
I
I

L)

Enojnssnng
PERSOOiCAUS

U50CO

DEPARTMENT OF
AEROSPACE

ENGINEERING

Application of a Zonal Decomposition Algorithm, 
to Improve the Computational Operation Count 

of the Discrete Vortex Method Calculation.

I. J. Taylon1) and M. Vezza(2>



G.U. Aero Report No. 9711

Application of a Zonal Decomposition Algorithm, 
to Improve the Computational Operation Count 

of the Discrete Vortex Method Calculation.

I. J. Taylor^') and M. Vezza^2)

Department of Aerospace Engineering 

James Watt Building South 

University of Glasgow 

Glasgow G12 8QQ

June 1997

1 : Research Student, 2 : Lecturer



Application of a Zonal Decomposition Algorithm, to Improve the Computational 
Operation Count of the Discrete Vortex Method Calculation 

TAYLOR and VEZZA (1997)

SUMMARY.

The vortex method has proved a very useful tool for analysing separated, incompressible 

flow around two dimensional bodies. The method utilises a grid free, Lagrangian approach, 
to discretise the vorticity field into a series of vortex particles. These particles are then 

tracked in time, using the Biot-Savart law to calculate the velocity field. This calculation 

requires the velocity of each vortex to be found as a sum over all other particles in the flow 

field. A Discrete Vortex Method (DVM) has been developed at the Department of 

Aerospace Engineering, University of Glasgow. Currently, this vortex method uses a direct 
summation technique, which although relatively simple, leads to a computational operation 

count proportional to the square of the number of particles. In calculations that use a large 

number of particles, such as bluff body models, the direct summation technique becomes 

prohibitively expensive.

A new algorithm for the velocity calculation has now been included in the DVM and is 

presented in this report. The procedure uses a zonal decomposition algorithm for the 

velocity summation. This allows the effect of groups of particles on the velocity to be 

calculated using a single series expansion, thus significantly reducing the operation count 
of the calculation. The algorithm utilises a hierarchical technique, so that the largest 
possible group of particles is used for each series expansion. The resulting operation count 
is 0(N+NlogN), and therefore offers a significant improvement over the direct summation 

method.

The support and advice of Dr. Marco Vezza, whilst developing this algorithm, is gratefully 

acknowledged.
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1.0 INTRODUCTION.

1.1 Overview

The discrete vortex method has proved to be a very useful analysis tool for studying 

unsteady, incompressible viscous flows. The method is based on a discretisation of the 

vorticity field into a series of vortex particles, which are free to move in the flow field that 
they collectively induce. This Lagrangian approach eliminates the necessity for a 

calculation grid and hence removes some of the problems associated with grid based 

methods; these include numerical diffusion and difficulties in achieving good resolution of 

small scale vortical structures. The vortex method has an advantage in this area as the 

particles are concentrated in areas of vorticity, and are more likely to capture these small 
scale structures.

However, one of the main drawbacks of vortex methods is that the computational cost 
becomes prohibitively more expensive as the number of particles used to model the flow 

field increases. The velocity of an individual vortex particle is calculated by taking the sum 

of the influence of all other particles. It is clear that the time taken for the velocity 

calculation of N particles, will be proportional to N2 (Fig. 1.1). It is clear that as the 

number of particles increases, the computation becomes prohibitively more expensive. This 

is termed the N-Body problem and is common to any model that involves N bodies, where 

each body is interacting with aU the remaining bodies. Examples of similar problems occur 

in Astrophysics where the bodies are stars, and Plasma physics where the bodies are ions 

and electrons.

Techniques have been developed to reduce the cost of this calculation, reducing the 

operation count to O(NlogN) or even 0(N). A number of these techniques are discussed in 

this report, along with the advantages and disadvantages of each of these methods.

Also presented in the report, is the method that has been used to reduce the operation 

count of the Discrete Vortex Method (DVM) that has been developed at the Department 
of Aerospace Engineering, University of Glasgow [1-3]. Comparison of the speed of the 

new algorithm with the original direct summation method of calculation is made, as well as 

comparing the accuracy of the new method. Further improvements in the efficiency and 

operation count of the vortex method are possible and indications of how these may be 

achieved are also presented in the report.
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1.2 Basis of Discrete Vortex Model.

The vortex method is based on the Navier-Stokes equations for two dimensional.
incompressible flow. In velocity and pressure form :

Continuity : v.u = o (1.1)

Momentum : 1VP + vV2U
Dt p

(1.2)

Boundary Condition : U = U,. on 5, and U = on (1.3)

Using the definition of vorticity, co = VxU with c5 = k®, and defining a vector potential.
T' such that, U = Vx'P, VF = k'F, V.'P = 0, then the governing equations (1.1 - 1.3) can
be rewritten in vorticity and stream function form:

Continuity : V2tP = -m (1.4)

Momentum : Dm t72 ---- = vV m (1.5)
Dt

Boundary Condition : VlF = V'P,. on 5, and V'T = V'Poo on (1.6)

The discretisation of the flow field into a series of vortex particles, provide a solution to 

these equations. Be employing Green's second identity and implementing the boundary 

conditions, the velocity can be found from (1.7). This is analogous to the Biot-Savart law 

in electromagnetism, for the magnetic field induced at a point.

