
 
 
 
 
 
 
Maxwell, D. and Azzopardi, L. (2016) Simulating Interactive Information 
Retrieval: SimIIR: A Framework for the Simulation of Interaction. In: 39th 
International ACM SIGIR Conference on Research and Development in 
Information Retrieval, Pisa, Italy, 17-21 Jul 2016, pp. 1141-1144. ISBN 
9781450340694 (doi:10.1145/2911451.2911469). 
 
This is the author’s final accepted version. 
 
There may be differences between this version and the published version. 
You are advised to consult the publisher’s version if you wish to cite from 
it. 

 
http://eprints.gla.ac.uk/183471/    

                    
 
 
 
 
 
 
Deposited on: 04 April 2019 

 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296216705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2911451.2911469
http://eprints.gla.ac.uk/183312/
http://eprints.gla.ac.uk/


Simulating Interactive Information Retrieval

SimIIR: A Framework for the Simulation of Interaction

David Maxwell and Leif Azzopardi

School of Computing Science

University of Glasgow

Glasgow, Scotland

d.maxwell.1@research.gla.ac.uk

Leif.Azzopardi@glasgow.ac.uk

ABSTRACT
Simulation provides a powerful and cost-e↵ective approach
to explore and evaluate how interactions between a searcher
and system influence search behaviour and performance.
With a growing interest in simulation and an increasing
number of papers using such an approach, there is a need
for a flexible framework for simulation. Thus, we present
SimIIR, an open-source toolkit for building and conducting
Interactive Information Retrieval (IIR) experiments. The
framework consists of a number of high level components,
including the simulation, the searcher and the system, all of
which must be configured. The SimIIR framework provides
a series of interchangeable components. Examples of these
components include the querying strategies (how simulated
queries are formulated) and stopping strategies (the depth
to which a searcher will examine snippets and documents)
that a simulated searcher will employ. We have implemented
various existing strategies so that they can be used by other
researchers to not only replicate and reproduce past exper-
iments, but also create new experiments. This paper de-
scribes the SimIIR framework and the di↵erent components
that can be configured and extended as required.

Keywords: Simulation, Search Behavior, Strategy, Stop-
ping Strategies, Continuation Strategies, Querying Strate-
gies, User Modeling

1. INTRODUCTION
The process of search is inherently interactive. During

a search session, a searcher can issue a number of queries,
examine a number of snippets, and assess documents for
relevance to their information need. Despite this, the In-

formation Retrieval (IR) community has centred much of
its research around the so-called Cranfield Paradigm. Re-
volving around the concept of standardised test collections
and relevance judgements, the paradigm makes a number

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17 - 21, 2016, Pisa, Italy

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2911469

of key assumptions that are at odds with the interactive na-
ture of search. Assumptions include a searcher: (i) issuing a
single query; (ii) examining each document in turn and in-
dependently; and (iii) examining snippets and documents
to a fixed depth. Simulation, as outlined by Keskustalo
et al. [10], provides a means to go beyond the limitations
presented by the Cranfield paradigm without conducting an
expensive and time consuming user study. Simulation also
o↵ers a number of other benefits over user studies. The
approach provides a rapid means to exploring ‘what-if ’ sce-
narios, and also facilitates a range of evaluations, such as
a comparison between systems and understanding searcher
behaviours [4]. Simulations enable a range and variety of
searchers to be created who do not su↵er from issues such
as fatigue or learning e↵ects, unless specifically coded to do
so. Simulated searchers are therefore highly controlled, and
can therefore yield reproducible results [4].

With a growing interest in simulation and a growing num-
ber of researchers employing the technique in their work
(e.g. [1, 2, 3, 6, 7, 9, 13, 14, 15, 17]), we argue that there is
a need for an IIR-based simulation toolkit. A toolkit freely
available to the IIR community will ensure that experiments
conducted with it can be easily reproduced, as well as re-
ducing the major overheads for creating simulations. To
address this issue, we introduce an open-source framework
for the simulation of IIR (SimIIR). Over the past two years,
we have been building the SimIIR framework and used it
to produce a number of di↵erent simulations [13, 14] - with
more to come. The framework can be configured in a vari-
ety of di↵erent ways to support di↵erent search processes,
di↵erent searcher configurations, di↵erent experimental con-
ditions, and di↵erent search engines.

