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Abstract 

Background: A three-year longitudinal study was conducted in four sentinel sites from different ecological settings 
in Burkina Faso, between 2008 and 2010 to identify longitudinal changes in insecticide resistance within Anopheles 
gambiae complex species based on larval collection. During this study, adult mosquitoes were also collected indoor 
and outdoor using several methods of collection. The present study reports the diversity of malaria vectors and the 
1014F-genotype from this adult collection and investigates the association between this 1014F-genotype and sporo-
zoite rate.

Methods: Adult mosquitoes were collected from July to August (corresponding to the start of rainy season) and 
October to November (corresponding to the end of rainy season) over 3 years (2008–2010) at four sites across the 
country, using pyrethrum spray catches (PSC), exit traps and pit shelters. Anopheles gambiae complex mosquitoes 
were identified to species and genotyped for the L1014F kdr mutation by PCR using genomic DNA. The circumsporo-
zoite antigen of Plasmodium falciparum was detected in mosquitoes using sandwich ELISA.

Results: Overall 9212 anopheline mosquitoes were collected during the study period. Of those, 6767 mosquitoes 
were identified as Anopheles gambiae sensu lato (s.l.). Anopheles arabiensis, Anopheles coluzzii, Anopheles gambiae and 
or Anopheles funestus were incriminated as vectors of P. falciparum in the study area with an average sporozoite rate 
of 5%, (95% CI 4.14–5.99%). The kdr1014F-genotype frequencies were 11.44% (95% CI 2.5–39.85%), 19.2% (95% CI 
4.53–53.73%) and 89.9 (95% CI 63.14–97.45%), respectively for An. arabiensis, An. coluzzii and An. gambiae. The propor-
tion of the 1014F-genotype varied between sporozoite-infected and uninfected An. gambiae s.l. group. There was no 
significant difference in the 1014F-genotype frequency between infected and uninfected mosquitoes.

Conclusion: The current study shows the diversity of malaria vectors and significant interaction between species 
composition and kdr1014F-genotype in An. gambiae complex mosquitoes from Burkina Faso. In this study, no associa-
tions were found between the 1014F-genotype and P. falciparum infection in the major malaria vector An. gambiae s.l.
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Background
After decades of efforts to malaria control, this disease 
is still a major public health concern in sub-Saharan 
Africa, responsible for an estimated of 219 million cases 
and 435,000 deaths in 2017 [1]. Burkina Faso is a malaria 
endemic country with 19 million inhabitants, where 
nearly 12 million malaria cases were reported in 2017 
with 4144 resulting in death [2]. In Burkina Faso, malaria 
prevention primarily relies on insecticide-treated bed 
nets. In 2010, 2013 and 2016 combined, approximately 36 
million long-lasting insecticide-treated nets (LLINs) were 
freely distributed through mass distribution campaigns. 
Additional sporadic measures such as Indoor Residual 
Spraying (IRS) with bendiocarb were introduced in 2010 
in Diébougou, a locality situated in the southwestern part 
of Burkina Faso but this pilot programme was terminated 
in 2011 (http://www.afric airs.net/where -we-work/burki 
na-faso/). A larviciding pilot programme using Bacillus 
thuringiensis was also implemented for 1 year in 2012 to 
control malaria in Ouagadougou the capital city of Bur-
kina Faso.

Anopheles gambiae, Anopheles coluzzii, Anopheles ara-
biensis and Anopheles funestus are the most important 
malaria vectors in Burkina Faso [3, 4]. Members of the 
An. gambiae complex are sympatric species with different 
ecological niches [5, 6]. Previous studies showed that the 
species composition of the An. gambiae complex varied 
across Burkina Faso climatic conditions. Whilst Anoph-
eles arabiensis and An. coluzzii are distributed with equal 
frequency in central and eastern regions of the coun-
try [7], the western regions, where rainfall is abundant, 
are dominated by An. gambiae sensu stricto (s.s) [5, 8]. 
Anopheles arabiensis is the most abundant species found 
in urban compared to rural areas [6]. Recently a new 
cryptic sub-group inside An. gambiae, named Goundry, 
was identified in Burkina Faso [9] with an exophilic 
behaviour.

