling vector
⇢k. Practically the time varaition of ⇢k is contained in the
polytopic hypercube P, i.e., ⇢k 2 P. Thus, if we can further
make use of the information of ⇢k (such as the specific value
of ⇢k at each time instant, the smaller varying range, and so
on), it is possible to decrease the size of computed RPI sets
and obtain a more accurate state set containing the real state
xk in accordance with the information on the scheduling
variable.

According to the constructing procedure of the mRPI set
in Section III, we can find that if the scheduling vector ⇢k

has a smaller varying range, that is

P0 ✓ P, (29)

then the computed mRPI set based on the proposed method
will be contained in the original mRPI set, i.e.,

⌦1(P0) ✓ ⌦1(P), (30)

where ⌦1(P0) and ⌦1(P) denotes the computed mRPI
sets corresponding to ⇢k 2 P0 and ⇢k 2 P, respectively.
Furthermore, we can obtain that if P0 ✓ {P1\P2\· · ·\Ps},
then

⌦1(P0) ✓ {⌦1(P1) \⌦1(P2) \ · · · \⌦1(Ps)}. (31)

Precisely, when the varying range of the scheduling vector
⇢k degenerates to a fixed point from a polytopic hypercube
P0, the above set inclusion relations (30) and (31) still hold.
In this case, the LPV system (1) degenerates into a linear
time invariant (LTI) system with bounded uncertainties.

Besides the varying range of scheduling vector ⇢k, if fur-
ther information related to the specific values of scheduling
vector ⇢k (such as the dynamics of ⇢k) is available or if the
speed of variation of ⇢k can be guaranteed, then a decrease
on the size of the initial mRPI ⌦1(P) can be achieved in
order to obtain a more accurate set describing the impact
of the disturbance around the equilibrium of the nominal
dynamics (4). For instance, suppose that the scheduling
vector ⇢k satisfies the following bounding on the rate of
variation:

|⇢k+1 � ⇢k|  �̄, (32)

where �̄ is a given positive constant vector and the inequality
is considered element-wise. By considering now the bound-
ing condition (32), we can get a smaller varying range of
⇢k at the respective time instants to improve the precision
of state sets. Moreover, suppose that the variation of the
scheduling variable ⇢k is driven by a dynamical process, i.e.,

⇢k+1 = F⇢k + vk, (33)

where F 2 Rn⇢⇥n⇢ is a Schur matrix, vk is a disturbance
vector contained in a bounded set V such that ⇢k is always in
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the polytopic hypercube P. We can now obtain the specific
value of the scheduling vector ⇢k at each time instant and
compute on-line a tighter state set based on the initial mRPI
⌦1(P) according to the following iterative procedure:

X0 = ⌦1(P), (34a)
Xk+1 = A(⇢k)Xk �W. (34b)

The analysis of the estimated state sets by using the con-
ditions (29), (32) and (33) are further illustrated in the
numerical example of the next section.

V. NUMERICAL EXAMPLE

Consider a discrete-time LPV sytem (1) with

A(⇢k) =


0.8134� 0.2464⇢k 0.1031� 0.0075⇢k

�0.07312 + 0.3326⇢k 0.2867 + 0.0464⇢k

�
. (35)

The system is affected by uncertainties kwkk1  1 for all
k � 0. Considering the scheduling variable ⇢k is contained
in the bounded set P = [�1, 1] (P is an interval hull), we
can compute the vertex matrices as

A1 =


1.0597 0.1106
�0.7038 0.2403

�
, A2 =


0.5670 0.0956
�0.0387 0.3330

�
.

Based on Theorem 2.1, we can solve the LMI (5) and
obtain the proper parametric matrices using YALMIP :

S1 =


0.5951 �0.4850
�0.4850 1.5214

�
, S2 =


1.0729 �0.4999
�0.4999 1.3832

�
,

G1 =


0.5759 �0.1716
�0.4378 1.2881

�
, G2 =


0.9493 �0.2171
�0.3136 1.1867

�
.

Under the conditions of Theorem 2.1, the stability of the
LPV system (1) is guaranteed and we can compute the RPI
sets for the LPV dynamics as shown in the sequel. However,
we cannot find proper parametric matrices satisfying the LMI
conditions proposed in [5] and [6]. In other words, there
does not exist a common quadratic Lyapunov function for all
vertex matrices of the above LPV system and RPI sets cannot
be constructed based on the methods in [5] and [6]. Thus,
we can conclude that the proposed method for computing
RPI sets for LPV systems is more flexible and has a wider
application scope than those in previous works.

