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Interpolating Control Toolbox (ICT)

Sheila Scialanga and Konstantinos Ampountolas

Abstract— Interpolating control toolbox (ICT) is a free and
open-source MATLAB toolbox that implements interpolation-
based control (IC) for time-invariant and uncertain time-
varying linear discrete-time systems with local state and con-
trol constraints. The toolbox combines geometrical features
to compute robust invariant sets offline and solves a linear
programming problem to compute the required IC online.
This paper provides an overview on interpolating control and
shows how to use ICT to robustly control input centralised and
input decentralised interconnected systems. ICT includes some
demo files to compare the performance of centralised versus
decentralised IC.

I. INTRODUCTION
ICT is a free and open-source MATLAB toolbox for com-

puting interpolation-based control of linear time-invariant
(LTI) and time-varying (LTV) systems subject to local state
and control constraints. The technique behind it is based on
the interpolating control (IC) scheme introduced by [1], [2]
and later extended by [3], [4] for decentralised IC. The main
idea of IC is to blend a local high-gain (inner) controller,
which satisfies some user-desired performance specifications,
with a global low-gain (outer) controller via interpolation.
The two controllers are defined in some invariant sets that
are determined offline; the applied control is determined
on-line with an inexpensive interpolation between the two
controllers. For the interpolation, a low-dimensional linear
programming (LP) problem is solved at each time instant.

The present version of the ICT implements the improved
centralised interpolating control (cIC) method developed in
[5] and the more efficient decentralised formulation for
interconnected systems as in [3], [4]. The decentralised
interpolating control (dIC) approach solves state and control
constrained problems for weakly interconnected systems via
distributed interpolation in low-dimensional spaces. Further-
more, dIC is well-suited for large-scale applications, e.g.,
transport systems, irrigation systems, heat conduction, etc.

ICT combines geometrical features to determine (robust)
invariant sets and perform the required IC. A number of
toolboxes include geometrical tools to compute and imple-
ment control routines, e.g., Hybrid toolbox [6], MPT3 [7],
PnPMPC toolbox [8]. Computational geometry in ICT relies
on the Invariant Set toolbox [9], which is extended by the
authors to account for LTV systems.

IC computation requires offline and online processing and
is effectuated in the ICT as follows:
• Define the system matrices and (local) control/state

constraints (offline);

S. Scialanga and K. Ampountolas are with the School of Engineering,
University of Glasgow, Glasgow G12 8QQ, United Kingdom. E-mail:
s.scialanga.1@research.gla.ac.uk; konstantinos.ampountolas@glasgow.ac.uk.

• Compute the maximal robust positively invariant sets
for a high-gain feedback inner controller (offline);

• Compute the maximal robust controllable invariant set
or the maximal M -step robust controllable set – Outer
controller (offline);

• Compute the centralised control with cIC or the decen-
tralised control with dIC by linear interpolation between
the inner and outer controllers (online);

Finally, ICT includes demo files containing examples for LTI
or LTV system of different sizes. These files also include
routines to compare the performance of cIC and dIC.

II. PRELIMINARIES
Notation: A set S ∈ Rn is convex if λx1 + (1− λ)x2 ∈

S, for all x1, x2 ∈ S and λ ∈ [0, 1]. The convex hull of a set
S ∈ Rn is the set of all convex combinations of points in S.
It is denoted as Conv(S) = {

∑k
i=1 λixi : xi ∈ S,

∑k
i=1 λi =

1, λi ≥ 0, i = 1, . . . , k}. Convexity is preserved by various
operations, among others the intersection. A Polyhedron P
with H-representation is the set P = {x ∈ Rn : F x ≤ g}
where F ∈ Rn1×n and b ∈ Rn1 . Namely, the system
inequalities fix ≤ gi, i = 1, . . . , n1, where fi are the rows
of F and gi are the elements of g. A Polyhedron class can
be defined in ICT using the Multi-parametric toolbox [7] as,

