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ARTICLE INFO ABSTRACT

Keywords: The use of helminth infections as tools to understand the type 2 immune response is a well-established technique
Helminth and important to many areas of immunological research. The phenotype and function of immune cell popula-
Th2 tions at the site of infection is a key determinant of pathogen clearance. However, infections with helminths such
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as the murine nematode Heligomosmoides polygryrus cause increased mucus production and thickening of the
intestinal wall, which can result in extensive cell death when isolating and analysing cells from the lamina
propria (LP). Populations of larger immune cells such as macrophages and dendritic cells are often trapped

within mucus or dying tissues. Here we describe an optimised protocol for isolating LP leukocytes from the small
intestine of H.polygyrus -infected mice, and we demonstrate phenotypic and functional identification of myeloid
and CD4 ™" T cell subsets using cytokine staining and flow cytometry. Our protocol may provide a useful ex-
perimental method for the immunological analysis of the affected tissue site during helminth infections.

1. Introduction

A type 2 immune response is established in response to stimuli such
as allergens and helminth parasites. The type 2 immune response is
characterised by infiltration of innate cells such as basophils, eosino-
phils and mast cells to mucosal sites, hyperplasia of goblet cells and a
robust T helper 2 (Th2) cell response. The type 2 response is often as-
sociated with diseases such as allergy and asthma (Yazdanbakhsh et al.,
2002), where the type 2 response is inappropriate. However, the type 2
immune response is critical for host protection during helminth infec-
tion and expulsion of parasites (Urban Jr. et al., 1991). Therefore, un-
derstanding the type 2 response and its regulation is important for
fundamental science and for the development of new therapies.

Murine helminth infections are widely used as models of type 2
immune activity, regulation and disease (Gause et al., 2013). A com-
monly used helminth is the nematode Heligomosmoides polygyrus, which
naturally infects the small intestine of wild mice. This parasite is in the
same family of pathogens as the human hookworms Necator americanus
and Ancylostoma duodenale, although its life cycle is more similar to

Abbreviations: LP, lamina propria; Th2, T helper cell 2
* Corresponding author.

ruminant parasites such as Haemonchus contortus (Reynolds et al.,
2012). It is often used as a model of a physiological Th2 response
during infection. H. polygyrus larvae are ingested orally at the L3 stage
and, within 24 h, reach the small intestine of their host and begin to
migrate through the intestinal wall. Larvae migrate to the submucosa
and encyst, undergoing two moults and developing into adult worms.
Adult worms then migrate back through the intestinal wall and emerge
into the lumen, where they mate and produce eggs (Monroy and
Enriquez, 1992). The migration of larvae and adult worms through the
small intestine wall results in epithelial cell damage. Damaged epithe-
lial cells release cytokine alarmins such as IL-33, thymic stromal lym-
phopoietin (TSLP) and IL-25 (Barlow and McKenzie, 2011). IL-33 and
IL-25 activate type 2 innate lymphoid cells (ILC2), which will in turn
produce type 2 cytokines such as IL-5 and IL-13 (Barlow and McKenzie,
2011). Other innate cells including mast cells, eosinophils and basophils
are rapidly recruited to the site of infection and also secrete IL-4, IL-5
and IL-13 (Davoine and Lacy, 2014; Gessner et al., 2005; Mukai et al.,
2018). Macrophages and dendritic cells contribute to inflammation and
stimulate the activation of Th2 cells, a subset of CD4™* effector T cells
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Fig. 1. Viability of lamina propria cells isolated using starting and optimised methods. C57BL/6 mice were infected with 200 L3 H. polygyrus. 14 days later the small
intestine was removed, and LP leukocytes isolated and analysed by flow cytometry. (A) Representative scatter characteristics and (B) representative viability of
starting (left) and optimised (right) protocols. (C) % Live cells and (D) Absolute cell numbers of small intestine LP samples from naive and infected mice, from starting
and optimised methods. Graphed data are shown with means + 1 SD and are representative of 3 separate experiments with n = 4-5 in each experiment. Statistical

significances calculated by Mann Whitney U test (Significance p < .05, *p < .05).

which are key to the type 2 immune response in helminth infection,
allergy and asthma (Kim and Kim, 2018). Th2 cells produce the type 2
cytokines IL-5, IL-13 and IL-4. IL-4 drives further Th2 differentiation
and guides class switching of B cells, while IL-5 and IL-13 are pre-
dominantly effector cytokines, recruiting and activating granulocytes,
promoting degranulation, and guiding wound repair (Allen and Wynn,
2011; Liang et al.,, 2011). IL-13 stimulates goblet cell hyperplasia,
which increases goblet cell production of mucin. Mucus production by
goblet cells is a key component of helminth expulsion (Anthony et al.,
2007).

