

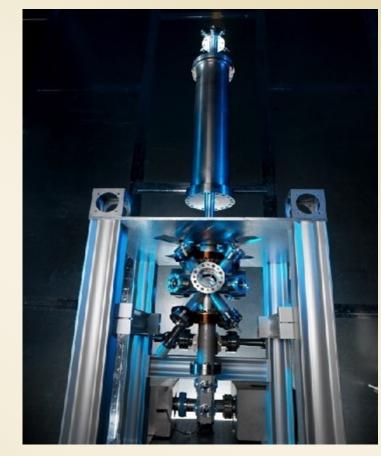
High-powEr Phosphorous-based DFB Lasers for Cold **Atom Systems (HELCATS)**

E. Di Gaetano, A. Boldin, D. Childs, N. Babazadeh, M. Steer, T. Kelly, M. Sorel, and R. Hogg

University of Glasgow, Glasgow - Scotland, G12 8QQ - United Kingdom

J. Orchard, N. Gerrard and O. Kowalski

Compound Semiconductor Technologies Global Ltd - Hamilton, Scotland, G72 0BN - United Kingdom


M. Knapp, C. Robinson and M. Haji

National Physics Laboratory - Hampton Road, Middlesex, TW11 0LW - United Kingdom

Motivation

- Demand of high precision time references for quantum applications (e.g. GPS navigation, sensing, metrology, etc.)
- Atomic Clocks are bulky and expensive
- Miniaturization and integration of the

Optical clocks

In a typical atomic clock three lasers are necessary.

Cooling transitions: 369 nm (¹⁷¹Yt+), 397 nm (⁴⁰Ca+), 422 nm (⁸⁸Sr+), 461 nm (⁸⁷Sr), 689 nm (⁸⁷Sr) Repump

Cooling

- Repump transitions: 638 nm (¹⁷¹Yt+), 679 nm (⁸⁷Sr), 707 nm (⁸⁷Sr), 866 nm (⁴⁰Ca+)
- laser Clock transitions: 467 nm (¹⁷¹Yt+),

optical components

National Physical Laboratory

 $\lambda = 679 \text{ nm}$

 $\lambda = 689 \text{ nm}$

(5s5p)¹P

 $(5s^2)^1S_0$

 $\lambda = 707 \text{ nm}$

5s5p)³P

⁸⁷Sr optical lattice clock

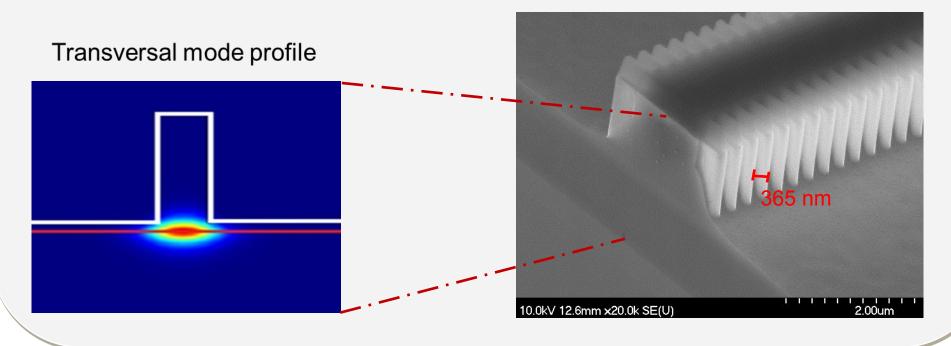
The ⁸⁷Sr optical clock using lattice-confined atoms offers one of the most accurate reference with a systematic uncertainty in the order of 10^{-16} , comparable to the $\lambda = 461 \text{ nm}$ primary Cs standard.

The wavelengths of interest for ⁸⁷Sr optical lattice clocks are in the 680-710 nm range:

- 679 nm: Sr repump (Power > 10 mW, linewidth < MHz)
- 689 nm: Sr 2nd cooler (Power > 10 mW, linewidth < MHz)
- 698 nm: Sr clock (Power > 100 mW, linewidth < MHz)
- 707 nm: Sr repump (Power > 10 mW, linewidth < MHz)

674nm (⁸⁸Sr+), 698 nm (⁸⁷Sr), 729 nm (⁴⁰Ca+)

, Reference ("clock") laser

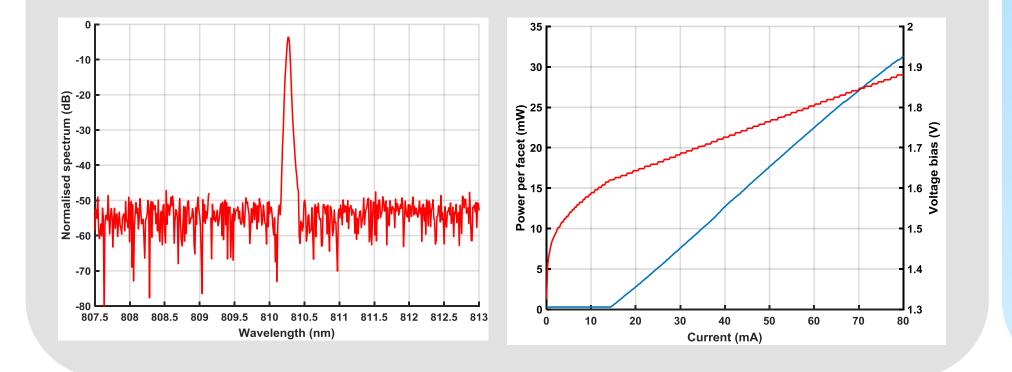

laser

III-V semiconductor lasers offer reduced fabrication cost, low energy consumption and on-chip integration.

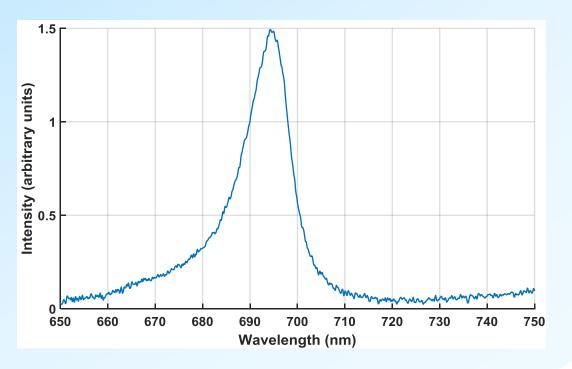
GaAs/AIGaAs platform covers a wide range of wavelength, i.e. 700-900 nm, which contains several optical clock transitions.

Sidewall distributed feedback (DFB) lasers

- Longitudinal single-mode operation with very high suppression ratio (SMSR)
- Excellent wavelength accuracy and emission linewidth thanks to Bragg grating technology



Emission in the 680-710 nm wavelength range


Sidewall Bragg grating

Single-mode DFB lasers at 813 nm wavelength

- Single-mode with SMSR approaching 50dB
- Power output exceeding 30 mW per facet
- Current threshold as low as 12.5 mA

- Design and growth of AIGaAs/InGaP epilayers on GaAs substrate
- Photoluminescence spectrum exhibits material gain in the 680-710 nm wavelength range

Contacts

Eugenio Di Gaetano

University of Glasgow

e.di-gaetano.1@research.gla.ac.uk

References

[1] Y. Wang, X. Lu, B. Lu and H. Chang (2018) "Recent Advances Concerning the 87Sr Optical lattice Clock at the National Time Service Centre", Applied Sciences, Vol. 8, No. 11, pp. 2194-2203