>> P = Polyhedron(F,g);

specifying the half-space representation matrix and vectors F
and g, respectively. Halfspaces and hyperplanes are convex
sets, the intersection of convex sets is a convex set, and
thus all polyhedrons are convex. A bounded polyhedron is
a polytope. Given the polytope P = {[xT1 xT2 ] ∈ Rn1+n2 :
Fx1

x1 + Fx2
x2 ≤ g} ⊂ Rn1+n2 , the projection onto the

x1-space is defined as Projx1
= {x1 ∈ Rn1 : ∃x2 ∈

Rn2 such that Fx1 x1 + Fx2 x2 ≤ g}.
Problem formulation: Consider the following linear time-

varying discrete-time system

S : x(k + 1) = A(k)x(k) +B(k)u(k), (1)

where x(·) ∈ Rn and u(·) ∈ Rm are, respectively, the state
and the control vector; A(k) ∈ Rn×n and B(k) ∈ Rm are
the state and control matrices. The family of time-varying
matrices is characterised by polytopic uncertainty

A(k) =

q∑
l=1

α(l)(k)A(l), B(k) =

q∑
l=1

α(l)(k)B(l),

with
∑q

l=1 α
(l)(k) = 1, where q is the number of reali-

sations, and α(l)(k), l = 1, . . . , q are unknown and time-
varying non-negative constants. The matrices A(l) and B(l),
l = 1, . . . , q are all given. We assume that the state x is
measurable and available for feedback, and that a robustly



asymptotically stabilising state-feedback controller u(k) =
−Kx(k), exists, where K ∈ Rm×n is a gain matrix.

The system (1) can be re-written as an input decentralised
and interconnected system consisting of N subsystems,

Si :


xi(k + 1) = Ai(k)xi(k) +Bi(k)ui(k)

+

N∑
j=1
j 6=i

Aij(k)xj(k), i ∈ N , (2)

where xi(·) ∈ Rni and ui(·) ∈ Rmi are, respectively,
the state and control vectors for the subsystem i ∈ N =
{1, 2, . . . , N}; Ai(k) ∈ Rni×ni and Bi(k) ∈ Rni×mi are
the state and control matrices; and, Aij(k) ∈ Rni×nj is
an interconnection state matrix between subsystem i and
j. The overall system S is then S =

⋃
i∈N Si with state

vector xT =
[
xT1 x

T
2 · · · xTN

]
∈ Rn and control vector

uT =
[
uT1 u

T
2 · · · uTN

]
∈ Rm, where n =

∑
i∈N ni and

m =
∑

i∈N mi. The state matrix A(k) = AD + AC , where
AD assembles the local dynamics of the subsystems and AC

assembles the couplings; B(k) is the overall control matrix
with block diagonal structure. For the input decentralised
system, we assume that local state-feedback controllers

ui(k) = −Kixi(k), i ∈ N (3)

that robustly stabilise each subsystem Si, i ∈ N , exist; where
Ki ∈ Rmi×ni , i ∈ N , are gain matrices.

The systems (1) and (2) can be coupled with bounded
local state and control constraints{

xi(k) ∈ Xi, Xi = {xi ∈ Rni | Fxi
xi ≤ gxi

},
ui(k) ∈ Ui, Ui = {ui ∈ Rmi | Fui

ui ≤ gui
},

(4)

∀ k ≥ 0, i ∈ N , where Fxi
, Fui

are constant matrices and
gxi , gui are constant vectors of appropriate dimension with
positive elements, and the origin is contained in the interior
of the sets. The inequalities are component-wise. Then, the
constraints for the overall system (1) are defined as X =∏N

i=1 Xi and U =
∏N

i=1 Ui.
To account for couplings between subsystems in (2),

we convert the original system into a decoupled sys-
tem [10]. To this end, we consider an interconnected dy-
namical system with additive norm-bounded disturbances
given by Di(k)wi(k) =

∑N
j=1,j 6=iAij(k)xj(k), where

wT
i =

[
xT1 · · · xTi−1 xTi+1 · · · xTN

]
∈ Rn−ni and Di =[

Ai,1 · · · Ai,i−1 Ai,i+1 · · · Ai,N

]
, i ∈ N , are the vector

and matrix of interconnections, respectively. The couplings
are brought to the general form of polytopic constraints,

wi(k) ∈ Wi, Wi = {wi ∈ Rni | Fwi
wi ≤ gwi

}, (5)

∀ k ≥ 0, i ∈ N , where Fwi and gwi are suitable [3], [4].
Finally, the interconnected system (2) can be re-written as:

xi(k + 1) = Ai(k)xi(k) +Bi(k)ui(k) +Di(k)wi(k), (6)

for all i ∈ N , subject to the state, control, and coupling
constraints (4)–(5).