2. SIMIIR
Previous studies employing simulation have either: (i)

considered aspects of the IIR process in isolation, such as
query generation (e.g. [11]); or (ii) considered the search
process as a whole (e.g. [14]). SimIIR is designed to capture
and broadly reflect the complex processes involved within
the wider IIR process, and has been developed from the
ground up in the Python

1 programming language using a
highly modularised, class-based framework. Each compo-
nent broadly represents a major stage in the IIR process2,

1
Python is a general purpose, high level programming language avail-

able at http://www.python.org. The SimIIR framework is presently
designed to run on Python 2.7.x environments.
2
The SimIIR framework, complete with a variety of example simula-

tion configuration files, is freely available at http://git.io/vZ5mH.



curbing population growth

What measures have been 
taken worldwide and what 
countries have been 
effective in curbing 
population growth?

A relevant document must 
describe an actual case in 
which population measures 
have been taken and 
their...

wildlife extinction

The spotted owl episode in 
America highlighted U.S. 
efforts to prevent the 
extinction of wildlife 
species. What is not well 
known is the effort of 
other countries to prevent 
the demise of species 
native to...

piracy

What modern instances have 
there been of old 
fashioned piracy, the 
boarding or taking control 
of boats?

Documents discussing 
piracy on any body of 
water are...

Figure 1: An example of three topic descriptions

used within the SimIIR framework. The first line

denotes the topic title, with everything following the

title considered the topic description.

with new components simply inheriting from the relevant
base class. This allows for the easy experimentation of dif-
ferent simulated searchers using a variety of test collections,
querying strategies, stopping strategies, and more. This also
highlights one of the main advantages of SimIIR in that it
can be easily adapted to suit ever more advanced compo-
nents as the research in this area progresses. SimIIR has
already been employed in several publications investigating
stopping strategies by Maxwell et al. [13, 14].

SimIIR Components: In order to successfully run an ex-
periment on SimIIR, a simulation must first be defined. A
simulation is comprised of a series of topics, a search in-

terface/engine, an output controller, and a series of
simulated searchers - all of which are elaborated on in
subsequent sections. A simulation in essence is loosely asso-
ciated with the concept of a real-world experiment, such as
a user study. The experiment would be comprised of a series
of searchers or subjects, examining documents for relevance
over one or more topics. The parameters for each of these
settings are specified in an XML simulation configuration

file and passed to SimIIR. The experiment itself consists of
a series of runs, the total number of which can be calcu-
lated by summing the combinations of the specified number
of searchers and topics. The final component comprising a
simulation is the list of simulated searchers. Every simulated
searcher is specified within a separate XML user configura-

tion file. Within this file, a host of additional components
are defined, namely: a querying strategy/generator; a
classifier/decision maker for both snippets and doc-

uments; a stopping strategy; a logger; and a search

context. The components which comprise the searcher are
encoded within the underlying searcher model, providing
the various actions that are observed.

2.1 Topics
We define a topic as a description of what a simulated

searcher is expected to find relevant. These are specified by
a series of topic description files, consisting of a title and
description. Figure 1 illustrates examples of such files. All
the topic files that have been generated for SimIIR thus far
are based upon the topics provided by various TREC tracks,
such as the TREC 2005 Robust Track.

ACTION  QUERY    1200.0  13.9  extinction wildlife
ACTION  SERP     1200.0  15.4  EXAMINE_SERP
ACTION  SNIPPET  1200.0  16.7  SNIPPET_REL      APW1998 
ACTION  DOC      1200.0  40.5  EXAMINING_DOC    APW1998 
ACTION  MARK     1200.0  43.1  CONSIDERED_REL   APW1998 
ACTION  SNIPPET  1200.0  44.4  SNIPPET_REL      XIE1998 
ACTION  DOC      1200.0  68.2  EXAMINING_DOC    XIE1998 
ACTION  SNIPPET  1200.0  69.5  SNIPPET_NR       NYT1999 
ACTION  QUERY    1200.0  83.4  efforts extinction wildlife
ACTION  SERP     1200.0  84.9  EXAMINE_SERP
ACTION  SNIPPET  1200.0  86.2  SEEN_PREV        XIE1998 

Figure 2: An example snippet of the output log file

generated by SimIIR. Included is the action per-

formed by the simulated searcher (e.g. QUERY, SNIP-

PET), the total time available (1200 seconds), the

elapsed time of the simulated session, and the judge-

ment for the action (if applicable), such as SNIP-

PET_REL for when a snippet is considered relevant.