The development of resistance to insecticides in 
malaria vectors is one of the main concerns for malaria 
control as to date major vector tools rely on insecti-
cide use. In Burkina Faso, resistance to the four major 
classes of insecticides (organochlorides, organophos-
phates, pyrethroids and carbamates) used in public 
health has recently increased throughout the country. 
The resistance level to pyrethroids is particularly high 
in the Western region of the country [10–12], which 
may affect bed nets efficacy [13]. Four mechanisms of 
insecticide resistance have been described in West 
Africa [14, 15]. One of the most widespread mecha-
nisms is target site mutation associated with resist-
ance to pyrethroids and DDT [16] in the voltage-gated 
sodium channel, associated with knock down resistance 
(kdr) alleles. Three kdr mutations have been reported in 

the An. gambiae complex: L1014F, L1014S and N1575Y 
[17–19]. There is increasing evidence that insecticide 
pressure used in public health and agriculture is leading 
to the selection of insecticide resistance in malaria vec-
tors [13]. The 1014F kdr allele frequency is very high in 
An. gambiae and An. coluzzii in Burkina Faso, while the 
1014S is very common in An. arabiensis [10, 12, 20].

There is little empirical data on the impact of insec-
ticide resistance on malaria transmission but modeling 
has predicted that widespread resistance to pyrethroids 
will result in additional 260,000 deaths in children 
under 5 years of age [21] in the WHO African Regions. 
Insecticide resistance is assumed to increase the like-
lihood of mosquito-borne disease transmission by 
increasing the vector population size and allowing mos-
quitoes a long period of life even the presence of insec-
ticides [22]. On the other hand, resistance may reduce 
the vectorial capacity by imposing a major fitness cost 
to mosquitoes [22], but laboratory experiments have 
suggested that mosquito strains with the kdr mutation 
were more susceptible to Plasmodium infection [23]. 
However, it has also been reported that older Anoph-
eles mosquitoes are more susceptible to insecticides 
than newly-emerged ones [24–27]. Hence, if insecticide 
resistant mosquitoes are more susceptible to infection 
with the malaria parasite, then the chances to trans-
mit malaria parasite in areas with intensive insecticide 
exposure may be diminished, according to Viana et al. 
[28]. In contrast, a previous laboratory experiments 
showed that mosquitoes resistant to pyrethroids may 
be more susceptible to P. falciparum infection, and 
thus could potentially be more efficient malaria vectors 
[29]. Thus, field studies are needed to establish whether 
there is any association between insecticide resistance 
and the ability of the mosquito to transmit the malaria 
parasite (i.e. the presence of sporozoites in the mosqui-
to’s salivary glands).

A three-year longitudinal study was conducted in 
Burkina Faso between 2008 and 2010 to assess for lon-
gitudinal changes in insecticide resistance from larval 
collections and results were published in Badolo et  al. 
[10]. In addition, during this study, adult mosquitoes 
were also collected indoor and outdoor in different eco-
logical settings with different levels of insecticide resist-
ance. The objectives of this work were to report on the 
species diversity of malaria vectors in these different 
ecological settings of Burkina Faso and the association 
between insecticide resistance and the mosquito’s abil-
ity to transmit malaria. Due to the sample size it was not 
possible to investigate the association between L1014F-
mutation and sporozoite infection. Instead, this study 
assessed the association between L1014F-genotype with 
the sporozoite infection.