Definition of constraints: ICT defines the state, control and
coupling constraints of (6) as cell arrays A, B, D from the state
and control matrices Ac, Bc of (1) as follows,

>> [A, B, D] = cen2dec(Ac, Bc, n, m);

The user needs first to define the centralised matrices Ac, Bc
as cell arrays, where each element of the array is a realisation
for the matrix, e.g., Ac{1}, Ac{2}, Ac{3} is a the state
matrix cell with 3 realisations A(1), A(2), and A(3); n and
m contains the size of the local state and control vector. The
output are the cell matrices A{i,j}, B{i,j}, D{i,j} of the
interconnected systems (6), where i∈ N and j defines the
number of realisations. If the matrices of the interconnected
systems are given, the routine dec2cen creates the matrices
for the overall system (1).

Constraints are defined locally and brought to centralised
form with blkdiag and cat MATLAB functions, e.g.,

>> % for each subsystem
>> X{i} = [Fx{i} gx{i}];
>> % constraints for overall system
>> Fxc = blkdiag(Fx{:});
>> gxc = cat(1,gx{:});
>> Xc = [Fxc gxc];

The overall control constraints Uc are obtained with a similar
construction. Finally, disturbance constraints (5) for (6) are
created with the following command

>> W = couplingconstraints(Fx,gx);

III. OFFLINE PROCESSING

Set invariance is important for IC to guarantee recursive
feasibility and asymptotic stability of the closed-loop system.
A useful toolbox (invsetbox) for computing invariant sets
of LTI systems has been developed by Kerrigan [11], [9].
ICT extends invsetbox to account for constrained uncertain
time-varying systems where the matrices are subject to
polytopic uncertainty. Computations and manipulations over
sets in ICT are carried out with the extended version of the
invariant set toolbox. For a review and relevant methods in
computational geometry, see e.g., [11], [12], [13].

A. Robust Invariant Sets

Given the state, control, and disturbance matrices for (6),
we assume that for each subsystem i exists a decentralised
state-feedback controller ui(k) = −Ki xi(k), i ∈ N , such
that S =

⋃
i∈N Si is stable. The resulting closed-loop state

matrix Ai − BiKi, i ∈ N , is Schur. Robust linear state
feedback control for LTV systems can be computed e.g.
by YALMIP [14], which solves a semidefinite programming
problem with linear matrix inequalities (LMI).

The following definitions applies to both the overall sys-
tem (1) and the interconnected systems (6) with (4), (5).

Definition 3.1 (Robust Positively Invariant Set): Given
the local controller (3) for each subsystem i ∈ N
and AK

i = (Ai −BiKi), the set Ωi ⊆ Xi is a robust
positively invariant constraint-admissible set with respect
to xi(k + 1) = AK

i xi(k) + Diwi(k) subject to the local
constraints (4), (5), if and only if, ∀xi(k) ∈ Ωi and
∀wi(k) ∈ Wi, the system evolution satisfies xi(k+ 1) ∈ Ωi

and −Kixi(k) ∈ Ui, ∀ k ≥ 0.
The largest robust positively invariant set that respects

constraints is called Maximal Admissible Set (MAS) [15]



and can be defined in polyhedral form as, Ωi = {xi ∈
Rni : F 0

i xi ≤ g0i }, i ∈ N . The MAS characterises the
high-gain inner controller, which satisfies some user-desired
performance and guarantees system’s overall stability.

To enlarge the domain of attraction of the controlled
system, we define the Robust Controllable Invariant Set.

Definition 3.2 (Robust Controllable Invariant Set):
Given the interconnected system (6) and the constraints (4),
(5), the set Ψi ⊆ Xi is robust controllable invariant, if
and only if, for all xi(k) ∈ Ψi, there exists an admissible
control ui(k) ∈ Ui such that xi(k + 1) ∈ Ψi, ∀ i ∈ N ,
∀wi(k) ∈ Wi, ∀ k ≥ 0.