One of the most common time-points currently investigated during
H.polygyrus infection is fourteen days post infection, as Th2 cell ex-
pansion peaks (Perona-Wright et al., 2010a), adult worms have
emerged into the lumen (Hewitson et al., 2011) and both innate and
adaptive immune responses are well established (Rolot and Dewals,
2018). At this time-point, there is large immune cell infiltration to the
tissue, and further thickening occurs as a result of fibrosis. Mucus
production is high due to goblet cell hyperplasia. Both factors con-
tribute to extensive cell death, experimentally, when isolating lamina
propria (LP) leukocytes from the small intestine for further analysis.
Published studies that aim to investigate the small intestine LP there-
fore typically concentrate on earlier time-points or on cells located in
lymphoid tissues (Mosconi et al., 2015; Pelly et al., 2016; Perona-
Wright et al., 2010a). Furthermore, larger immune cells such as mac-
rophages frequently become trapped in mucus and dying tissues and are
therefore very difficult to isolate. The ability to investigate immune cell
populations at the site of infection is becoming increasingly important,
as interactions between immune cells in inflamed tissues is emerging as
key to fully understanding an immune response to infection. We have

therefore optimised a method for isolating viable LP leukocytes from
the small intestine LP during H.polygyrus infection and we show, using
cytokine staining and flow cytometry, that this protocol enables the
functional identification of subsets of both the myeloid and CD4™ T cell
compartments.

2. Methods
2.1. Mice and infection

Seven-week-old female C57BL/6 mice were purchased from Envigo
(Huntingdon, UK). Animals were maintained in individually ventilated
cages under standard animal house conditions at the University of
Glasgow and procedures were performed under a UK Home Office li-
cense (Project number 70/8483) in accordance with UK Home Office
regulations following review by the University of Glasgow Ethics
Committee. Mice were acclimatised for 1 week after arrival in the an-
imal unit, and then infected with 200 H. polygyrus L3 larvae by oral
gavage.

2.2. Isolation of lamina propria leukocytes

Naive and infected animals were euthanised using carbon dioxide,
and the small intestine removed by cutting below the stomach and
above the caecum. Care was taken to ensure as much fat as possible was
removed from the exterior of the intestine. Intestines were transferred
immediately onto laboratory tissue paper soaked liberally in phosphate-
buffered saline (PBS) (no calcium, no magnesium; kept at room tem-
perature) and Peyer's patches were removed using dissecting scissors,
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Fig. 2. Isolation of CD4™ T cells from the small intestine at different stages of H. polygyrus infection. C57BL/6 mice were uninfected or infected with 200 L3 H.
polygyrus larvae. 7 and 14 days later, the small intestine was removed, and LP leukocytes isolated, stimulated with cell stimulation cocktail and protein transport
inhibitors, and analysed by flow cytometry. Representative CD4 " T cell gating strategy of LP cells from (A) naive (B) 7 days post-infection and (C) 14 days post-
infection. (D) The percentage of live cells in the lymphocyte gate at each timepoint (E) The total number of CD4* T cells at each timepoint. Graphed data are shown
with means + 1 SD and are representative of 3 separate experiments with n = 4-5 in each.

working quickly to ensure the tissue did not dry out. Continuing on
PBS-soaked tissue paper and adding more PBS as needed to keep the
tissue wet, the intestines were opened longitudinally using blunt tip
scissors and then held by forceps and washed vigorously by agitation in
a PBS-filled petri dish to remove intestinal content. Fine forceps were
used to gently squeeze out any remaining mucus, running the forceps
down the length of each intestine. Each intestine was then transferred
onto a fresh piece of PBS soaked tissue and cut into 1 cm pieces. The
pieces were collected and transferred to a 50 ml centrifuge tube con-
taining 30 ml of HBSS (Gibco™14,170,088 no calcium, no magnesium)
supplemented with 10% FCS (Gibco™ Fetal Bovine Serum, qualified,
heat inactivated, E.U.-approved, South America Origin) and kept on ice.
Each tube was shaken vigorously by hand and placed on ice for transfer
from the animal unit back to the laboratory. Samples should be kept on
ice for no longer than 1h at this stage.