1 f k X (r - r) u-=u-+^/<0—

rp-r

(1.7)

The body is defined by a series of nodes, that are connected to form panels. The boundary 

conditions are implemented such that the vortex strength required at each node is 

calculated, to give zero mass flow across each panel. Vortices are then released into the 

wake, where the convection and diffusion of the vortex particles are calculated, using (1.7)

Department of Aerospace Engineering, University of Glasgow. Page 4
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and a random walk respectively. A much more detailed description of the method and the 

discretisation of the vorticity field is given in [1-3].

2.0 TECHNIQUES FOR FAST SUMMATION IN N-BODY / PARTICLE 

SIMULATION METHODS.

2.1 Introduction.

When calculating the velocity in the vortex method at a point in the flow field, the 

influence of aU the vortex particles must be taken into account. This involves a calculation 

of 0(N2) interactions for a flow field made up of N particles, which can lead to a large 

computational cost. A number ways of reducing the number of interactions in this 

calculation have been reported by various researchers. In this section, techniques aimed at 
improving the efficiency of the algorithm are presented. A brief review of recent research is 

given, highlighting some of the various methods that may be used to give a "fast" velocity 

calculation.

2.2 Vortex in Cell Method.

The Vortex in Cell (VIC) method (or sometimes Cloud in Cell method) aims to reduce the 

operation count of the velocity calculation, by combining elements of both the Lagrangian 

and Eulerian approaches. A fixed mesh is fitted over the domain of the flow field, with the 

vortex particles representing the discretised vorticity field flowing through the mesh in a 

Lagrangian manner. The key to the reduction in the operation count, lies with the use of 

the mesh to calculate the velocity field. The vorticity is initially interpolated onto the mesh 

nodes and the velocity at each node can be calculated from the stream function found by 

solving the Poisson equation. The velocity of each vortex is then found by interpolating the 

nodal values of the velocity to each vortex location.

The basic method in its simplest form is implemented as follows. The vorticity of the nth 

vortex in any given cell is interpolated to the four nearest nodes, using an area weighting 

scheme.

CO,. =r„A/A2 / = 1,2,3,4

Department of Aerospace Engineering, University of Glasgow.
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where Fn is the strength of the vortex and A is the area of the cell (Fig. 2.1). When this 

interpolation has been completed for aU vortices in aU cells, Poisson's equation (2.2) is 

solved to obtain the stream function, VF,J at all mesh nodes (if). The velocity components 

are then calculated from a simple differencing scheme (2.3).

V2^ = -0)

uu=(%J+l/2M

(2.2)

(2.3a)

(2.3b)

where M is the cell dimension. The velocity of the nth vortex in the cell is then found from.

> vn=yZviAi,A (2.4)

For a flow field containing N particles and a mesh containing M nodes, the VIC method 

reduces the operation count to approximately 0(N+MlogM). The VIC method is discussed 

in more detail in [4-7].

Clearly, the accuracy of the method is directly related to the level of refinement of the 

mesh, the specification of which is a significant problem for the method. The easiest 
method would be to create a fixed, uniform grid at the start of the calculation, with the 

required definition. However, in areas where the vortex particles are sparse, unnecessary 

calculations are being performed to interpolate the velocity at the large number of nodes in 

regions where the velocity gradients are small. The alternative, is to use a fine definition 

grid only in regions where the vortex particles are densely clustered. In this case, due to 

the convection of vorticity as the calculation progresses, a new mesh will have to be 

created for each iteration to ensure the required definition is obtained. The overhead that 
this Eulerian part of the calculation carries needs careful consideration. A poor approach in 

overcoming these problems could mean that the reduction in operation count could be 

disappointingly small.

The simplest version of the VIC method is termed the Particle-Mesh (PM) method. In this 

case, both the near and far field contributions to the velocity of any particle are calculated 

from the velocity field calculated at the mesh nodes. Although this approach is very simple, 
it is unacceptable for modelling the interaction of particles that are clustered closely

Department of Aerospace Engineering, University of Glasgow. Page 6
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together. The reason for this is that only velocity variations greater than the mesh spacing 

can be obtained and any small scale vortical structures smaller than this spacing wiU not be 

successfully modelled.

The Particle-Particle/Particle-Mesh (P3M) method is a simple way of reducing this 

problem. In this case, the far field contribution to the velocity are found from the nodal 
values as in the PM method. However, the influence of vortices close to the particle of 

interest are found by direct summation. Typically, if the distance between any two particles 

is less than 3Ax, where Ax is the grid spacing, then direct summation is used (Fig. 2.2). 
Hence, the smaller scale vortex interactions and structures can be modelled, but still 
gaining the benefits of the VIC method. The disadvantage of P3M is that it can very easily 

be dominated by the direct summation terms and so the improvement in the operation 

count is compromised as accuracy is improved.