http://www.africairs.net/where-we-work/burkina-faso/
http://www.africairs.net/where-we-work/burkina-faso/
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Methods
Study area and mosquito collections
In 2008, four sentinel sites were established in Burkina 
Faso according to their different patterns of insecticide 
use and ecology. These sites include Goundry (rural Sahe-
lian area with a low insecticide use), Koupela (Sahelian 
rural zone with moderate insecticide used), Soumousso 
(Sudan Savannah rural zone with rice and cotton culti-
vation using intensive insecticides) and Kuinima (urban 
area with intensive use of insecticide in agriculture). 
From these sites mosquito samples were collected, as 
previously described by Ranson et al. [11]. In each local-
ity, a window exit trap was installed in five houses, with 
the homeowners’ permission. Volunteers were trained 
to empty the trap daily into tubes containing silicagel. 
At the same time two pit-shelters were built in the site, 
consisting of a deep well with a straw roof, for collect-
ing the outdoor-resting mosquitoes. Indoor pyrethroid 
spray catches (PSC) were also performed in ten randomly 
selected houses from each site once per month to sample 
indoor-resting mosquitoes. Mosquitoes were collected 
at the beginning of the rainy season (July–August) cor-
responding to the beginning of malaria transmission and 
at the end of rainy season (September–October), which 
corresponds to the high malaria transmission period.

Species identification
Mosquitoes were sorted morphologically according to 
the identification keys described by Edwards [30] for 
Culicine, and by Gillies and Coetzee [31] for Anopheline. 
All mosquitoes belonging to the An. gambiae complex 
were stored in silica gel to be used later for molecular 
analysis.

Molecular analysis for Anopheles gambiae complex 
members’ identification and Plasmodium falciparum 
antigen protein detection
The head-thoraces from 2178 females An. gambiae sensu 
lato (s.l.) were used to assess for the presence of P. falci-
parum circumsporozoite protein (CSP) antigen according 
to method described by Wirtz et al. [32]. In addition to 
the ELISA-CSP detection, genomic DNA was extracted 
from the same individual mosquito samples and tested 
using a modified assay described by Paskewitz and Col-
lins [33], then used for species identification, based on 
PCR–RFLP (restriction fragment length polymorphism) 
method described by Fanello et al. [34].

Molecular detection of the L1014F mutation
All ELISA positive samples (182 mosquitoes) and an 
equal number of negative samples randomly chosen 
within the same collection was genotyped for the L1014F 
kdr mutation. The primers Agd1 (5′-ATA GAT TCC CCG 

ACC ATG -3′) and Agd3 (5′-AAT TTG CAT TAC TTA 
CGA CA-3′) were used for the detection of the mutant 
1014F allele whereas primers Agd2 (5′-AGA CAA GGA 
TGA TGA ACC -3′) and Agd4 (5′-CTG TAG TGA TAG 
GAA ATT TA-3′) for the detection of the wild-type, 
1014L allele [17]. The PCR program was 95 °C/5 min × 1 
cycle, (95  °C/30  s, 46  °C/30  s, 72  °C/15  s) × 35 cycles, 
72 °C/5 min × 1 cycle, and maintain at 4 °C after the PCR 
is completed.

Data analysis
All data analysis was performed using the Generalized 
Linear Mixed Effect Models (GLMMs) through the R sta-
tistical software version 3.5.0 (2018-04-23) [35]. Model 
selection was based on Likelihood Ratio Tests (LRTs) 
using back-elimination, i.e. starting with a full model. The 
mean predicted values and 95% confident intervals for 
significant terms were computed using the “effect” pack-
age [36].

Mosquito species abundance
As the abundance data were over-dispersed, the driv-
ers of mosquito abundance were investigated through a 
negative binomial distribution. Here the mosquito counts 
were included as the response variable and site, collec-
tion method and year were used as explanatory factors. 
Because these factors are expected to differ among spe-
cies, an interaction term of species with all three factors 
was included. Collection date and compound from which 
collection took place were added to the model as random 
effects.