Further processing of the intestines was staggered, depending on
sample number: a maximum of 8 samples was processed at one time
and each step and wash was carried out quickly, ensuring that the in-
testinal tissue did not dry out at any stage in the protocol. Each sample
was poured onto a large piece of 50-um Nitex mesh, folded into a funnel
placed in a 400 ml beaker. Samples were washed by pouring 30mls pre-
warmed HBSS (Gibco™ 14,170,088 no calcium, no magnesium as be-
fore, but with no supplements), over the Nitex mesh in the funnel. Using
forceps, the samples were then transferred back into tubes containing
15 ml 2mM EDTA (UltraPure™ 0.5 M EDTA, pH 8.0 Cat. 15,575,020) in
HBSS, pre-prepared and warmed to 37 °C). The samples were shaken
vigorously by hand and placed into an orbital shaker (Stuart, Orbital
Incubator SI500) set to 220 rpm and 37 °C for 15 mins.

After shaking for 15min, the tubes were removed, the samples
poured onto Nitex mesh arranged in a funnel and washed with non-

supplemented HBSS exactly as previously. After washing, the intestinal
pieces were again transferred to tubes containing 15 ml 2 mM EDTA in
HBSS and returned to the orbital shaker for a further 15min. This
process of EDTA washes was repeated twice more, for a total of three
15 min shakes in 15ml 2mM EDTA in HBSS. After the 3rd and final
EDTA wash, the intestinal pieces were transferred into 15 ml of RPMI
1640 (Gibco™ no glutamine, 21870076) supplemented with 10% FCS,
10% FCS, 100 U/ml Penicillin, 100pg/ml Streptomycin, 2 mM r-gluta-
mine (Life Technologies 15,140,122) and 62.5 CDU/ml Collagenase
VIII (CDU, collagenase digestion units) (Sigma-Aldrich C2139-500MG),
all pre-prepared and warmed to 37 °C. The samples were shaken vig-
orously by hand and placed back into the shaker set to 220 rpm and
37 °C. After 10 min, the samples were checked by removing from shaker
and shaking vigorously by hand. At this stage, tissue had begun to break
up and the medium looked cloudy, reflecting cells released into the
supernatant. The samples were placed back into the shaker for a further
5min, and then the visual check repeated. Under optimal conditions,
only small amounts of tissue remained, and the supernatant was very
cloudy. No sample was left in digestion buffer for any longer than
15 min, as this strongly reduced cell viability.

After the 15-min digest period, enzyme action was stopped rapidly
by adding 35 ml of ice-cold RPMI 1640 (10% FCS, 100 U/ml Penicillin,
100pg/ml Streptomycin and 2 mM 1-glutamine) to each tube, and pla-
cing on ice. Each sample (all 50 ml) was then filtered through a 100 um
nylon mesh filter, followed by a 40 um nylon mesh filter, using a 25 ml
stripette and several 50 ml centrifuge tubes. It was important not to
crush through any tissue remaining on the top of the filters, as dying
connective tissue decreased the viability of isolated cells. The samples
were spun at 400 g for 10 min at 4 °C to pellet the isolated cells. The
supernatants were discarded, and the pellets gently resuspended in
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Fig. 3. Type 2 cytokine secretion by CD4" T cells during H. polygyrus infection. C57BL/6 mice were uninfected or infected with 200 L3 H. polygyrus larvae. 7 and
14 days later the small intestine was removed, and LP leukocytes isolated, stimulated with cell stimulation cocktail and protein transport inhibitors, stained for
intracellular cytokines and analysed by flow cytometry. Cells shown are gated as CD44", CD4*, TCRB*, single (using FSC-H vs FSC-A), live (fixable viability dye
negative) lymphocytes (gated using SSC-A vs FSC-A). Representative CD4 " T cytokine secretion of IL-5 (top) and IL-13 (bottom) by LP cells from (A) naive mice (B)
7 days post-infection and (C) 14 days post-infection. (D) Percentage of IL-5* and (E) IL-13" cells among total CD4" T cells at each timepoint. Graphed data are
shown with means = 1 SD and are representative of 3 separate experiments with n = 4-5 in each experiment. Statistical significances were calculated by Brown-
Forsythe ANOVA test followed by Dunnett's T3 test for multiple comparisons between groups with different standard deviations (**p < .01 *p < .05).