The main drawback of the VIC method is that some of advantages of the vortex method 

are lost with the need to fit a Eulerian mesh to the flow field. The interpolation to and from 

the mesh will include areas of the flow where there is little or no vorticity. Also, the 

interpolations will introduce some numerical diffusion into the solution. LEONARD [4] 
reports that researchers have found that "numerical experiments ... indicate that although 

these fine scale errors are present they may not seriously affect the large-scale features." 

SMITH et al. [5] report good results using the VIC method on a circular cylinder, 
although claim that for an accurate calculation, a large number of particles is required.

2.3 Method of Local Corrections.

The method of local corrections, was proposed by Anderson [8], and is a variation on the 

P3M discussed above. The method is based on the observation that the difference between 

the velocity induced by a point vortex and a vortex blob is very small at large distances 

from the vortex centre. From this observation, a velocity field is calculated from a 

distribution of point vortices, and is then "locally corrected" about the centre of each 

vortex. A more detailed description of the method is given in [7-9].

The first stage of the method is to calculate the velocity field due to a distribution of point 
vortices and then to interpolate the velocity obtained to the centre of each vortex. The 

velocity calculation is based on the observation that the velocity field due to a point vortex

Department of Aerospace Engineering, University of Glasgow. Page 7
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(2.5) is harmonic away from the centre of the vortex, where (2.6) is the velocity field due 

to a point vortex.

V2u; =0 for Xj

u. =
r,(x-x;.)

7 271X-X

(2.5)

(2.6)

Then for a given grid with a mesh spacing h, an rth order approximation to the Laplacian 

on this grid can be denoted by V2A. Rather than solving for the stream fiinction, VF, at the 

grid nodes (2.2), Anderson solves a Poisson equation for the velocity field, using (2.7)

V2u*1 =Ysd,

where the right hand side is the sum of the approximations to V2u on the grid.

(2.7)

gDi (x) =
V2lhUj X — Xj

f

o X-Xj

< D 

> D
(2.8)

Since V2u is harmonic (2.5), a value of D can be selected so that gD is an rth order 
accurate approximation to V2u;. on the grid. The constant D is termed the spreading

radius. The reason for using the approximation gD to V2u, is that for a small value of D, 
the right hand side of (2.7) can be evaluated in 0(N) operations rather than the 0(NM) 

operations required to calculate V2u at each of the M grid points. By now solving the 

Poisson equation (2.7), the velocity field at the grid nodes can be found.

The interpolation of the velocity back to the vortex centres also differs from the normal 
P3M method. Anderson exploits the fact that in two dimensions, away from the centre of 

the vortex, the two velocity components form the real and imaginary parts of a complex 

analytic function, given by

F(z) = Mj (z)— iu2 (z) (2.9)

The usefulness of using the complex representation of the velocity field is that an 

interpolation formula for the velocity can be found by taking the real and imaginary parts

Department of Aerospace Engineering, University of Glasgow. Page 8
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of any interpolation formula for complex functions. Thus, one can use Lagrange 

interpolation in the complex plane.

■A r1-T (z- z,.) ^ 

7=1 V, '*i i /ji' J
(2.10)

for n points in the complex plane, z;, i-l,n.

The advantage of using this interpolation scheme is that for a mesh cell with 4 nodes, a 

fourth order accurate interpolation can he obtained for the velocity in that ceU. This should 

be contrasted to bilinear interpolation applied to each velocity component separately, 
which only achieves second order accuracy. It should also be noted that this interpolation 

scheme does not generalise very easily into three dimensions.

The last stage of the calculation is the local correction to the velocity of each vortex. The 

interpolation formula described above is not very accurate near the centre of the vortex 

due to the singular nature of the point vortices. However, this error can be removed by 

applying a local correction to the velocity of each vortex. This correction consists of 

subtracting the velocity component which is influenced by the nearby point vortices, and 

adding the correct (or exact) velocity influenced by the nearby vortex blobs (2.11)

velocity
correction for yth 

vortex

exact velocity 

contribution due 

to vortices such 

that
\xi(t)-Xj(t)\<C

interpolated velocity 

contribution due to vortices 

such that 
I xl(t)-Xj(t) I <C

(2.11)

This correction step only requires 0(N) operations for a field containing N vortices. As the 

discrete Laplacian step in (2.7) can be solved in O(MlogM) operations for a grid of M 

nodes, then the whole velocity calculation is clearly 0(MlogM+N) operations.

Anderson reports that very accurate velocity calculations can be obtained with reasonably 

small values of D (approximately 3/j, where h is the grid spacing). Also, it is claimed that 
the method gives accurate results and preserves the effects of using higher order accurate 

vortex blobs. The method has the same operation count as the VIC methods discussed 

above and gives considerably more accurate results, but is considerably more complex to 

program.

Department of Aerospace Engineering, University of Glasgow. Page 9
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2.4 Tree Codes, Multipole Expansions and the Fast Multipole Method.

Tree codes and multipole expansions utilise very different techniques to the VIC methods 

described above. The basic philosophy of these methods is to decompose the flow field 

into a series of zones, each containing a cluster of vortex particles. Provided that a zone is 

sufficiently far fi:om the point z, at which the velocity is being calculated, then the 

contribution of the particles in the zone to the velocity, can be found by a Laurent series 

expansion (2.12) rather than from direct summation of all the particles.