Sporozoite rate calculation
The proportion of infected mosquitoes with P. falcipa-
rum sporozoites was modeled following a binomial dis-
tribution. This proportion was used as response variable 
whereas the species, site and method were included as 
explanatory variables. Collection date was used as a ran-
dom effect.

Association between sporozoite rate and 1014F‑genotypes
To assess for the differences in resistance between 
infected and uninfected mosquitoes, a binomial distribu-
tion was used. Individuals mosquitoes were considered 
as resistance genotype (homozygote L1014F) or sus-
ceptible genotype (including heterozygote L1014F and 
homozygote L1014L) since that the kdr gene is recessive 
[37]. As the sporozoite rate was controlled by deliberately 
selecting an equal number that were infected and unin-
fected, genotype (RR) was used as a binary response vari-
able and species while CSP were included as explanatory 
variable when controlling for method, year and site used 
as random effects variables. Due to the low number of 
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replicates, year, sites and trapping method were included 
as random effects.

Results
Mosquito species abundance and composition
From July 2008 to November 2010 10,938 mosquitoes 
were collected in the four sites. Of those, 9212 (84.22%) 
were Anopheline, followed by Culex sp. 1678 (15.34%), 
Aedes sp. 31 (0.33%) and Mansonia sp.11 (0.1%). From the 
9212 Anopheline collected, 6767 (73.46%) were An. gam-
biae s.l., 1554 (16.87%) were An. funestus and the remain-
ing 891 (8.15%) consisted of other Anopheline, including 
Anopheles brucei (0.22%), Anopheles nili (0.79%), Anoph-
eles coustani (0.56%), Anopheles pharoensis (0.22%) and 
Anopheles rufipes (90.01%). For the data analysis these 
latest species were grouped under ‘other species’ because 
of their low number. For the abundance data analysis, 
the final model included the three interactions between 
species and year, method and sites. The mean number of 
mosquitoes collected by each method in the study areas 
is shown in (Figs.  1,  2). The difference between meth-
ods of collection was statistically significant (χ2 = 135.13, 
df = 6, P < 0.001). Anopheles gambiae s.l. was the most 
abundant species observed in PSC and exit tap collection 
methods compared to An. funestus and other Anopheline 
(Additional file 1: Table S1). The ratio between An. gam-
biae s.l. and An. funestus was 0.379 in PSC (P < 0.001) and 
0.391 in exit traps (P = 0.04) collections, respectively. In 
contrast, there was no significant difference between An. 

gambiae s.l. and An. funestus collected from the pit shel-
ters with ratios of 0.979(P > 0.05). 

Anopheles gambiae complex species diversity according 
to collection methods, years and sites
Molecular diagnostic assays showed that the An. gam-
biae complex includes An. arabiensis, An. coluzzii and 
An. gambiae. The relative frequencies were 29.95% 
for An. arabiensis (n = 660), 25.78% for An. coluzzii 
(n = 568), and 40.80% for An. gambiae (n = 899), with a 
few number of hybrid An. gambiae/An. coluzzii 3.45% 
(n = 76). Anopheles gambiae was the most predominant 
(χ2 = 116.61, df = 6, P < 0.001) from each trapping method 
collection (Fig. 3).

Overall, there was a significant difference in species 
composition between the three collection methods when 
pooling data across all four sites, (χ2 = 115, P < 0.001 
(Additional file 2: Table S2). In Goundry, An. arabiensis 
was the predominant species (44.54%) with the higher 
proportion being collected by PSC followed by exit 
traps. In Koupela, the two predominant species were An. 
coluzzii and An. arabiensis, which were collected with 
similar proportions. However, in this area, An. arabiensis 
was found in higher proportion in exit traps followed by 
pit shelters and PSC, while An. coluzzii was more abun-
dant in collections with PSC, followed by pit shelters and 
exit traps. In contrast, in Kuinima and Soumousso the 
predominant species was An. gambiae in all years of the 
study. Overall, An. arabiensis and An. coluzzii fluctuated 

Fig. 1 Mean number of mosquitoes predicted by the model by methods and per species over sites and years
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in the sudan sahelian (Koupela) and sahelian (Goundry) 
zones (Fig. 4).