The computation of the robust controllable invariant set
can be computational prohibitive, in particular for the cen-
tralised system S. To overcome this difficulty, ICT includes
the option of computing the outer set as the M -step Robust
Controllable Set or as MAS of some low-gain controller [5].

Definition 3.3 (M -step Robust Controllable Set): The set
PM
i ⊆ Xi is the set of all states for which exists an

admissible control sequence such that the system (6) reaches
the MAS Ωi in no more than M steps along an admissible
trajectory, i.e. one that satisfies (4), (5). The set PM

i is
called M -step robust controllable set and can be described
by PM

i = {xi ∈ Rni : FM
i xi ≤ gMi }, i ∈ N .

B. Computing Invariant Sets

Table I shows the functions included in ICT for computing
the invariant sets defined in Section III-A. Note that the
procedures to compute the robust invariant sets will succeed
if Wi, i ∈ N , is appropriately bounded [3], [4]. If any
state xj in (2) is free, a generous upper bound should be
introduced to guarantee connective stability.

The function arguments are the system matrices, the local
constraints, and the gain matrix K; tmax is the maximum
number of steps allowed; T in kinfset is the target set. We
consider the set of state constraints X as target set to compute
the robust controllable invariant set. The outputs Omega,

Psi, and PM are the invariant sets, tstar is the number
of steps executed, and fd is a flag over the determinedness.

The invariant sets for the system (1) are computed with
the same functions by omitting the disturbances with [],

>> oinfsetcl(Ac,Bc,[],Xc,Uc,[],-Kc,tmax);
>> kinfset(Ac,Bc,[],Xc,Uc,[],Xc,tmax);
>> sinfset(Ac,Bc,[],Xc,Uc,[],Omegac,tmax);

Decentralised interpolating control for interconnected sub-
systems (6) demands for separable invariant sets, that is,

>> for i = 1:N
[Omega{i},tstar,fd] = ...
oinfsetcl(A{i,:},B{i,:},D{i,:},...
X{i},U{i},W{i},-K{i},tmax)

end

kinfset and sinfset are implemented likewise, for each
i ∈ N . Note that the output sets are given in minimal H-
representation, i.e., redundant inequalities were removed.

IV. ONLINE PROCESSING
Given an LTI or LTV system with polytopic uncertainty

subject to local constraints (4), (5), the developed toolbox

Fig. 1: Any state x(k) can be decomposed as a convex
combination of x0(k) ∈ Ω and xm(k) ∈ PM .

computes offline the required invariant sets and associated
inner and outer control to enable the interpolation between
them. The online processing involves the interpolation be-
tween the two controllers which is effectuated by solving
iteratively (at each time instant) an LP problem. ICT im-
plements the centralised interpolating control as in [1], [5]
as well as some variations and improved formulations [16],
[17]. For the decentralised control of interconnected systems
ICT implements the dIC proposed by the authors in [3], [4].

A. Centralised Interpolating Control

ICT implements the improved interpolating control pro-
posed in [5]. The improved interpolating control determines
the global outer controller in an augmented state and control
space, and thus no vertex representation [18] of the control-
lable invariant set is needed as in [2].

Consider the input centralised constrained system (1)–
(4). It is assumed that an outer invariant set Φ is available
(either a low-gain MAS, the M -step invariant set, or the
controllable invariant set). Consider the extended state-space
QM =

{
x ∈ Rn, u1 ∈ Rm, u2 ∈ Rm, . . . , uM ∈ Rm,

}
such

that x can be steered in M -steps inside the outer set along
an admissible trajectory. The H-representation of QM is,

QM =

{
x ∈ Rn, UM ∈ RMm : F̄M

[
x
UM

]
≤ ḡM

}
,

where UM is the vector of admissible control sequences ui ∈
U , i = 1, . . . ,M . Any state x(k) can be decomposed as,

x(k) = s(k)xm(k) + (1− s(k))x0(k), (7)

where x0 is in the inner high-gain MAS Ω, xm is so that
a control sequence exists such that [xmT UT

M ]T ∈ QM , and
s(k) ∈ [0, 1] is the interpolating coefficient. Fig. 1 illustrates
the interpolation concept in a two-dimensional state space
X , where the set PM , i.e. the projection of QM onto the
x-space, is depicted in yellow and the MAS Ω is depicted
in red. The control law is decomposed as

u(k) = s(k)u1(k) + (1− s(k))u0(k), (8)

where u0(k) = −K x0(k) and u1(k) is the first control of the
sequence UM . The interpolating controller is then computed
by solving the following LP problem at each time step k