TABLE I
RELATED COMPUTATION PARAMETERS

Varying range of ⇢k k⇤ k† k†� ✏ �✏

P1 = [�1, �1] 4 213 27 0.001 0.001
P2 = [�1, 0.5] 5 213 8 0.001 0.001
P3 = [�0.5, 0] 2 62 11 0.001 0.001
P4 = [0, 0.5] 1 35 11 0.001 0.001
P5 = [0.5, 1] 1 24 11 0.001 0.001
P10 = [�0.5, 0.5] 2 62 15 0.001 0.001
P11 = {�0.5} 2 62 7 0.001 0.001
P12 = {0.5} 1 24 8 0.001 0.001

To start with, we set the initial set X0 with kX0k1  40.
The iterative procedure for searching of the initial RPI

Fig. 1. Procedure of computing the initial RPI set.

Fig. 2. Shrinking procedure to obtain a sequence of RPI sets.

set Xk⇤ is shown in Fig. 1. As can be seen it needs 4
steps to get the initial RPI set Xk⇤ , i.e., ⌦0 = X4. Then
by using the shrinking procedure proposed in Section III-
C, we can compute the outer-approximation of the mRPI
set starting from the initial polyhedron RPI set X4. The
shrinking process is shown in Fig. 2. It can be observed that
the mRPI set approximations are always invariant sets at each
iteration. ⌦k† is the outer-approximation of the mRPI set
with a given precision ✏ = 0.001. The resulting parameters
related to the iterations are displayed in the second row of
Table I.

A. Case 1

According to Table I, we know that Pi ✓ P1, 8 i =
2, 3, 4, 5. The results in Fig. 3 show that the set inclusion re-
lation (30) holds with ⌦1(Pi) ✓ ⌦1(P1), 8 i = 2, 3, 4, 5.
Since there is no set inclusion relation among Pi, 8 i =
2, 3, 4, 5, we can obtain that ⌦1(Pi), 8 i = 2, 3, 4, 5 is not
included in each other according to Fig. 3.

Fig. 3. mRPI sets w.r.t. different varying ranges of ⇢k .
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Fig. 4. mRPI sets w.r.t. ⇢k satisfying bounded varying condition.

Fig. 5. Robust state set computation given the initial mRPI set.

B. Case 2: Scheduling vector satisfies a bounding condition

As we know, the shape, size and position of the mRPI set
might change as the scheduling variable ⇢k varies. Consider
that ⇢k varies from -0.5 to 0.5 satisfying the bounding
condition (32) with �̄ = 1. Fig. 4 shows that the set
inclusion relations hold, i.e., ⌦1(P11) ✓ ⌦1(P10) and
⌦1(P12) ✓ ⌦1(P10), which verifies (30). Then by using
the set iteration (34b) starting from ⌦1(P11), the state
set changes to ⌦1(P12) from initial ⌦1(P11) after 17
iterations. Moreover, we can find that during the whole
iterative procedure, the state sets are included in ⌦1(P10),
since ⇢k is always contained in P10, i.e., ⇢k 2 P10.

C. Case 3: Scheduling vector dynamics are available

Suppose that the dynamics of ⇢k given by: ⇢k+1 = 0.9⇢k+
vk, with kvkk1  0.1. The dynamics of ⇢k allow us to
obtain the specific value of scheduling variable ⇢k at each
time instant, and thus to compute a tighter state set containing
the real system state xk. By using ⌦1(P1) to initialize and
iterate the dynamics (34b), we can find from Fig. 5 that
xk 2 Xk ✓ ⌦1(P1) holds at each time instant. It is obvious
that Xk has a smaller size than that of the mRPI set ⌦1(P1),
which characterizes a more accurate state set containing the
real state xk.

VI. CONCLUSIONS
This paper proposes a novel two-stage mRPI set compu-

tation method for discrete-time LPV systems with bounded
uncertainties if and only if the system is poly-quadratically
stable, which does not need to satisfy the condition that there
must exist a common quadratic Lyapunov function for all
the vertex matrices of LPV system. The first stage of the

computational method aims to construct in a finite number
of iterations and RPI set. The second stage is iterative and
converges to the mRPI set in the limit.

Based on this shrinking process, we can obtain a family
of approximations for the mRPI set that are also RPI sets at
each step of iteration with a predetermined precision. Mean-
while, a shrinking index �k is established to characterize
the precision of the mRPI set outer-approximations and thus
offer a finite-time computational method.

Finally, as expected, one can decrease the size of mRPI
set and obtain a tighter and more accurate state set contain-
ing the real state on-line/off-line whenever supplementary
information on the scheduling vector is made available. In
the future, we will extend this method to fault diagnosis and
fault-tolerant control design for discrete-time LPV systems
with bounded uncertainties.
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