Plasmodium falciparum sporozoite rate in Anopheles 
gambiae populations
The best model included site, methods and species 
as explanatory variables. 110 mosquitoes out of 2178 
were tested positive for P. falciparum CSP antigen 
resulting in a mean sporozoite rate of 0.050, (95% CI 
0.041–0.060) (Table  1). The P. falciparum sporozoite 

rate varied significantly between the four sites of study 
area (Fig.  5; χ2 = 16.642 df = 3, P = 0.001), with the 
higher sporozoite rate of 0.065, (95% CI 0.039–0.108) 
observed in the site of Soumousso and the lower in 
Kuinima 0.010, (95% CI 0.003–0.031). Between spe-
cies the sporozoite rate was higher for An. gambiae 
0.065, (95% CI 0.049–0.083) compared to An. coluzzii 
0.044, (95% CI 0.029–0.064) and An. arabiensis 0.038, 
(95% CI 0.025–0.055). However, there was no statisti-
cally significant difference of sporozoite rate between 

Fig. 2 Mean number of mosquitoes predicted by the model by sites and per species over tapping methods and years
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Fig. 3 Distribution of Anopheles gambiae complex species by collection methods. The proportion of each species is provided in percentage. An. ara, 
Anopheles arabiensis; An. col, Anopheles coluzzii; An. gam = Anopheles gambiae; An. gam/col = hybrid Anopheles gambiae/Anopheles coluzzii 
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species within the An. gambiae complex (χ2 = 5.481, 
df = 2, P = 0.065).

The difference in infection rate between trapping 
methods was not statistically significant (χ2 = 4.221, 
df = 2, P = 0.121) but the sporozoite rate was highest 
in PSC collections (mean: 0.060, (95% CI 0.047–0.076) 
and lowest in pit shelter collections (mean: 0.028, (95% 
CI 0.017–0.045). The P. falciparum sporozoite rate in 
exit traps was 0.056(95% CI 0.037–0.080).

Association between sporozoite rate and 1014F‑genotype
A total of 164 An. gambiae s.l. species were successfully 
genotyped for kdr1014F allele, from which 92 were resist-
ant (RR) and 72 susceptible (SS and RS) (Table  2). The 
best model includes only species as explanatory fixed 
effect of the kdr resistant genotype (χ2 = 64.242, df = 2, 
P < 0.001). Therefore, the sporozoite infection status 
was not retained as a significant term (χ2 = 0.031, df = 1, 
P = 0.86).

There was no significant difference in the proportion of 
RR between An. arabiensis and An. coluzzii (OR = 0.575, 
P = 0.555). In contrast there was a significant difference 
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Table 1 Detection of CSP antigen in Anophelines collected in the four sites of study

Locality An. arabiensis An. coluzzii An. gambiae An. funestus Total

Tested CSP+ Tested CSP+ Tested CSP+ Tested CSP+ Tested CSP+

Goundry 161 7 100 2 37 3 0 0 298 12

Koupéla 334 5 333 10 140 13 0 0 807 28

Kuinima 34 1 17  0 246 1 4 0 301 2

Soumousso 128 12 120 13 477 42 47 1 772 68

Spz rate 3.81% 4.39% 6.56% 1.96% 5.0%

Total 657 25 570 25 900 59 51 1 2178 110
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in this proportion when comparing An. arabiensis versus 
An. gambiae (OR = 0.016, P < 0.001) and An. coluzzii ver-
sus An. gambiae (OR = 0.028, P < 0.001), (Fig.  6a, Addi-
tional file 3: Table S3).

In addition, the proportion of kdr resistant genotype 
did not varied when comparing sporozoite infected vs 
uninfected within each species, (χ2 = 0.035, P = 0.85) for 
An. arabiensis, (χ2 = 0.020, P = 0.88) for An. coluzzii and 
(χ2 = 0.006, P = 0.93) for An. gambiae (details are shown 
in Table 3).