TABLE I: Functions included in ICT to compute invariant sets for LTI and LTV systems.
Function Description
[Omega,tstar,fd] = oinfsetcl(A,B,D,X,U,W,-K,tmax) Calculates the maximal robust positively invariant set
[Psi,tstar,fd] = kinfset(A,B,D,X,U,W,T,tmax) Calculates the robust controllable invariant set
[PM,tstar,fd] = sinfset(A,B,D,X,U,W,Omega,tmax) Calculates the M-step robust controllable invariant set

(index k is omitted for clarity)

s∗(x) = min
s,rm,V M

s

subject to:


s(1− g0)− F 0 rm ≤ −F 0 x

F̄M
[
rm VM

]T
≤ sḡM

0 ≤ s ≤ 1

v1, . . . , vM ∈ sU

, (9)

where rm = s xm, VM = sUM , and vi = s ui for i =
1, . . . ,M , is the change of variable implemented in order
to obtain a linear formulation of the optimisation problem
[5]. Note that the process takes into account the constraints
that are verified at each time step. We can then compute the
centralised interpolating control of (1) with the ICT by,

>> [x, u, s] = cIC(A, B, -K, X, U,...
Omega, Phi, M, Nsteps, x0, alphas);

The outputs are the Nsteps trajectories of the state, the cIC
u, and the interpolating coefficient s for the initial condition
x0; and the (q × Nsteps)-alphas realisations previously
defined by the user. x and u are matrices of dimension
n × Nsteps and m × Nsteps, respectively; Omega and
Phi are matrices and vectors that define the half-space
representations of the inner and outer sets. The control law
(7), (8), (9) guarantees recursive feasibility and asymptotic
stability for all x ∈ Conv{Ω, PM} [5]. ICT allows to check
whether the initial state x0 is in a feasible set P using MPT:

>> P.contains(x0);

where P is the convex hull of the inner and outer invariant
sets defined as P = Polyhedron(F,g), where F and g are
the matrix and the vector of the half-space representation.

B. Robust Decentralised Interpolation-based Control

Decentralised interpolating control (dIC) for LTI and LTV
uncertain systems has been developed in [3], [4]. dIC com-
putes separable robust controllable invariant sets for local
control design, which overcomes the computational burden
of large-scale systems and cIC. Provided the availability of
separable invariant sets, the interpolation concept presented
in the previous section can then be extended to intercon-
nected systems with local constraints (2), (4), (5).

For any subsystem, a robust maximal admissible set Ωi

is computed for a given feedback control high-gain matrix
Ki, ∀ i ∈ N . This represents the inner MAS, i.e., the set of
the states that can be steered to the origin with some user-
desired performance specification. The outer set Φi for each
subsystem is defined as the robust controllable invariant set
Ψi, ∀ i ∈ N , or as the M -step robust controllable set if
M is maximal, i.e., if PM+1

i = PM
i , ∀ i ∈ N . Similarly

to [5], if the maximal robust controllable invariant set or
the M -step robust controllable set cannot be determined, a
low-gain robust maximal admissible set can be considered
as outer invariant set.

Suppose now that any known state xi(k) ∈ Φi can be
decomposed as follows

xi(k) = si(k)xmi (k) + (1− si(k))x0i (k), i ∈ N , (10)

where x0i (k) ∈ Ωi and xmi (k) is such that there exists
a control u1i (k) ∈ Ui defined in the outer set such that
Ai(k)xmi (k) +Bi(k)u1i (k) +Di(k)wi(k) ∈ Φi, ∀wi ∈ Wi;
and si(k) ∈ [0, 1] is the interpolating coefficient. Similarly,
the control in each subsystem is decomposed as follows

ui(k) = si(k)u1i (k) + (1− si(k))u0i (k), i ∈ N , (11)

where u0i (k) = −K0
i x

0
i (k) is the inner stabiliser controller

(3) of each subsystem Si, i ∈ N , and u1i is the outer control.
The interpolating control is obtained by solving the follow-