U(z)-iV(z) = '£ a.
2m{z-Zc)

(2.12)

where ak are the coefficients of the series expansion and Zc is the centre of the zone.

The advantages of this technique are that firstly, the Lagrangian nature of the vortex 

method is retained and secondly, accurate results can be obtained with a significant 
reduction in the operation count. The main problems with VIC methods are avoided, by 

the fact that no interpolation of the vorticity or velocity field to or from a mesh is required. 
However, as the method is based on an infinite series expansion, some error is introduced 

due to the truncation of this series. This error can be minimised to an almost insignificant 
level, by the ensuring that the series expansion is used for points sufficiently far away, to 

ensure that the series converges. Judicious choice of the order of the series can also help to 

minimise the error.

The implementation of the method varies from application to application and full 
descriptions of some of these methods are given in [7,10-14]. Typically, multipole 

expansions give an operation count of 0(Nlog4N) for a flow field of N particles. The Fast 
Multipole Method (FMM) of GREENGARD and ROKHLIN [11] is claimed to give an 

operation count of 0(N). It is a tree code method, utilising a zonal decomposition and 

multipole expansions for the velocity influence of a zone, that has been incorporated into 

the DVM. This algorithm wiU be presented in more detail later. However, it does have 

distinct differences to the FMM, a brief description of which will now be given for 
comparison purposes.

Department of Aerospace Engineering, University of Glasgow. Page 10
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2.4.1 The Fast Multipole Method Algorithm.

The first stage of the method is to divide the flow field into a hierarchical structure of 

zones. The initial zone is a square that contains all of the vortex particles and is called level 
0. This initial box is subdivided into four smaller square zones of equal size, and these new 

zones are at level 1. In general, level I is obtained by subdividing each zone in level T1 into 

four smaller zones, and at each level I there will be 4l zones (Fig. 2.3). Further subdivision 

of each zone takes place until the required level of refinement, level k, is reached. Given a 

zone A at level 1-1, the zones at level / that are obtained by subdividing A are termed the 

children of A, and a zone is termed the parent of its children. This zonal decomposition of 

the flow field is best suited to a uniform flow field. An "Adaptive" decomposition, where 

subdivision of a zone only takes place if there are greater than some minimum number of 

particles in a zone, is presented in [13] and will not be discussed here.

The FMM uses an interaction list for each zone. This is defined as follows and is 

demonstrated in Fig. 2.4 :
1) Two zones are neighbours if they are of the same size and share a boundary point. 

(Note that a zone is classed as one of its own neighbours).
2) Two zones are well separated if they are of the same size and are not near neighbours.
3) Each zone. A, has an associated interaction list, which consists of aU the children of 

the neighbours of A's parent, that are well separated from A.

Other terms used in the description of the algorithm are :
Multipole expansion - the series expansion (with p terms) about the zone centre, that gives 

the velocity field created by the particles contained within the zone.
Local expansion - the series expansion (with p terms) about the centre of zone i at level I, 
describing the velocity field due to all particles outside zone i and its nearest neighbours.

Consider a zone A with centre Zp, and radius R (usually half of the zone width) containing 
np particles, located at points Zp such that | Zp-zA | <R for ally (Fig. 2.5). Then for a point z 

where | ZpZA I >2R, the velocity influence of zone A at point z can be expressed by a 

multipole expansion about zone centre zA (2.13)

U(z)-/V(z) = £ a,.
t+i

where the coefficients ak, of the expansion are given by 

Department of Aerospace Engineering, University of Glasgow.
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a>^=7^tJrj(^j-ZA)k ^ = 0,1,2.......00 (2.14)

The coefficients (2.14) can be calculated for each zone as the zonal decomposition is 

performed, or calculated for the zones at the lowest level only, and these coefficients used 

to calculate the coefficients of each parent zone.

The FMM method then performs a downward pass through the zonal hierarchy (largest 
zones to smallest). For zone A the multipole expansion for each zone in A's interaction list 
is converted to a local expansion about the centre of A. The coefficients of the local 
expansion is shifted to the centres of A's children. This process is repeated until the lowest 
level is reached. In general, each zone A at level /, will have coefficients of a local 
expansion that represents the velocity field due to all vortices in zones that are well 
separated from A's parent. These are added to the coefficients of the local expansions from 

the zones in A's interaction list. At the lowest level, each zone will have a local expansion 

the represents the velocity field due to all zones except its nearest neighbours. The velocity 

influence of the neighbouring zones will be evaluated from direct summation.

A more detailed discussion of the FMM along with the mathematical proofs and techniques 

for creating and shifting the centres of the local expansions is given in [11]. The total cost 
of the calculation is 0(N), due to the zone-zone interactions rather than the particle- 
particle interactions of the direct summation. As mentioned above, an adaptive FMM 

algorithm is presented in [13] and a paralleMsed version, giving further improvements in the 

operation count, is given in [12].