35 ml of ice-cold RPMI 1640 (10% FCS, 100 U/ml Penicillin, 100pg/ml
Streptomycin and 2 mM r-glutamine). The spin and resuspension of the
pellet was repeated once more, as a final wash, and the resulting cell
suspension was counted using trypan blue and kept on ice, ready for
further analysis. For maximal cell viability, it should take no longer
than 3 to 3.5h from animal euthanasia to obtaining a single cell sus-
pension.

2.3. Key points for successful LP isolations

1. Speed and efficiency, to minimise time from euthanasia to final cell
fixation

2. Ensuring effective removal of mucus during processing

3. Being efficient between EDTA washes — do not let tissue dry out at
any stage

4. Ensuring all buffers are at correct temperatures

5. Add collagenase VIII to RPMI 1640 immediately prior to use, and
dissolve gently

6. Keep samples on ice where possible

7. Do not crush remaining tissue through strainers after digestion

8. Ensure centrifugation steps post-digestion are 10 min long, to max-
imise cell yield

2.4. T cell cytokine stimulation and intracellular staining
Cells were resuspended at 3 x 10 cells/ml and 1ml of cell sus-

pension was spun down at 400g for 5min at 4°C in FACS tubes.
Samples were resuspended in 500 ul of RPMI 1640 supplemented with

10% FCS, 100 U/ml Penicillin, 100pg/ml Streptomycin and 2 mM -
glutamine and 2 pl/ml solution of both stimulation cocktail and protein
transport inhibitors (Invitrogen eBioscience™ Cell Stimulation Cocktail
plus protein transport inhibitors (500 x )). Samples were incubated for
4h at 37 °C in a 5% CO2 incubator, and vortexed every hour. Samples
were then washed twice with cold PBS before staining for flow cyto-
metry. Dead cells were excluded using Fixable Viability Dye eFluor 780
(Ebioscience) and non-specific binding was blocked with Fc block anti-
mouse CD16/32 Antibody (Clone 93, BioLegend). Samples were surface
stained at 4°C for 20 min with: APC-conjugated anti-CD4 (RM4-5,
BioLegend), FITC-conjugated anti-CD44 (IM7, BiolLegend), and
PerCpCy5.5-conjugated anti-TCRB (H57-597, BioLegend). Cells were
fixed in 150 pl of BD Cytofix/Cytoperm™ (554714) for 20 min at 4 °C.
Samples were then washed using BD Perm/Wash™ Buffer (554714) and
50l of intracellular anti-cytokine antibody stain (PE-Cy7-conjugated
anti-IL-13 (eBiol3A, Invitrogen), PE-conjugated anti-IL-5 (TRFKS,
BioLegend), e450-conjugated anti-IFNy (XMG1.2, Invitrogen)) or ap-
propriate isotype control added to each sample and incubated at room
temperature, protected from light, for 1 h. Samples were washed using
BD Perm/Wash™ Buffer and acquired immediately on the BD LSRII flow
cytometer running FACS-Diva software (BD Biosciences). Analysis was
performed using FlowJo (Treestar).

2.5. Myeloid cell staining and flow cytometry

For myeloid cell staining, dead cells were excluded using Fixable
Viability Dye eFluor 780 (Ebioscience) and non-specific binding was
blocked with Fc block anti-mouse CD16/32 Antibody (Clone 93,
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Fig. 4. Isolation of myeloid cells from the small intestine of H. polygyrus infected mice. C57BL/6 mice were uninfected or infected with 200 L3 H. polygyrus larvae and
7 and 14 days later the small intestine was removed and LP leukocytes isolated and analysed by flow cytometry. Representative myeloid cell gating strategy of LP
cells from (A) naive (B) 7 days post-infection and (C) 14 days post-infection. Data representative of 3 separate experiments and n = 4-5 in each experiment.

