
Using the Autopilot pattern to deploy container resources
at a WLCG Tier-2

Gareth Roy1,∗, Emanuele Simili1,, Samuel Cadellin Skipsey1,, Gordon Stewart1,, and David
Britton1,

1School of Physics and Astronomy, University of Glasgow, Kelvin Building, University Avenue, G12
8QQ, United Kingdom

Abstract. Containers are becoming ubiquitous within the WLCG, with CMS
announcing a requirement for its sites to provide Singularity during 2018. The
ubiquity of containers means it is now possible to reify the combination of
an application and its configuration into a single easy-to-deploy unit, avoid-
ing the need to make use of a myriad of configuration management tools such
as Puppet, Ansible or Salt. This allows use to be made of industry-standard
devops techniques within the operations domain, such as Continuous Integra-
tion (CI) and Continuous Deployment (CD), which can lead to faster upgrades
and greater system security. One interesting technique is the Autopilot pat-
tern, which provides mechanisms for application life-cycle management which
are accessible from within the container itself. Using modern service discov-
ery techniques, each container manages its own configuration, monitors its own
health, and adapts to changing requirements through the use of event triggers.
In this paper, we expand on previous work to create and deploy resources to a
WLCG Tier-2 via containers, and investigate the viability of using the Autopilot
pattern at a WLCG site to deploy and manage computational resources.

1 Introduction

Throughout industry, containers have rapidly become the method of choice to encapsulate
complex software projects, offering the benefits of simplified deployment and repeatable ap-
plication builds. Large LHC experiments such as CMS and ATLAS have also embraced
containers for WLCG payloads; for example, CMS currently runs much of its production
work in Singularity [18] containers, obtaining the images it requires via CVMFS [6]. Con-
tainers make it possible to reify configuration along with the applications being executed as
a single easy-to-deploy unit, ensuring that all necessary dependencies are satisfied; however,
as the number of containers which are deployed across a site increases, it becomes difficult
to monitor, track and integrate these containers in an overarching system (a problem which
is exacerbated if the containers are short-lived). Orchestration tools such as Kubernetes [14],
Marathon [15] and Nomad [16] have been created to manage and track large-scale container
deployments. Such tools offer benefits such as the automatic scaling and self-healing of
containerised systems, but this comes at the cost of increased complexity for operation and
maintenance.
∗e-mail: gareth.roy@glasgow.ac.uk

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 07013 (2019) https://doi.org/10.1051/epjconf/201921407013
CHEP 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296222942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A simpler alternative is to make each container responsible for the management of its
own life-cycle, a technique which is sometimes referred to as the Autopilot pattern [17]. By
adopting this approach, each container becomes responsible for configuring itself at start-
up, and tearing down and tidying up on job completion; containers are also responsible for
performing any necessary health checks, scaling their resource usage according to the active
workload, and recovering from any failures which may occur. In this way, the containers
are performing many of the tasks currently undertaken by the pilots found in experimental
workload management frameworks, such as ATLAS’s PandaPilot [10], LHCB’s DIRAC [11]
and CMS’s CRAB3 [12], all of which use remote pilot jobs to interact with the workload
management systems, monitor job payloads and report on errors.

The Autopilot pattern can then be coupled with modern service discovery techniques,
which allow containers to be registered when they start, and permit remote monitoring and
tracking of each container’s state. This gives site administrators a dynamic picture of the
overall state of the system, while providing them with the ability to investigate the behaviour
of individual components in greater detail.

In this study, we apply the Autopilot pattern to containers running LHC experiment ap-
plication payloads; these containers were developed in our previous work [1].

2 Container

2.1 Container Components

Figure 1. The components that make up our Containerised Worker Node.

In a previous study [1], a container was developed to execute WLCG application pay-
loads. As deployed, the container relies on access to CVMFS [6], mounted from an external
volume, to obtainall the necessary Grid middleware and WLCG experimental code. It in-
cludes the standard HEP_OSlibs packages to satisfy common software requirements shared
by many HEP applications. Additionally, it contains all the configuration required by the lo-
cal site (thereby reifying local configuration within the container), as well as the HTCondor

2

EPJ Web of Conferences 214, 07013 (2019) https://doi.org/10.1051/epjconf/201921407013
CHEP 2018



A simpler alternative is to make each container responsible for the management of its
own life-cycle, a technique which is sometimes referred to as the Autopilot pattern [17]. By
adopting this approach, each container becomes responsible for configuring itself at start-
up, and tearing down and tidying up on job completion; containers are also responsible for
performing any necessary health checks, scaling their resource usage according to the active
workload, and recovering from any failures which may occur. In this way, the containers
are performing many of the tasks currently undertaken by the pilots found in experimental
workload management frameworks, such as ATLAS’s PandaPilot [10], LHCB’s DIRAC [11]
and CMS’s CRAB3 [12], all of which use remote pilot jobs to interact with the workload
management systems, monitor job payloads and report on errors.