2.2 Search Interface/Engine
We consider the search interface/engine component as an

abstraction of a search engine and the Search Engine Results

Page (SERP). After issuing the search interface/engine with
a query, the component provides SimIIR with access to the
SERP - a ranked list of snippets and associated documents.
As the interface is highly genericised, any search engine
with a Python wrapper can be easily coupled to the SimIIR
framework. Presently, only a wrapper for the Whoosh IR
toolkit3 has been implemented. Any additional configura-
tion options for a particular search interface/engine can also
easily be set in the simulation configuration file.

2.3 Output Controller
SimIIR also provides a flexible output controller with a

variety of output options for the simulations that are run
with the framework. Options are based upon the output
files that are saved for each simulated run, and include op-
tions to save the interaction log of the simulated searchers
(e.g. queries issued, snippets examined, documents exam-
ined), and whether to save the list of documents considered
relevant by the simulated searchers. The file specified by
the final option may then in turn be fed into an evaluation
program such as trec_eval

4 to obtain the values for the
various measures and metrics that can be computed.

For each run, output files include: a .log file, which con-
tains the complete set of interactions undertaken by the sim-
ulated searcher (refer to Figure 2 for an example of an output
log); a .cfg file, containing the configuration of components
for a given simulated searcher; an .out file, containing out-
put from an evaluation program such as trec_eval (if en-
abled); a .queries file, containing a line break separated
list of queries issued; and a .res file, containing a list of the
documents considered relevant (in the format of a standard
TREC results file). Runs are identified by unique identi-
fiers specified in the simulation configuration and searcher
configuration files to avoid results being overwritten.

2.4 Querying Strategies/Generators
The querying strategy/generator is the component respon-

sible for the generation and selection of queries. A variety

3
Whoosh is a pure Python indexing and search library, available at

https://pypi.python.org/pypi/Whoosh.
4
The trec_eval program is freely available to download and compile

at http://trec.nist.gov/trec eval/.



Snippet
Relevant?

Examine Topic
1

Generate Queries
2

Issue Query
3

View SERP Examine Snippet
4

Click Document
Document
Relevant? Read Document

5
Mark Document

6

Continue?Stop?
No, abandon  SERP Yes

Yes

No

Yes

No

Yes
No, issue next query

Figure 3: A flowchart of the Complex Searcher Model (CSM), from Maxwell et al. [14] - presently used within

SimIIR as the underlying searcher model. The flowchart illustrates the key components of the model (in

white) and decisions (in grey) that simulated searchers consider. Numbers are associated with the steps as

described in Section 2.9. The CSM is adapted from the works of Baskaya et al. [6] and Thomas et al. [19].

of di↵erent simulated query generation strategies exist, such
as the approaches discussed by Baskaya [5] and Keskustalo
et al. [11]. Queries also need not be generated - a list of
queries issued by real-world searchers can be used, if desired.
This functionality has been already implemented through a
PredeterminedQueryGenerator class, which takes as input
a list of queries to be issued. This is useful for comparing the
performance of real-world searchers and simulated searchers
under similar conditions, as used by Maxwell et al. [14].

In addition to the generator detailed above, a number
of query generation strategies have been operationalised as
SimIIR classes. Several of the querying strategies proposed
by Baskaya [5] and Keskustalo et al. [11] have already been
implemented, such as the SingleTermQueryGenerator that
generates single term queries, the BiTermQueryGenerator

that generates two term queries, and the TriTermQuery-

Generator that generates three term queries. All of these
classes generate queries from the provided topic title and de-
scription text. Work is also underway to incorporate terms
from sources other than the topic title and description, such
as previously examined snippets and documents. This will
result in a wider potential vocabulary for query generation.

2.5 Snippet/Document Classifiers
We next describe another major component of the SimIIR

framework - classifiers. These components are responsible
for determining the attractiveness of a given snippet - or
the relevancy of a document - to the provided topic that the
simulated searcher is tasked to examine. Snippet and doc-
ument classifiers can be specified individually to enable the
simulator to take into account the fact that searchers may
judge snippets di↵erently from documents. As an example,
a searcher may be more liberal when deciding the attrac-
tiveness of a snippet as opposed to a document’s relevancy.

A series of snippet/document classifiers have already been
implemented and are ready for use. These include: a ‘TREC-
style’ classifier, which judges everything to be relevant; an
InformedTrecTextClassifier that uses TREC QRELS and
probabilities (acting stochastically) to determine if a snip-
pet/document should be considered attractive/relevant; and
a LMTextClassifier which uses a language model (specified

by optional configuration parameters) that acts determinis-
tically to determine attractiveness and/or relevancy.