BioLegend). Samples were then surface stained at 4 °C for 30 min with
the following mAbs: BV421-conjugated anti-CD45 (30-F11, BioLegend),
AlexaFluor 647-conjugated anti-CD3 (17A2, BioLegend), AlexaFluor
647-conjugated anti-B220 (RA3-6B2, BioLegend), AlexaFluor 700-con-
jugated anti-MHCII (M5/114.15.2,BioLegend), PerCP-Cy5.5-conjugated
anti-CD11c (N418, BioLegend), BV605-conjugated anti-CD11b (M1/70,
BioLegend), BV510-conjugated anti-Ly6C (HK1.4, BioLegend), PE-con-
jugated anti-Ly6G (1A8, BioLegend), and PE-Cy7-conjugated anti-CD64
(X54-5/7.1, BioLegend). Cells were then washed with ice cold PBS
(supplemented with 10% FCS and 2 mM EDTA) at 400 g for 10 min at
4°C and acquired immediately on BD Fortessa flow cytometer running
FACS-Diva software (BD Bioscience). Analysis was performed using
FlowJo (Treestar). Absolute numbers of cells were calculated by mul-
tiplying the total cell count, obtained at the end of section 2.2, with the
frequency of the cell population of interest (assessed by flow cyto-
metry).

3. Results

Several protocols exist for the isolation of LP leukocytes from the
small intestine of mice, but the inflamed and mucus-rich conditions of
helminth-infected intestines have proven challenging. We set out to
optimise isolation conditions for LP leukocytes from the small intestine
LP of mice 14 days post-infection with H. polygyrus, adapting protocols
previously used by the Milling and Mowat lab groups for naive and
bacterially-infected tissues (Chirdo et al., 2005) (Bravo-Blas et al.,
2019; Cerovic et al., 2013). Our starting protocols resulted in extensive
cell death when processing H. polygyrus infected tissues, which we re-
duced by optimisation of the dissection and digestion workflow and the
concentrations of digestion enzymes and EDTA solutions (Fig. 1). We
also tried the inclusion of dithiothreitol (DTT) to disrupt mucus, and the
use of a density gradient to remove dead cells (Goodyear et al., 2014),

but we found that DTT reduced cell viability and the density gradient
reduced cell yield. Our optimised protocol removes both steps. When
assessing the forward and side scatter of the isolated leukocytes, our
optimised protocol showed clear lymphocyte populations that were not
present in our previous isolations using our starting protocols (Fig. 1A).
Furthermore, when comparing the viability between these experiments,
cells isolated using our optimised protocol had much higher viability
compared to previous experiments (Fig. 1B and C).

We next assessed the effectiveness of our protocol in the isolation of
CD4™ T cells at different times after H. polygyrus infection (Fig. 2). The
small intestines of naive mice or mice 7 and 14 days post-infection with
H. polygyrus were collected, LP leukocytes were isolated and CD4* T
cells subsequently analysed by flow cytometry. Live T cells were re-
covered at all times after infection (Fig. 2A-C), and the total number of
recovered CD4+ T cells showed a trend towards higher yields from
infected animals than in naive, and from day 14 than day 7 (Fig. 2D).
The viability of cells remained largely consistent between different
timepoints, with a slight decrease at day 14 post-infection (Fig. 2E).

To assess the function of recovered CD4* T cells, we next examined
effector subsets based on cytokine secretion. This technique requires a
4-h stimulation with PMA and ionomycin in the presence of Golgi in-
hibitors. This is a harsh stimulation and it often decreases cell viability,
even in cells from easily accessible tissues. In our previous isolation
protocols, cells isolated from the small intestine of H. polygyrus infected
mice showed almost complete cell death after stimulation. To test the
current method, we stimulated bulk cells and stained both for the
surface markers CD4 and TGFp and, intracellularly, for the type 2 cy-
tokines IL-5 and IL-13. Live cells were recovered (Fig. 2D-E, Fig. 3A-E),
and cytokines were detected at all time points post-infection (Fig. 3A-C,
D, E). As predicted, IL-5 and IL-13 positive cells were more frequent in
intestinal samples from infected mice compared to those from naive
controls (Fig. 3A-E). Isolating larger immune cells such as myeloid cells
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Fig. 5. Isolation of monocytes, macrophages, neutrophils and dendritic cells from small intestinal LP at different stages of H. polygyrus infection. C57BL/6 mice were
uninfected (left) or infected with 200 L3 H. polygyrus larvae and 7 (middle) and 14 (left) days later the small intestine was removed and LP leukocytes isolated and
analysed by flow cytometry. (A) Monocytes (MHCII ~, Ly6C ™), maturing monocytes (MHCII*, Ly6C ") and macrophages (MHCII*, Ly6C ) isolated at different time
points of infection. Gated on live, single, CD45* B220~ CD3~ CD64 " cells. (B) Neutrophils (Ly6G ™, CD11b*) isolated at different time points of infection. Gated on
live, single, CD45*, B220~ CD3~, CD64 ~ cells. (C) Dendritic cells (MHCII*, CD11c™) isolated at different time points of infection. Gated on live, single, CD45*
B220~ CD3~ CD64" cells. Data are representative of 3 separate experiments with n = 4-5 in each experiment.