ing LP problem for each subsystem i ∈ N at each discrete
time k (index k is omitted for clarity) [4]:

s∗i (xi) = min
si,rmi ,v1

i

si, (12)
si g

0
i − F 0

i r
m
i ≤ g0i − F 0

i xi

F 1
i

(
A

(l)
i rmi +B

(l)
i v1i

)
≤ si

(
g1i − max

w
(l)
i ∈Wi

F 1
i D

(l)
i w

(l)
i

)
0 ≤ si ≤ 1, v1i ∈ si Ui

where the second inequality holds for l = 1, . . . , q, i ∈ N ;
F 1
i and g1i define the half-space representation of Φi. A

change of variables is applied to a bilinear optimisation
problem: rmi = si x

m
i , and v1i = si u

1
i . Note that x0i ∈ Ωi can

be recovered from the equality si x0i = xi−si xmi . ICT com-
putes the interpolation-based control for the interconnected
systems (6) subject to constraints (4), (5) with q-alphas
realisations over Nsteps time steps with input fields that
specify the system matrices A, B, D, high-gain matrix K, local
contraints X, U, W, and invariant sets Omega and Phi:

>> [x, u, s] = dIC(A, B, D, -K, X, U,...
W, Omega, Phi, Nsteps, x0, alphas);

Each row i ∈ N of s contains the local interpolating
coefficients over time. The coefficients si are non-increasing
Lyapunov functions, and thus guarantee the stability of the
system. Stability and recursive feasibility is guaranteed for
the initial state x0i ∈ Φi [4]. Compared to cIC, dIC solves
on-line a low-dimensional LP problem for each subsystem at
each time step and guarantees better exploitation of the signal
space with a fast convergence to the MAS. Furthermore, the
LP problem for decentralised interpolating control is less
computationally expensive compared to the overall interpo-
lating scheme and appropriate for hardware-embedded or
real-time control of large-scale systems.

Remark 1: IC considers the realisations of the state and
control matrices when computing the invariant sets. If the
system is LTI, i.e., the matrices are constant and q = 1, the
computation of the invariant sets do not need to consider the
uncertainty in the matrices, so it is less expensive. In this
case, the second inequality of the LP (12) holds for l = 1.



V. VISUALISATION
ICT includes some plotting routines to display the outputs

of the control. Particularly, ICT plots the state and control
trajectories, and the interpolating coefficient over time by:

>> plotX(x); plotU(u); plotS(s);

A polyhedron P = {x : Fx ≤ g} can be defined and plotted
using the Multi-Parametric Toolbox [7] as follows:

>> P = Polyhedron(F,g); P.plot;

Note that plot routine works only with objects of up to R3-
space. Another interesting plotting function is plotEvo. It
plots the outer and inner invariant sets and draws the state
evolution over time as follows:

>> [x, u, s, r0, v1] = cIC(A, B, -K, X, U,...
Omega, Phi, M, Nsteps, x0, alphas);

>> plotEvo(A,B,Omega,Phi,x,r0,v1,s);

This function can be used in R2 where the user can observe
the interpolation between the states x0 and xm over time.

VI. EXAMPLES

This section provides a general example to implement
robust centralised interpolating control [5] and decentralised
interpolating control for interconnected systems [4]. Further
numerical examples can be found in [1], [5] for centralised
IC, and in [3], [4] for decentralised robust control.

A. Pseudocode for Computing dIC

Consider an interconnected system (2) consisting of 2
subsystems with 2 states each and with q = 2 realisations;
coupled with local state and control constraints (4). State and
control matrices are time-varying as follows,

S1 : x1(k + 1) =A1(k)x1(k) +B1(k)u1(k) +A1,2(k)x2(k)

S2 : x2(k + 1) =A2(k)x2(k) +B2(k)u2(k) +A2,1(k)x1(k)
Ai(k) =α(1)(k)A

(1)
i +

(
1− α(1)(k)

)
A

(2)
i ,

Bi(k) =α(1)(k)B
(1)
i +

(
1− α(1)(k)

)
B

(2)
i ,

Aij(k) =α(1)(k)A
(1)
ij +

(
1− α(1)(k)