Department of Aerospace Engineering, University of Glasgow. Page 12
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3.0 IMPLEMENTATION OF A ZONAL 

ALGORITHM IN THE VORTEX METHOD.
DECOMPOSITION

The zonal decomposition technique was chosen as the method with which to improve the 

efficiency of the DVM. The choice of this technique over a VIC method was primarily 

based on the fact that the Lagrangian nature of the method, and the benefits this brings, is 

retained. The technique utihsed in the DVM uses an adaptive zonal decomposition using 

square zones. The series expansion for the velocity influence from a zone is similar in form 

to the FMM, although the interactions between zones and particles are handled very 

differently. This leads to a much simpler algorithm for the velocity calculation, without any 

great loss in accuracy when compared to direct summation. The algorithm will now be 

presented in more detail.

3.1 Decomposition of Flow Field into a Hierarchical Structure of Square 

Zones.

As with many other apphcations, it was decided to use square zones in the decomposition 

of the flow field. CLARKE et al. [10] use rectangular zones in the zonal decomposition 

and divide each zone into two, along the longest side, such that each sub-zone contains 

half the particles of the parent zone. This method was investigated, as it leads to less 

"dormant" zones that contain no particles. However, it was found that some zones with 

high aspect ratio were created, which can lead to a large radius around the zone. 
Consequently there is less chance of using the zonal influence in the velocity calculation 

(Fig. 3.1). This extra use of the slower direct summation negates the benefit of eliminating 

the "dormant" zones in the algorithm.

The DVM discretises the vorticity field into two sets of vortex particles, nascent 
(contained in a small control zone close to the body) and wake [1-3]. These two sets are 

joined together into a single set of particles, with the zonal decomposition being performed 

on this combined set of particles. The initial zone is the smallest square that contains aU the 

particles in the flow field. If there are greater than some predetermined number of particles 

in the wake region, NPmin say, then this initial zone can be subdivided into four smaller 
zones in the order shown in Fig. 3.2. Each of the children of the initial zone are subdivided 

if they contain greater than NPmin particles. The children of these new zones are then 

subdivided, where appropriate, until no further subdivision can take place. This procedure

Department of Aerospace Engineering, University of Glasgow. Page 13
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is illustrated in Fig. 3.3, along with the resulting hierarchical zonal structure for a typical 
flow field.

This procedure is similar to that described by VAN DOMMELEN et al. [14], although a 

much simpler method of numbering the zones is used here. The initial zone containing the 

flow field is numbered zone 0. The four subzones of zone 0 are zones 1 to 4 respectively. 
If zone 1 can be subdivided, then its children will be zones 5 to 8. In general, the children 

of a zone k will be numbered Nz+l to Nz+2, where Nz zones have previously been created. 
As the children of each zone are always created in the same order (Fig. 3.2), only the first 
child is recorded when a zone is subdivided. Also, when each zone is created, its parent 
zone win be recorded. Using this numbering scheme, for any zone, its parent and all of its 

children can easily be traced. The resulting zonal decomposition, of all the vortex particles 

in the flow field, provides an hierarchical structure of zones, that can be used as part of a 

fast algorithm for the velocity calculation in the Vortex Method.

3.2 Velocity Calculation using Zonal Decomposition and Series Expansion.

As discussed previously (section 2.4), the velocity influence of a group of particles 

contained within a zone can be used, if the velocity is being calculated at a point 
sufficiently far from the centre of the zone. It is usual to define "sufficiently far" as some 

specified multiple of the zone radius, where the radius is half the side length of the zone 

(Fig. 3.4). The velocity influence of a zone, at a point z can be calculated from a truncated 

series expansion (3.1 - 3.2).

Nl

U(z)-iV(z) = X at
f:l(z-zA)

1 Vp

^lc=: ŷL^j(Zj-zA)k-1 k = 1,2,3.....,Nt

(3.1)

(3.2)

where Nt is the number of terms in the series expansion, is the zone centre, Np is the 

number of particles in the zone, and Zj and ry- are the position and circulation respectively, 
of vortex j in the zone. The derivation of these formulae is given in Appendix A. The 

coefficients ak of the series expansion for each zone, are calculated as the zonal 
decomposition is being performed.
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It should be noted that the flow field is only decomposed into the zonal structure if greater 

than some predetermined number of wake particles are present in the calculation. If there 

are less than this limit, then the velocity calculation is performed using direct summation.

If a zone contains Np particles, then the operation for the velocity influence at a point is 

0(Np2) using direct summation, compared to 0(Nt) using zonal decomposition. It is clear 

that the larger Np is, then the greater will be the reduction in the operation count for the 

velocity calculation. For this reason, the largest possible zone is always used in the 

calculation, to give the maximum improvement in the speed of the algorithm.