2.6 Stopping Strategies
The stopping strategy decides where a simulated searcher

should stop examining a list of ranked documents. This
concept is called query stopping [14], as opposed to session

stopping, which is presently determined by the logger com-
ponent (refer to Section 2.7). A variety of stopping strategies
have been previously proposed in the literature, such as the
disgust and frustration point rules [8, 12].

As two recent publications used the SimIIR framework
to simulate the e↵ects of stopping strategies [13, 14], a va-
riety of strategies have already been implemented. As an
example, these include: a FixedDepthDecisionMaker, im-
plementing a näıve approach where simulated searchers will
stop after examining x snippets regardless of relevance; a
NonrelDecisionMaker, which operationalises the aforemen-
tioned disgust and frustration point rules [8, 12], where sim-
ulated searchers will stop after judging x snippets non rel-
evant; and an IftBasedDecisionMaker, a stopping strat-
egy which operationalises the implicit stopping rule encoded
within Information Foraging Theory (IFT) [14, 16].

2.7 Loggers
A logger is the component of the SimIIR framework that

determines the costs of interaction for the simulated searcher
when performing actions, such as issuing a query. Interac-
tion costs can be defined in the user configuration file. The
logger therefore tracks and records all interactions that take
place within a simulated search session, and is for example
able to state when a predetermined time limit elapses - thus
providing some form of session stopping. The details stored
within the logger component can then be sent to the out-
put controller component upon completion of the simulated
search session to produce the .log output file.

To date, we have fully implemented a FixedCostLogger

that considers each of the di↵erent actions undertaken by
a simulated searcher, and as the name suggests, imposes a
fixed cost upon each of them. Currently, a variable cost
logger is in the early stages of development. This more ad-



vanced logger will for example provide the ability for SimIIR
to impose variable costs that are dependent upon factors
such as query or document length, for example [7, 18].

2.8 Search Contexts
The search context is the component of the SimIIR frame-

work responsible for keeping a record of all issued queries, all
examined snippets, documents (along with the judgements
for each) and other interactions throughout a search ses-
sion. The search context is in essence the ‘memory’ of the
simulated searcher, and interacts closely with the specified
logger component to record all events (refer to Section 2.7).
By referring to the search context, a snippet classifier can
for example determine what snippets the simulated searcher
has previously seen, whether they were considered relevant
or non-relevant, and what text was observed.

From the basic search context, we have derived a relevance

revision search context, as used by Maxwell et al. [13, 14].
When considering a snippet relevant, a simulated searcher
using the revised relevance search context can then revise
its judgement of said snippet if the associated document is
subsequently deemed to be not relevant. Such a technique
can influence the stopping point of the simulated searcher if
using a stopping strategy based upon the frustration point
and disgust stopping rules [8, 12] (refer to Section 2.6) for
instance. We envisage that as work in the area of IIR simula-
tion progresses, more complex search contexts can be imple-
mented. For example, one such approach could be a ‘lossy’
search context, where a simulated searcher would forget over
time what snippets and documents have been examined.

2.9 The Searcher Model
When SimIIR is started, all the components are instanti-

ated based upon the simulation and user configuration XML
files. The process in which SimIIR simulates IIR is based
upon the Complex Searcher Model (CSM), a model of inter-
action proposed by Maxwell et al. [14]. The model, repre-
sented as a flowchart in Figure 3, is based upon the stochas-
tic model presented by Baskaya et al. [6], but includes ad-
ditional decision points as described by Thomas et al. [19].
While the CSM does not presently represent every aspect
of the IIR process, it does provide a better representation
than has been used previously. The model can be extended
as research in this area progresses.

Essentially, the simulated searcher begins by (1) exam-
ining the given topic and title description. From the title
and description, the simulated searcher then (2) generates
a series of queries which are issued to the underlying search
engine. The simulated searcher then (3) issues a query from
the generated list, and then (4) proceeds to examine the
first/next snippet in the ranked list provided. The simulated
searcher can also decide to issue a new query, thus returning
to (3). If the snippet is considered relevant by the simulated
searcher, (5) the document is then examined in full. If the
document is also considered relevant, (6) the document is
then marked relevant. If either the snippet or document are
considered non-relevant, the simulated searcher then returns
to (4) with the document unmarked.