Furthermore, within the sporozoite-infected sub-group 
the predicted proportion of resistant genotype was 0.52, 
with (95% CI 0.19–0.83) whilst 0.49, with (95% CI 0.19–
0.81) within the uninfected (Fig. 6b).

Discussion
The present study shows that An. gambiae s.l. is the 
most predominant malaria vector within the study area. 
Molecular identification showed that An. gambiae s.l. 
consists of the three species An. gambiae sensu stricto, 
An. coluzzii and An arabiensis and that there is a sig-
nificant difference in their proportion between the sites 
within the study area. Anopheles arabiensis was the most 
abundant species occurring in Goundry, but found at 
the similar frequency as An. Coluzzii in Koupela. In the 

southern areas (Kuinima and Soumousso) An. gambiae 
s.s was the most predominant species followed by An. 
arabiensis. These findings are in agreement with previ-
ous studies suggesting that An. gambiae s.s., An coluzzii 
and An. arabiensis are the most widespread malaria 
vectors across Burkina Faso [6, 7]. However, the rela-
tive frequency of these species varied according to eco-
logical settings. Furthermore, a significant reduction 
was found in the An. arabiensis proportion in 2008 from 
sample collected as adults within all sites particularly in 
Koupela, Kuinima and Soumousso compare to propor-
tion from sample collected as larvae and reared to adult-
hood in laboratory conditions and described in Badolo 
et al. [10]. The missing proportion of An. arabiensis was 
subsequently filled mainly by An. gambiae s.s. in Sou-
mousso and Kuinima and by An. coluzzii in Koupela 
and Goundry. The observed variation in species com-
position between larvae and adult populations may be 
partially due to the high susceptibility of An. arabiensis 
to insecticides as also suggested by the bioassay results 
described elsewhere showing an association between the 
1014F-genotype and mosquito survival to permethrin 
and DDT [10]. This may be indicative of the effect of 
insecticide resistance on species composition according 
to insecticide use within a given area.

Complementary trapping methods were used to col-
lect a representative sample of Anopheles gambiae com-
plex mosquitoes with reference to resting behaviour. The 
results show a significant difference in species composi-
tion between these collection methods. In most cases, 
the three species from the An. gambiae complex were 
abundantly caught inside houses. An important fraction 
of this population was also found in exit traps and pit 
shelters. More specifically, An. arabiensis predominated 
in outdoor collection (window exit trap and pit shelters). 
This behaviour of An. arabiensis is consistent with previ-
ous studies showing that An. arabiensis are more general-
ist in terms of host choice and resting behaviour due to 
phenotypic plasticity [38].

Vector species with a relatively broad host range, like 
An. arabiensis, are thought to be better able to persist 
in areas of high indoor insecticide use. In contrast, An. 
coluzzii was caught in higher abundances in PSC. The 
PSC is intended to collect mosquitoes that feed and rest 
indoors or feed outdoors and indoors (endophilic mos-
quitoes), therefore, it may be less sensitive in collecting 
species that predominantly rest outdoors [39], compared 
to exit traps and pit shelters that target outdoor-resting 
mosquitoes. Anopheles funestus was highly caught indoor 
using PSC and outdoor in pit shelters. This finding is in 
agreement with previous studies on An. funestus popu-
lation from Burkina Faso describing two chromosomal 
forms with different resting behaviour patterns: one form 

Fig. 5 Mean sporozoite rate predicted in the study areas (Goundry, 
Koupela, Kuinima and Soumousso)

Table 2 kdr genotype in  An. gambiae s.l species collected 
in the four sites

Species Resistant Susceptible Total

An. arabiensis 9 39 48

An. coluzzii 13 27 40

An. gambiae 70 6 76

Total 92 72 164
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was mainly exophilic and the second endophilic [40].
The current study shows significant difference in rest-
ing behaviour between An. arabiensis and the two other 
species, An. coluzzii and An. gambiae s.s., depending on 
the geographical location. Meanwhile the efficacy of vec-
tor control intervention based on IRS may be affected by 
this behaviour. This result is aligned with previous find-
ings showing that An. arabiensis was more exophilic, 
exophagic and zoophilic than An. gambiae s.s [41].