The implementation of the algorithm wiU now be demonstrated by considering the 

calculation of the velocity for one vortex particle. First consider the distance of the particle 

from the first zone (zone 1). If the particle is greater than twice the zone radius from the 

zone centre, then the particle is sufficiently far from the zone, and the influence of the zone 

can be used in the velocity calculation. However, if the particle is less than the required 

distance and the zone has no children, then the velocity influence of the zone is calculated 

from direct summation. If the zone however does have children, then each of the children 

are considered in the same manner as described above. The procedure is repeated until 
either a zonal influence can be used, or the lowest level of decomposition is reached, and 

direct summation is used. If the particle is contained within the zone, and the lowest level 
has been reached, then the zone’s contribution is calculated using direct summation later in 

the algorithm. Otherwise the zone’s children are considered as usual. This continues until 
aU the children and "grandchildren" of zone 1 have been considered. The procedure is then 

repeated on the remaining zones at the top level (zones 2-4). This algorithm is summarised 

in the flowchart shown in Fig. 3.5. This procedure is then repeated for the next vortex 

particle.

The procedure described above, gives the velocity influence on a particle, of all the 

particles outside of the zone at the lowest level, which contains the particle (Fig. 3.6). 
Also, as discussed above, the largest possible zones are used to give the velocity influence, 
and are found by considering the least number of possible zones. The final part of the 

algorithm is a single pass through each of the childless zones, so that the velocity influence 

of the particles contained in the zone on each other, can be calculated using direct 
summation. This provides the final contribution to the velocity of each particle.
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3.3 Comparison of Algorithm with Fast Multipole Method.

The FMM algorithm described in section 2.4.1 uses a zone vs. zone interaction, and gives 

an operation count of 0(N) [11]. The algorithm implemented in the Vortex Method and 

described above uses a particle vs. zone interaction, and gives an operation count of 

0(N+NlogN) (Appendix B). The reason for the use of an apparently slower algorithm, was 

primarily due to the simpler implementation of the method. Also, the shifting of the 

multipole expansions to local expansions in the FMM, can introduce an extra source of 

error into the calculation, as well as that incurred by the truncation of the series expansion.

As discussed later in section 4, the algorithm gives very satisfactory results in terms of the 

calculation efficiency. Typical calculations of the Vortex Method use around 6000 

particles, and the extra efficiency of the 0(N) FMM only becomes more significant when N 

is much greater than this. For this reason, even though the FMM algorithm was 

investigated, it was decided to implement the simpler, if slightly slower, algorithm. Future 

work on further improvements to the operation count may include a re-evaluation of the 

FMM method.
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4.0 RESULTS.

4.1 Performance of Algorithm.

Three different test cases were used to assess the performance of the zonal decomposition 

algorithm. Each test case involved a very different body geometry and resulting flow field. 
The test cases were as follows :

1. Static aerofoil at 40 degrees incidence.
2. Circular cylinder.
3. Square cylinder at 0 degrees incidence.

In each cases, the calculations were performed first using the original velocity calculation 

via direct summation and then using the zonal decomposition algorithm. The calculations 

were performed on a Silicon Graphics workstation with a 150MHz IP22 R4400 processor, 
16Kb cache size and 64Mb main memory size (Dept, of Aerospace label : ATLAS). The 

performance of each calculation was obtained by outputting the CPU time taken for the 

whole timestep as well as the CPU for the velocity calculation. The results are shown in 

Figs. 4.1 to 4.9 and show the CPU plotted against the total number of vortices (wake and 

nascent combined) for the timestep and velocity calculation respectively. Typical 
decomposition of the flow field into the hierarchical zonal structure are shown for both the 

square and circle models in Figs. 4.10 and 4.11.

Comparing first the velocity calculation only for both the direct summation and zonal 
decomposition algorithms, it is clear for each method that the relationship between the 

CPU and the number of vortices is very similar in each of the three test cases, especially 

when direct summation is used (Fig. 4.4). As expected, this shows that the calculation is 

dominated by the number of vortices contained in the flow field rather than their physical 
location within the flow field. There is slightly more variation in the zonal decomposition 

case, as the location of particles will determine whether the series expansion can be used 

for the velocity calculation. However, a strong relationship between the CPU and number 

of vortices is clear, irrespective of which model is used.

The operation count for the direct summation method is 0(N2) as discussed above. For the 

zonal decomposition, analysis of the operation count is a httle more complex and is shown 

to be 0(N+NlogN) in Appendix B. A least squares curve fit has been fitted to the CPU 

timings for both direct summation and zonal decomposition, using the operation counts 

given above. The curve fits, and the derived constants are shown in Figs. 4.5 and 4.6.
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Table 4.1 shows the improvement obtained by the zonal decomposition algorithm for the 

CPU required for one timestep, based on the curve fits to the data.

Number of
Vortices.

CPU from Direct
Summation, (secs.)

CPU from Zonal
Decomposition.

(secs.)

Factor
Improvement.

1000 2.041 1.381 1.478
2000 8.164 3.638 2.244
3000 18.370 6.225 2.951
4000 32.658 9.027 3.618
5000 51.028 11.988 4.257
7500 114.812 19.904 5.768
10000 204.110 28.356 7.198
20000 816.440 65.470 12.470
30000 1836.990 105.890 17.348

Table 4.1

The factor improvement for the whole timestep is also shown in Fig. 4.7, and is compared 

with the factor improvement in the velocity calculation only. An extra saving was made in 

the timestep by using the zonal structure as part of the vortex merging calculation [2]. 
Instead of checking against any vortex in the flow field to find if the merging criteria is 

satisfied, which can also lead to an 0(N2) calculation, only vortices within the same zone 

at the lowest level are checked. The CPU taken for the merging calculation using the new 

and old methods is shown in Fig. 4.8. The breakdown of the timestep into various elements 

of the calculation is shown in Fig. 4.9. It is clear that the main element of each timestep is 

the velocity calculation. As discussed above, the merging calculation now uses httle CPU. 
Importantly, the zonal decomposition and sorting of the vortices also takes a relatively 

small amount of CPU.