3. SUMMARY
In this demonstration paper, we have described our new

IIR simulation framework, SimIIR. The highly modularised
architecture of the framework makes it straightforward to

implement new simulation components, and will aid in push-
ing research forward in this area. Future work will see the
development of more advanced components and the adap-
tion of the CSM to facilitate this.

Acknowledgments We would like to thank Professor Kalervo
Järvelin and Dr Heikki Keskustalo at the University of Tam-
pere, Finland for their co-operation and participation in a STSM,
funded by the ESF supported MUMIA Cost Action (reference
ECOST-STSM-IC1002-080914-049840). The lead author is also fi-
nancially supported by the EPSRC, grant number 1367507. We
would also like to thank Paul Thomas for his debugging e↵orts.

References
[1] L. Azzopardi. Query side evaluation: An empirical analysis

of e↵ectiveness and e↵ort. In Proceedings of the 32nd ACM
SIGIR, pages 556–563, 2009.

[2] L. Azzopardi. The economics in interactive information
retrieval. In Proc. 34th ACM SIGIR, pages 15–24, 2011.

[3] L. Azzopardi, M. de Rijke, and K. Balog. Building
simulated queries for known-item topics: An analysis using
six european languages. In Proc. 30th ACM SIGIR, pages
455–462, 2007.

[4] L. Azzopardi, K. Järvelin, J. Kamps, and M.D. Smucker.
Report on the sigir 2010 workshop on the simulation of
interaction. SIGIR Forum, 44(2):35–47, 2011.

[5] F. Baskaya. Simulating Search Sessions in Interactive
Information Retrieval Evaluation. PhD thesis, University
of Tampere, School of Information Sciences, Finland, 2014.

[6] F. Baskaya, H. Keskustalo, and K. Järvelin. Modeling
behavioral factors in interactive information retrieval. In
Proc. 22nd ACM CIKM, pages 2297–2302, 2013.

[7] B. Carterette, A. Bah, and M. Zengin. Dynamic test
collections for retrieval evaluation. In Proc. 5th ACM
ICTIR, pages 91–100, 2015.

[8] W.S. Cooper. On selecting a measure of retrieval
e↵ectiveness part ii. implementation of the philosophy. J. of
the American Soc. for Info. Sci., 24(6):413–424, 1973.

[9] K. Järvelin. Interactive relevance feedback with graded
relevance and sentence extraction: Simulated user
experiments. In Proc. 18th ACM CIKM, pages 2053–2056,
2009.

[10] H. Keskustalo, K. Järvelin, and A. Pirkola. Evaluating the
e↵ectiveness of relevance feedback based on a user
simulation model: E↵ects of a user scenario on cumulated
gain value. Information Retrieval, 11(3):209–228, 2008.

[11] H. Keskustalo, K. Järvelin, A. Pirkola, T. Sharma, and
M. Lykke. Test collection-based ir evaluation needs
extension toward sessions — a case of extremely short
queries. In Proc. 5th AIRS, pages 63–74, 2009.

[12] D.H. Kraft and T. Lee. Stopping rules and their e↵ect on
expected search length. IPM, 15(1):47 – 58, 1979.

[13] D. Maxwell, L. Azzopardi, K. Järvelin, and H. Keskustalo.
An initial investigation into fixed and adaptive stopping
strategies. In Proc. 38th ACM SIGIR, pages 903–906, 2015.

[14] D. Maxwell, L. Azzopardi, K. Järvelin, and H. Keskustalo.
Searching and stopping: An analysis of stopping rules and
strategies. In Proc. 24th ACM CIKM, pages 313–322, 2015.

[15] T. Pääkkönen, K. Järvelin, J. Kekäläinen, H. Keskustalo,
F. Baskaya, D. Maxwell, and L. Azzopardi. Exploring
behavioral dimensions in session e↵ectiveness. In Proc. 6th

CLEF, pages 178–189, 2015.
[16] P. Pirolli and S.K. Card. Information foraging.

Psychological Review, 106:643–675, 1999.
[17] M.D. Smucker. An analysis of user strategies for examining

and processing ranked lists of documents. In Proc. of 5th

HCIR, 2011.
[18] M.D. Smucker and C.L.A. Clarke. Time-based calibration

of e↵ectiveness measures. In Proc. 35th ACM SIGIR, pages
95–104, 2012.

[19] P. Thomas, A. Mo↵at, P. Bailey, and F. Scholer. Modeling
decision points in user search behavior. In Proc. 5th IIiX,
pages 239–242, 2014.