)
A

(2)
ij ,

with i, j = 1, 2 and j 6= i; A(l)
i , B(l)

i , and A(l)
i,j for i, j = 1, 2,

j 6= i, are given for each l = 1, 2 realisation. Note that
for q = 2, α(2)(k) = 1 − α(1)(k). Matrices and vectors of
interconnections of the subsystems S1 and S2 are defined as
D1(k) = A1,2(k) and w1 = x2, and D2(k) = A2,1(k) and
w2 = x1, respectively. Then, the input centralised system
(1) has state and control matrices A(k) = α(1)A(1) +(
1− α(1)

)
A(2) and B(k) = α(1)B(1)+

(
1− α(1)

)
B(2) with

A(l) =

[
A

(l)
1 A

(l)
1,2

A
(l)
2,1 A

(l)
2

]
B(l) =

[
B

(l)
1 0

0 B
(l)
2

]
l = 1, 2.

State and control constraints are defined as xi ∈ Xi, ui ∈ Ui,
for i = 1, 2. Then, the coupling constraints are w1 ∈ X2 and
w2 ∈ X1, that is, W1 = X2 and W2 = X1. An initial state
x0 which belongs to the outer sets is defined.

Algorithm 1 outlines the main steps for computing the
dIC of an interconnected system with N subsystems and

q realisations. It computes the required robust controlled
invariant sets for each subsystem and solves an LP problem
on-line for each subsystem at each time step. dIC is an
admissible control action for weakly interconnected systems.
A system with strong couplings calls for centralised control.
Centralised IC for the overall system can be then computed
similarly to Algorithm 1.

Algorithm 1: dIC for interconnected system (2)
input : Matrices A{i,l}, B{i,l}, D{i,l}, K{i}, the

sets X{i}, U{i}, for i = 1,...,N and l =

1,...,q.
output: x, u, s.

1 Compute the disturbance constraints W with
couplingconstraints(Fx,gx)

2 for i← 1 to N do
Compute of the sets Omega{i} and Psi{i} with
oinfsetcl and kinfset;

end
3 Define the random alpha realisations alphas and the

number of steps Nsteps;

4 Define the initial state x0 that belongs to the outer sets;
5 Compute the decentralised interpolating control with
dIC;

6 Plot the state evolution: plotX(x);
7 Plot the control evolution: plotU(u);
8 Plot the interpolating coefficient: plotS(s);

B. Numerical example

Consider a constrained LTV system with two state vari-
ables and one control variable [5]. The state matrices are
time-varying and have two realisations (q = 2) given by,

A(k) = α(k)A(1) + (1− α(k))A(2)

A(1) =

[
1 0.1
0 0.99

]
, A(2) =

[
1 0.1
0 0

]
,

with α(k) ∈ [0, 1], and the control matrix is constant and
equal to B = [0 0.0787]

T. State and control variable are
subject to constraints |x1| ≤ 1, |x2| ≤ 1, |u1| ≤ 2. In ICT
we can define the system matrices and constraints as:

>> A{1} = [1 0.1; 0 .99]; A{2} = [1 0.1; 0 0];
>> B{1} = [0 0.0787]’; B{2} = [0 0.0787]’;
>> K = [30.3781 9.6139];
>> % State and control constraints
>> Fx = [eye(2); -eye(2)]; gx = ones(4,1);
>> X = [Fx gx];
>> Fu = [1; -1]; gu = [2; 2]; U = [Fu gu];

The MAS Ω is then computed with respect to the high-
gain matrix K = [30.3781 9.6139] and the constraints
above. The outer set is computed as the maximal M -step
controllable set PM with M = 66.

>> % Maximal Admissible invariant Set
>> tmax = 20; % max number of steps
>> [Omega,tstar,fd] = oinfsetcl(A,B,[],X,...

U,[],-K,tmax);
>> % M-step controlled invariant set
>> tmax = 66; % max number of steps
>> [PM,tstar,fd] = sinfset(A,B,[],X,U,[],...

Omega,tmax);
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Fig. 2: (a): Invariant sets. The yellow set is the outer M -step
contrallable set P 66; the red set is the MAS for the feedback
controller u = −Kx; (b): α(k) realisations; (c), (d), (e): state and
control trajectories; (c): Interpolating coefficient for cIC.