The speed and accuracy of the algorithm can be optimised by judicious selection of a 

number of parameters that define the zonal decomposition. The optimisation of these 

parameters is discussed in Appendix C.
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4.2 Error Introduced by the Zonal Decomposition Algorithm.

The infinite series expansion that is used in the velocity calculation for the zonal 
decomposition algorithm gives the correct velocity as shown in Appendix A. However, for 

practical implementation of the method, the series needs to be truncated after a reasonable 

number of terms have been evaluated. This truncation introduces an error into the 

calculation when the contribution of a zone is used. As discussed in Appendix C, the 

algorithm has been optimised to attempt to reduce this error, whilst stiU retaining the 

calculation efficiency.

By comparing the velocity calculation of a sample flow field using the zonal decomposition 

and direct summation, estimates of this error can be obtained. The test case was on a 

circular cylinder, using a developed flow field similar to that shown in Fig. 4.11, and 

comparing the results over a single timestep. The velocity magnitudes of all the vortices 

(nascent and wake) was compared. The maximum error was 9.879le-4, and the rms. error 

was 1.1546e-4 compared to the direct summation results. The percentage error is shown in 

Fig 4.12. In general, the error is very small, and it is clear that the larger percentage errors 

occur for vortices where the velocity is very small, and arise due to some iU-conditioning 

when dividing by the velocity from direct summation. Fig. 4.13 shows a comparison of the 

flow field around a circular cylinder after the first 200 tknesteps of the calculation, using 

both the direct summation and zonal decomposition algorithms. Although there are 

differences between the two flow fields, in general they are very similar, showing that 
despite the errors now introduced into the calculation, the new algorithm gives comparable 

results to the original method.

It should be noted that the calculation of the velocity using the zonal influence via a series 

expansion, is derived from assuming that the vortices in the zone are point vortices 

(Appendix A). However, the vortex method uses vortex blobs, where a core function is 

implemented, to avoid singularities arising from point vortices [2]. Clearly, there is an 

inconsistency here that may be a further source of error. Long distances from the vortex 

locations, the velocity influence of a vortex blob and a point vortex is very similar. This is 

also discussed in section 2.3, for the method of Local Corrections. This method is "... 
based upon the observation that the difference between the velocity field due to a point 
vortex and a vortex blob located at the same point in space becomes very small as one 

moves away from the centres of the vortices" [8]. As the zonal influence is only used at
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"long" distances from the zone centre, it is clear that the error arising from assuming that 
the vortices contained in the zone are point vortices, is small.

No reference has been found in the hterature as to how the zonal contribution could 

include the effects of modelling vortex blobs rather than point vortices. Solving this 

problem could be an area of future research, to give a more accurate, but efficient velocity 

calculation for a distribution of vortex blobs. The error value given above is comprised of 

both sources of error that have been described in this section.

4.3 Future Work.

The saving that has been obtained using this algorithm is of the order that was being 

sought. Typical calculations can now be performed in a matter of hours rather than days. 
The benefits of this are clear, better turn around of calculations, each calculation can utihse 

more timesteps and more particles may be used without the calculation becoming 

prohibitive. However, further improvements in the operation count may be achievable. 
Parallehsation of the code is an obvious method to be considered for further savings. Also, 
a more detailed investigation of the FMM may yet yield future benefits, with the possibility 

of an operation count of 0(N) rather than the 0(N+NlogN) which has been achieved. Any 

future research on improving the calculation efficiency of the vortex method, should be 

focused primarily on these areas.
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5.0 Conclusions.

A zonal decomposition algorithm has successfully been incorporated into the Discrete 

Vortex Method. The algorithm decomposes all of the particles in the flow field into a 

hierarchical structure of square zones. The velocity influence of a zone may then be used in 

the velocity calculation using a truncated series expansion.

A zone vs. particle interaction has been used with the largest possible zone always being 

used for maximum improvement in the operation count. Direct summation is used for 

zones that are close to the particle. The algorithm has been shown to have an operation 

count of 0(N+NlogN).

Typically, an improvement of a factor of 4 to 5 has been obtained compared to the direct 
summation. Added savings have been made with modifications to the vortex merging 

calculation. The error due to the truncated series expansion has been minimised.

Future improvements could be made by parallelisation of the code. A more detailed 

investigation of an 0(N) algorithm should be made if a more efficient algorithm is required.
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Appendix A : Derivation of Series Expansion for Zonal Decomposition.