The Autopilot pattern can then be coupled with modern service discovery techniques,
which allow containers to be registered when they start, and permit remote monitoring and
tracking of each container’s state. This gives site administrators a dynamic picture of the
overall state of the system, while providing them with the ability to investigate the behaviour
of individual components in greater detail.

In this study, we apply the Autopilot pattern to containers running LHC experiment ap-
plication payloads; these containers were developed in our previous work [1].

2 Container

2.1 Container Components

Figure 1. The components that make up our Containerised Worker Node.

In a previous study [1], a container was developed to execute WLCG application pay-
loads. As deployed, the container relies on access to CVMFS [6], mounted from an external
volume, to obtainall the necessary Grid middleware and WLCG experimental code. It in-
cludes the standard HEP_OSlibs packages to satisfy common software requirements shared
by many HEP applications. Additionally, it contains all the configuration required by the lo-
cal site (thereby reifying local configuration within the container), as well as the HTCondor

client packages which are required to connect to UKI-ScotGrid-Glasgow’s [5] batch farm.
The container is configured with standard pool accounts, and has HTCondor’s CGROUPS
[7] support disabled as all resource utilisation is restricted at the container level. HTCondor
is also configured to use the Condor Connection Broker (CCB) to allow communication be-
tween the container and critical condor management processes, as the container’s network
access is otherwise restricted to the internal Docker network. The container itself is dis-
tributed to the hosts via a private Docker registry running on our headnode, with each node in
our test pool spawning one container for every eight Hyper-Threaded CPU cores. The total
size of this container is 851.9 MB, which is a similar order of magnitude to other LHC ex-
periment containers, and it was based on CentOS 6 for backwards compatibility with existing
workloads.

In the current implementation of our container worker node model HTCondor is treated
as a long running service with each container connecting to the pool and running a number of
experiment payloads (similiar to a standard worker node). It is hoped that in the future each
container would be treated as ephemeral compute, and would have a lifespan only as long as
a single payload. This would lead to a large number of relatively short-lived containers that
need to be managed in a distributed fashion, and is why it is felt that the Autopilot pattern is
an important system to consider.

To enable the use of the Autopilot pattern in this work, the container described above has
been modified to include two additional software components: ContainerPilot developed by
Joyent Inc. [2], and Consul created by HashiCorp [3]. ContainerPilot is a software package
that implements the Autopilot pattern; in effect, it runs as the init process of a container,
and as such is able to manage the execution of all other processes within that container. It can
monitor components by performing health checks and can respond to changing requirements
by the use of event triggers at given points throughout its life-cycle. Consul is a distributed
hierarchical key-value store, which has been developed to provide service discovery, and fea-
tures built-in health checks to ensure that the software components for which it is responsible
are available. Consul has been implemented using the Raft Consensus Algorithm [13], which
provides a fault-tolerant mechanism for a group of servers to maintain consistency while
sharing some agreed state.

A schematic of the components in our complete worker node container is shown in Fig-
ure 1.

2.2 Container Life-cycle

The life-cycle of a container using ContainerPilot is illustrated in Figure 2. When the worker
node container described above is instantiated, ContainerPilot acts as the container entry point
and starts to carry out any defined pre-configuration tasks (such as ensuring that CVMFS is
mounted, and that the required middleware is available within the container). ContainerPilot
then starts both the HTCondor master daemon (in the foreground using the -f flag to ensure
that it can terminate the process again later) and the Consul agent. During the execution of the
job’s payload, it carries out periodic health checks at a user-specified interval. Once the job
has finished, ContainerPilot can execute any post-shutdown tasks, such as pushing logging
data to a central repository for auditing purposes.

The JSON shown in Figure 2 is used to configure ContainerPilot, defining the jobs that it
will spawn on our container worker node. It contains two job stanzas: the first of these starts
the Consul agent, and the second starts the HTCondor master daemon. As Consul has its
own built-in health checking mechanism, a health check is only specified for the HTCondor
job (in the health stanza). In this case, the health check verifies that StartJobs is set with
a 60-second interval and a time-to-live of 120 seconds, after which a test will be deemed to

3

EPJ Web of Conferences 214, 07013 (2019) https://doi.org/10.1051/epjconf/201921407013
CHEP 2018



jobs: [
{
name: "consul-agent",
exec: [
"consul", "agent",
"-data-dir=/consul/data/",
"-rejoin", "-retry-join",
"10.141.200.1",
"-retry-max", "10",
"-retry-interval", "10s"

],
},
{
name: "condor-master",
exec: "condor_master -f",
port: 9621,
health: {
exec: "condor_config_val \
-startd StartJobs",

interval: "60",
ttl: "120",
timeout: "60",

},
tags: [
"cntwn",
"prod"

],
},

Figure 2. The life-cycle of a container worker node, along with ContainerPilot’s JSON configuration.

have failed and the job will trigger the unhealthy event. This particular parameter is set by
HTCondor’s own health checking system, which verifies that CVMFS is functioning correctly
and that the daemons are communicating with the requisite remote services.