Figure 2(a) shows the computed invariant sets that are
computed in 0.6 seconds and 43 seconds, respectively. Note
that in general the maximal PM is not equal to the maximal
robust controllable invariant set Ψ. Ψ \PM is the set of the
states that will remain inside Ψ but will not converge to the
MAS. However, in this particular example Ψ ≡ PM . cIC is
computed for N = 40 time steps using:

>> Nsteps = 40;
>> M = 1;
>> x0 = [-.037; 0.9875];
>> % define a random alpha vector
>> alphas = rand(N,1);
>> [x, u, s] = cIC(A, B, -K, X, U, ...

Omega, PM, M, Nsteps, x0, alphas);

Figs 2(c)–2(e) depict the state and control trajectories com-
puted with cIC for the initial state x0 = [−0.0370 0.9875]

T

and alpha realisations over time as in Fig. 2(b). The M -step
extended state space QM is computed with M = 1. cIC
stabilises the LTV system subject to constraints around the
origin in less than 1 second. It steers the system into the
MAS in 6 steps (see Fig. 2(f)). The interpolating coefficient
over time is positive and decreasing, so guarantees stability.

VII. CONCLUSIONS

At the present time, ICT is the first toolbox that imple-
ments interpolation-based control for centralised and decen-
tralised control systems. It includes the invariant set toolbox
[9] that is extended by the authors to account for linear time-
varying systems. ICT is a standalone toolbox and available
to download from https://ictoolbox.github.io. Its
user’s manual will be available in the near future on the
same website. The use of MPT [7] with ICT is optional and
only required for plotting invariant sets.

The ICT has been tested on a Debian-based Linux dis-
tribution Mint 17.3 Rosa and on Mac OS X with MAT-
LAB R2016b and R2014b, respectively. To give an idea
of the performance of ICT, consider the example in [4].
The overall system is a LTV system with 6 states, 3 inputs
and 2 realisations (q = 2), and can be decomposed in an
interconnected system with 3 subsystems of 2 states and
1 control each. ICT for centralised systems computes the
invariants sets in 36.36 CPU-seconds, whereas the three low-
dimension invariant sets are obtained in 11.24 CPU-seconds.
cIC and dIC compute the control in 0.63 CPU-seconds and
0.57 CPU-seconds, respectively for Nsteps = 15 time steps
with 3.10GHz Quad-core Intel i7-3770S. The computational
improvements of dIC will be likely to be much higher for
large-scale systems that can be appropriately decomposed
into interconnected systems with distinct controls.

REFERENCES

[1] H.-N. Nguyen, Constrained Control of Uncertain, Time-Varying,
Discrete-Time Systems. Cham, Switzerland: Springer, 2014.

[2] H.-N. Nguyen, P.-O. Gutman, S. Olaru, and M. Hovd, “Implicit
improved vertex control for uncertain, time-varying linear discrete-
time systems with state and control constraints,” Automatica, vol. 49,
no. 9, pp. 2754–2759, 2013.

[3] S. Scialanga and K. Ampountolas, “Interpolating constrained control
of interconnected systems,” IFAC-PapersOnLine, vol. 51, no. 9, pp.
7–12, 2018.

[4] ——, “Robust constrained interpolating control of interconnected
systems,” in Proc. 57th IEEE Conference on Decision and Control,
2018, pp. 7016–7021.

[5] H.-N. Nguyen, P. O. Gutman, and R. Bourdais, “More efficient
interpolating control,” in Proc. 2014 European Control Conference
(ECC), 2014, pp. 2158–2163.

[6] A. Bemporad, “Hybrid Toolbox - User’s Guide,” 2004, http://cse.lab.
imtlucca.it/∼bemporad/hybrid/toolbox.

[7] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in 2013 European Control Conference (ECC), 2013, pp.
502–510, http://control.ee.ethz.ch/∼mpt.

[8] S. Riverso, M. Farina, and G. Ferrari-Trecate, “Plug-and-play decen-
tralized model predictive control for linear systems,” IEEE Transac-
tions on Automatic Control, vol. 58, no. 10, pp. 2608–2614, 2013.

[9] E. Kerrigan, “Invariant set toolbox for matlab,” 2003. [Online].
Available: http://www-control.eng.cam.ac.uk/eck21/matlab/invsetbox/
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