from H. polygyrus infected small intestines has also been difficult pre-
viously. These cells are typically less robust than CD4* T cells in sur-
viving the isolation process, and the extent of tissue digestion must be
finely balanced between sufficient to release adherent cells but gentle
enough that cell viability is preserved. We used our optimised protocol
to examine the myeloid compartment in the small intestine at different
times after H. polygyrus infection (Fig. 4).

The isolated LP leukocytes contained a substantial live cell popu-
lation that is CD45* but negative for T cell and B cell lineage markers.
Using CD64 expression as a marker of monocyte/macrophages that
distinguishes these cells from dendritic cell populations in the murine
intestine (Cerovic et al., 2014), we confirmed that our protocol can
isolate live myeloid cell populations at 14 days post H. polygyrus in-
fection (Fig. 4). We also recovered a sufficient number of cells from the
infected LP to further analyse distinct subsets of the myeloid lineage

(Fig. 5). Following the gating illustrated in Fig. 4 and selecting CD64*
cells, we identified infiltrating monocytes (MHCII ~, Ly6C*), maturing
monocytes (MHCIT*, Ly6C*) and macrophages (MHCII*, Ly6C~)
(Fig. 5A), illustrated in the ‘monocyte waterfall’ (Bain et al., 2013), at
both day 7 and day 14 post infection. Similarly, we identified in-
filtrating neutrophils (live single CD45" B220~ CD3~ CD64~ Ly6G™
CD11b* cells) (Fig. 5B). Finally, we are also able to distinguish den-
dritic cell populations by gating on live single CD45% B220~ CD3~
CD64~ CD1lc* MHCII* cells (Fig. 5C). These strategies suggested
increases in the absolute numbers of monocytes (MHCII ~, Ly6C™) and
maturing monocytes (MHCII ", Ly6C™) over the course of H. polygyrus
infection, although these differences did not reach statistical sig-
nificance (Fig. 6A). The abundance of neutrophils (Fig. 6B) and den-
dritic cells (Fig. 6C) did increase at day 7 of infection, before decreasing
at day 14. Together these results confirm that the method described
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Fig. 6. Absolute numbers of monocytes, macrophages, neutrophils and dendritic cells recovered from small intestinal LP at different stages of H. polygyrus infection.
C57BL/6 mice were uninfected or infected with 200 L3 H. polygyrus larvae and 7 and 14 days later the small intestine was removed, and LP leukocytes isolated and
analysed by flow cytometry. (A) Absolute numbers of monocytes (MHCII ~,Ly6C™"), maturing monocytes (MHCII*, Ly6C*) and mature macrophages (MHCII*,
Ly6C ™) isolated at different time points of infection. Gated on live, single, CD45", B220~ CD3~, CD64 " cells. (B) Absolute number of neutrophils (Ly6G*, CD11b ™)
isolated at different time points of infection. Gated on live, single, CD45%, B220~ CD3~, CD64 ~ cells. (C) Absolute number of dendritic cells (MHCII*, CD11c*)
isolated at different time points of infection. Gated on live, single, CD45", B220~ CD3~, CD64~ cells. Data shown are means + 1 SD and are representative of 2
separate experiments n = 3—4. Statistical significances were calculated by ANOVA followed by a Tukey's post-test for multiple comparisons between groups with

similar standard deviations (**p < .01, ****p < .0001, ns = non-significant).

here yields high quality cell samples from H. polygyrus infected in-
testinal tissue, that can be further analysed for detailed immune cell
subsetting and characterisation.

4. Discussion

Our data demonstrate that we have optimised a protocol that allows
for successful isolation and functional characterisation of LP leukocytes
from the small intestine of H. polygyrus infected mice at two key
timepoints, day 7 and day 14 post-infection. We were able to identify a
clear CD4* Th2 cell population whose frequency and number increased
in infection, reflecting the predicted immunobiology of the infection
and confirming that, even at day 14 when mucus levels are highly
elevated, this protocol is able to recover representative cell populations.
Furthermore, we were able to assess cytokine secretion by CD4* T cells
from the infected tissue, maintaining adequate cell viability. We also
demonstrate that we can isolate distinct populations of monocytes,
macrophages, neutrophils and dendritic cells from the small intestine

LP of helminth-infected animals, which had previously been a parti-
cular challenge due to the fragile nature of myeloid cells ex vivo.
Together, our data indicate that the isolation protocol that we present
here allows the phenotypic and functional characterisation of innate
and adaptive immune cells active in the infected tissue site during a
Type 2 immune response to helminth infection.