3 Service Discovery

3.1 Consul

The Consul agent has been included to allow each container to register itself with the overar-
ching Consul cluster. A complete Consul cluster consists of a number of clients and servers.
Within a cluster, the clients (in our case, these take the form of agents which are run within
each container) are responsible for checking the service nodes and communicating with the
Consul servers. A set of Consul agents are nominated as the servers; this set usually com-
prises an odd number of agents greater than three, in order to form a voting quorum. The
servers are responsible for retaining the configuration information in a key-value store, and
for ensuring consistency among themselves. As noted previously, consistency is maintained
between servers by use of the Raft Consensus Algorithm, with leadership elections being
carried out if a quorum member is lost.

4

EPJ Web of Conferences 214, 07013 (2019) https://doi.org/10.1051/epjconf/201921407013
CHEP 2018



Consul has been designed to provide service discovery both within and across
geographically-distributed data centres, and so is a good choice for use within the varied
environments provided by WLCG sites. It has been demonstrated to support sites at scales
significantly larger than a typical WLCG Tier-2, ensuring that it will not become a bottleneck
even in larger deployments.

Figure 3. Service view of the Consul Web interface highlighting the registered condor-master services.

When each container worker node is instantiated, ContainerPilot starts a Consul client
which registers both itself and the HTCondor master daemon as services in the Consul cluster.
Figure 3 shows the report available through the Consul Web interface for the condor-master
service. All the information presented in Figure 3 is also available through a RESTful API,
which allows automated tools to query the Consul service and obtain a list of services with a
particular description. Additionally, user-defined tags can be assigned to each service which
can be used to further filter the service list (note the tags stanza in Figure 2). This approach
allows each container to register itself dynamically, and offers the possibility for easy inte-
gration with other tooling and monitoring solutions (such as Prometheus [19]) which can be
used to automatically build a picture of the current state of all registered container resources.
At present service discovery is used to enumerate each container that is currently running and
to obtain the status of healthchecks as described in the next section. In the future, when each
container runs only a single application payload as described in the previous section, it is
planned to obtain all service information from Consul so that when a container is instantiated
it can dynamically configure itself.

3.2 Health and Network Latency

As well as simple service registration, Consul also monitors each of its clients to ensure that
they are healthy and contactable. Figure 4 shows the report available through the Consul

5

EPJ Web of Conferences 214, 07013 (2019) https://doi.org/10.1051/epjconf/201921407013
CHEP 2018



Figure 4. Consul’s view of a single worker node container, which shows the state of the health checks,
and also a network tomography view.

Web interface for a single container worker node. The report lists each service provided
by the container (in this case, the only service is the condor-master daemon, but in the
future other critical services could be included), alongside the state of each health check. In
this example, there is one health check for the Consul agent itself, along with the results of
the test specified by ContainerPilot, which is detailed in the JSON job description shown in
Figure 2.

Figure 4 also shows the network latency to all clients and servers in the Consul cluster,
which is measured and illustrated in the network tomography graphic at the bottom. Consul
was designed for use in large, distributed installations spanning multiple data centres, and so
provides detail like this as a matter of course: this information is very useful when attempting
to identify nodes with networking issues, or when attempting to map out potential problems
within the cluster environment.

4 Autopilot System

4.1 System Overview

The worker node containers described in Section 2 have been deployed at UKI-ScotGrid-
Glasgow to run ATLAS multi-core production work as part of the system shown in Figure 5.
Containers were run on three physical hosts, with each container being allocated eight Hyper-
Threaded CPU cores and 16 GB of RAM. Each container connected to the production HT-
Condor pool located at UKI-ScotGrid-Glasgow; the only difference between the container
worker nodes and our regular HTCondor worker nodes was the fact that, on the former, HT-
Condor’s CGROUPS support was disabled in favour of resource restrictions placed on the

6

EPJ Web of Conferences 214, 07013 (2019) https://doi.org/10.1051/epjconf/201921407013
CHEP 2018



Figure 4. Consul’s view of a single worker node container, which shows the state of the health checks,
and also a network tomography view.

Web interface for a single container worker node. The report lists each service provided
by the container (in this case, the only service is the condor-master daemon, but in the
future other critical services could be included), alongside the state of each health check. In
this example, there is one health check for the Consul agent itself, along with the results of
the test specified by ContainerPilot, which is detailed in the JSON job description shown in
Figure 2.