Following Badolo et  al. [10], one of the aims of this 
study was also to investigate the association between the 
kdr 1014F-genotype and the infection status. The results 
from this study showed that P. falciparum sporozoite 

rate varied significantly between the four study sites [10]. 
Based on laboratory experiments, Ndiath et al. [42] sug-
gested that An. coluzzii was less susceptible to P. falcipa-
rum infection than An. gambiae s.s, while Gneme et  al. 
[43] found that in Burkina Faso An. gambiae s.s. and An. 
coluzzii were equally susceptible to P. falciparum infec-
tion. Additionally, previous field studies from Burkina 
Faso [6] and Senegal [44] reported no difference in sporo-
zoite rate between An. gambiae s.s. and An. coluzzii con-
firming the findings of the present study. Furthermore, a 
high proportion of homozygote mosquito to 1014F-gen-
otype was found here in the sporozoite-infected mos-
quito sub-group compared to uninfected group, but 

Fig. 6 The effects of An. gambiae s.l. species composition (a) and the proportion of kdr resistant genotype in CSP-positive and CSP-negative 
mosquito’s (b)

Table 3 Relative proportions of  kdr 1014F-genotype with  95% CI in  CSP + and CSP- mosquitoes for  An. arabiensis, An. 
coluzzii and An. gambiae 

Status Species An. arabiensis An. coluzzii An. gambiae

n Resistant Susceptible Resistant Susceptible Resistant Susceptible

CSP-negative 98 6.12% (2.27–12.85) 26.54% (18.12–36.4) 8.16% (3.59–15.45) 20.41% (12.93–29.74) 35.71% (26.28–46.02) 3.06% (0.63–8.68)

CSP-positive 66 4.54% (0.94–12.71) 19.69% (10.92–31.32) 7.57% (2.5–16.8) 10.6% (4.37–20.63) 53.03% (40.34–65.43) 4.54% (0.94–12.71)

Kdr frequency 11.44% (2.5–39.85) 19.20% (4.53–53.73) 89.90% (63.14–97.45)
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there was no statistical difference suggesting that varia-
tion in resistance genotype proportion is not associated 
with the infection status. The current findings do not 
support the work from Alout et  al. [23], who showed 
that An. gambiae mosquitoes with kdr alleles are more 
susceptible to Plasmodium than insecticide susceptible 
mosquitoes, and also contrast with the findings in Sen-
egal, Burundi and Tanzania, which reported a significant 
correlation between the 1014F-genotype and the infec-
tion with P. falciparum [45–47]. This disagreement could 
be explained by the small sample size of this study which 
may limit the power to infer this relationship. The small 
sample size in this study also limited the comparison of 
the 1014F-genotype frequencies from mosquito collected 
as larvae versus those collected as adults. So, the results 
may have been different when increasing the samples size 
to those of Kabula et al. [47], who tested 526 specimens.

Conclusion
The present study showed the diversity of malaria vectors 
species composition and significant variations in the kdr 
resistance genotype between vector species. However, 
associations were not found between 1014F-genotype 
and P. falciparum sporozoite infection status in Burkina 
Faso. Further work with a larger sample size of wild-
caught mosquitoes is needed to establish the relationship 
between insecticide resistance in An. gambiae and ability 
to transmit P. falciparum in Burkina Faso, in the context 
of increasing malaria cases from year-to-year despite the 
scaling-up of the LLINs by the National Malaria Control 
Programme (NMCP).
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