The isolation of viable leukocytes from the intestinal LP of naive
mice or those infected with bacterial, viral and protozoan pathogens
has been published widely (Bravo-Blas et al., 2019; Cerovic et al., 2013;
Goodyear et al., 2014; Isakov et al., 2011; Perona-Wright et al., 2012).
In contrast, helminth-infected tissues have been difficult to use as
sources of immune cells. This is largely attributed to the ‘weep and
sweep’ effector mechanisms associated with a type 2 immune response,
including extensive mucus production, activation of pro-fibrotic mac-
rophages, lymphocytic and granulocytic infiltration, and the release of
histamine and cytokines that lead to a mobile and fragile intestinal
epithelium (Allen and Maizels, 2011; Allen and Wynn, 2011; Anthony
et al., 2007; Cerovic et al., 2013; Webb and Tait Wojno, 2017). Our
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understanding of type 2 immunity has therefore been biased towards
observations made in the early stages of infection or in lymphoid tissues
(Hewitson et al., 2015; Perona-Wright et al., 2010b; Rausch et al., 2010;
Redpath et al., 2015; Smith et al., 2018; Su et al., 2018; Wojciechowski
et al., 2009). Here, we have optimised the timing, the digestion and the
processing of helminth-infected intestinal tissue (See Methods 2.3) and
we present a technique that allows immune characterisation of the
small intestine LP during an acute type 2 immune response. By aiming
to remove rather than add steps to the isolation protocol, we chose to
prioritise speed over precision and were able to achieve sample vi-
abilities ranging from 35 to 75% of lymphocytes, even after stimulation
with PMA and ionomycin (Figs. 2E and 3). A danger of selecting such a
light touch approach was that we might lose cells that were more firmly
attached in the inflamed tissue. However, our analysis of myeloid po-
pulations (Figs. 4, 5 and 6) indicates that these cells are also isolated
and viable following this protocol. We therefore present a new method
suitable for the analysis of both myeloid and lymphoid cells in the LP of
mice 14 days after H. polygyrus infection.

Our method is complemented by a recent publication by Ferrer-Font
and colleagues, which also reports a protocol for isolating live cells
from the helminth-infected small intestine LP (Ferrer-Font et al., 2019).
The two protocols are similar, despite being developed separately and
optimised independently, providing strong cross validation of each
other. One difference between the two methods is the enzyme used for
tissue digestion: Ferrer-Font et al. selected Collagenase A; we compared
a similar range of enzymes and achieved the highest yield and viability
with Collagenase VIIL> Collagenase VIII is a mixture of enzymes, in-
cluding additional proteases such as clostripain, potentially improving
the efficacy of digestion. Both protocols have optimised the tissue
handling and physical mucus removal in addition to the digestion
strength; and both protocols have prioritised speed and gentle handling
by removing steps involving DTT and density gradients. Together, the
two protocols offer a substantial advance in our ability to analyse ef-
fector cell populations from the small intestinal LP during helminth
infection.

There is growing interest in the immunobiology of infections at the
effector site, rather than associated lymphoid tissues. The character-
isation of CD4™ and CD8" resident memory T cells in the affected
tissues has redefined our models of T cell memory (Carbone and
Gebhardt, 2019). T cell cytokines are thought to be segregated by
tissue, with IL-4 concentrated in the active lymph node and IL-5 and IL-
13 dominating in the infected tissue (Liang et al., 2011; Redpath et al.,
2015). Myeloid cells in the effector site are key to tissue remodelling,
clearing of microorganisms and debris, and the initiation and perpe-
tuation of appropriate T cell responses (Allen and Wynn, 2011; Kim and
Kim, 2018; Rolot and Dewals, 2018). Being able to examine cells and
their activation at the tissue site will be critical for understanding the
dynamics of the H. polygyrus infection model as well as those of a
prototypical type 2 immune response. We therefore present a protocol
to allow for successful analysis of leukocyte populations at the site of H.
polygyrus infection, the small intestine LP, throughout the course of
infection.
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