Figure 4 also shows the network latency to all clients and servers in the Consul cluster,
which is measured and illustrated in the network tomography graphic at the bottom. Consul
was designed for use in large, distributed installations spanning multiple data centres, and so
provides detail like this as a matter of course: this information is very useful when attempting
to identify nodes with networking issues, or when attempting to map out potential problems
within the cluster environment.

4 Autopilot System

4.1 System Overview

The worker node containers described in Section 2 have been deployed at UKI-ScotGrid-
Glasgow to run ATLAS multi-core production work as part of the system shown in Figure 5.
Containers were run on three physical hosts, with each container being allocated eight Hyper-
Threaded CPU cores and 16 GB of RAM. Each container connected to the production HT-
Condor pool located at UKI-ScotGrid-Glasgow; the only difference between the container
worker nodes and our regular HTCondor worker nodes was the fact that, on the former, HT-
Condor’s CGROUPS support was disabled in favour of resource restrictions placed on the

Figure 5. The components that make up our container worker node.

containers themselves (as discussed in Section 2). Each container registered itself with a
Consul cluster comprising three Consul servers for resiliency, and this was also used to regis-
ter other software components within the UKI-ScotGrid-Glasgow production site. Each host
was monitored via a Prometheus endpoint, which scraped metrics from both the node and the
container; at present, this information is statically assigned, but it is hoped that this will be
dynamically provided by Consul in the future.

Using this configuration, we verified that the containers correctly connected to the Consul
cluster when joining the HTCondor pool, and that ATLAS jobs were obtained and executed
successfully. We also verified that the health of each container worker node was correctly
reported, and conducted tests to ensure that problems injected into the system were identified
satisfactorily and reported by both ContainerPilot and Consul. These activities confirmed
that the Autopilot pattern provides a resilient and robust mechanism for running a large-
scale container infrastructure, without the requirements of complicated orchestration systems
such as Kubernetes. However, the Autopilot pattern itself can be used in conjunction with
Kubernetes or other similar orchestration tools, should it be desirable to make use of their
other capabilities in the future.

5 Conclusions

In this paper, we have investigated the use of the Autopilot pattern when deploying resources
at a WLCG Tier-2 site. Using the ContainerPilot and Consul software packages, we have
extended a container worker node to include automated system and health checks, and have
also shown the potential for the inclusion of additional capabilities which might be useful in
the future. We have explored the use of modern service discovery techniques to dynamically
track container resources and to monitor automatic health checks, and have shown how this
can be used to simplify the operation of a large, WLCG Tier-2 cluster.

7

EPJ Web of Conferences 214, 07013 (2019) https://doi.org/10.1051/epjconf/201921407013
CHEP 2018



References

References

[1] G Roy et al., J. Phys.: Conf. Ser. 1085 032026 (2018)
[2] ContainerPilot [online] Available https://www.joyent.com/containerpilot [accessed 25

October 2018]
[3] Consul [online] Available https://www.consul.io [accessed 25 October 2018]
[4] Docker.io [online] Available https://www.docker.io [accessed 14 May 2015]
[5] ScotGrid [online] Available at http://www.scotgrid.ac.uk/ [accessed 14 May 2015]
[6] J Blomer et al., J. Phys.: Conf. Ser. 331 042003 (2011)
[7] Menage, Paul B., Proceedings of the Linux Symposium, 2 45-57 (2007)
[8] Blomer, Jakob, et al., J. Phys.: Conf. Ser. 513 032009 (2014)
[9] Merino, G., “Transition to a new CPU benchmarking unit for the WLCG." HEPIX

Benchmarking WK (2009)
[10] Nilsson, P et al., J. Phys.: Conf. Ser. 331 062040 (2011)
[11] Stagni, F et al., J. Phys.: Conf. Ser. 396 2104 (2012)
[12] Mascheroni, M et al., J. Phys.: Conf. Ser. 664 062038 (2015)
[13] Ongaro, Diego and Ousterhout, John, Proc. USENIX Conf. USENIX Annu. Tech.

Conf. 305-320 (2014)
[14] Kubernetes [online] Available https://kubernetes.io/ [accessed 25 October 2018]
[15] Marathon [online] Available https://mesosphere.github.io/marathon/ [accessed 25 Oc-

tober 2018]
[16] Nomad [online] Available https://www.nomadproject.io/ [accessed 25 October 2018]
[17] Autopilot Pattern [online] Available http://autopilotpattern.io/ [accessed 25 October

2018]
[18] Singularity [online] Available https://www.sylabs.io/ [accessed 25 October 2018]
[19] Prometheus [online] Available https://prometheus.io/ [accessed 25 October 2018]

8

EPJ Web of Conferences 214, 07013 (2019) https://doi.org/10.1051/epjconf/201921407013
CHEP 2018