Consider a zone D, containing Np point vortices, with strengths/circulations Fk, at 
positions given by the complex co-ordinates zk=xk+iyk , k=l,2 ... Np. The velocity U(z) 
induced by the particles contained in D, at an arbitrary point, z=x+/y, outside zone D, is 

obtained from the Biot-Savart law using.

u(^)=:rX-(7 Zk)ak

Now U(z) = M-i-iv, where

Np

k=i \z-Zk^ I- - 1
1 Z(x-xk)Tk (A.l)

k = l \Z Zjr

Taking the conjugate of the velocity and substituting from A.l, we can write

U*(z) = M-zv

1 p

k=i \z-zk\

1 r
= -7ri:'L]— 

k=\ \z-zA

\ Np V v'V) = -r-:'tr-L-f(z-zkr 
k=i \z-zk\

Using z = z.z* for any complex z, then (A.2) can be rewritten

(A.2)

1 /v/? FU*(z)=—X---^
2nitUz-zk)

(A.3)

Taking some arbitrary point, Zm, within D (centre of D say), and rewrite the positions of 

all the vortex particles in D relative to Zm.
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i.e. z, =zk-Zm

then substituting in (A.3)

1 Np
=^U’(z) =—V

2”w(Z-z;-z.)

1 Np r _ 1 yp__
O 'TTI ( 'T  l%i^x(z-Zm)

\ —
-1

(A.4)

(*) Provided zk <(z-Zm) for all k, then (A.4) can be expanded as a power series of the 

form (l-x)”1 = 1 + x+x2 +x3 +...+ (-l)nxD +...

1

2Ttitliz-Zm) 1 +
r

Zk
^2

1
2ni(z-Zm)

Np I nP , I NP /
7 +7I 7 \2 ) +-"

i=i KZ-Zjm) k=1 k=l

iz-Zm) (z-Zm)
+...+

7 '

(z-Zm)
+ RNt

1 NP /
7,».Zr.fa f'+R

\.Z-^m) k=i

1 m a
u*(z)=—-—y—j-^+RNt2Ki(z-Zm)i((z-Zmy-1

Np
(A.5)

where aj = ^Fk(zk-Z^-1
k=l

and RNt is the error due to truncation of the infinite geometric series after Nt terms.

The above shows the derivation of the series coefficients and the zonal expansion 

formula, with (A.5) being equivalent to equations (3.1) and (3.2). Zonal decomposition is 

only used if a zone is sufficiently far from the point at which the velocity is being 

calculated. This ensures that the condition (*) for the series expansion is satisfied.
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Appendix B : Operation Count of Zonal Decomposition Algorithm.

The analysis of the operation count of the zonal decomposition algorithm is very 

complex. Hence, to simplify the analysis, the case of N vortices homogeneously 

distributed over a square domain will be considered. The flow domain is continuously 

subdivided (as shown in Fig. 2.3) until the lowest level comprises of zones that contain n 

particles. The number of zones at the lowest level is given by N/n. The number of zones 

at any level of subdivision, I, for a uniform distribution of vortices and uniform 

subdivisions, is given by A1. Therefore the number of levels of subdivision is given by

I = log4 (B.l)

The total computational time required for one timestep in the calculation is dominated by 

the velocity calculation. The dominant two factors in the velocity calculation for a 

domain containing N particles, is from the contributions from direct suimnation and zonal 
decomposition. Only the operation count of these two factors will be considered to 

simplify the analysis further.

Consider the contribution first from direct summation. For any single vortex, the 

contribution from direct summation, will be due to at most, the 9 neighbouring zones 

(including the zone that contains the particle). As each zone contains n particles and there 

are N particles, then the total CPU required for the direct summation contribution is tds, 
where

tds 00 9«N

i.e t,^ = flN
(B.2)

where a is a constant that is derived from the number of zones contributing to the direct 
summation, the number of particles in each zone and the floating point operation speed of 

the processor.

For the contribution from series expansion due to the influence of distant zones, the 

analysis is more complex. Consider the worst case, where a series expansion is required 

to be evaluated at every zone at the lowest level, except the 9 neighbouring zones, 
i.e.(N/n-9) zones. The number of terms in the series expansion is Nt. To evaluate the 

series expansion at the lowest level, each level and each branch of the quadtree must be
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evaluated. The number of operations to perform this calculation will be proportional to 

the number of levels, I as shown in (B.l). These are the main factors affecting the 

operation count of the zonal contribution to the velocity. Hence, the CPU required to 

evaluate the influence of distant zones on a single vortex using series expansion, tzd, is 

approximately given by

where c is a constant that is derived from the number of "traverses" around the quadtree. 
This expression is the worst case, where the series expansion is used for every zone at the 

lowest level, except the neighbours. In general, only p zones will be required, where 

p<(N/n-9). The total CPU required for the zonal contribution is then given by

tzd oc N.Nt. p.dog4 f—"{n

log
tzd N.Nt.p.c-

N
nj

log(4)
using log4(a) =

log(Q)
log(4)

t2d =N&logN

(B.3)

(B.4)

where b is a constant that is derived from the number of zones whose series expansion is 

used, the number of terms in the series expansion and the floating point operation speed 

of the processor. Note that the dominant factor in the logarithm in (B.3) is the number of 

particles, N and so tzd can be approximated using an operation count O(NlogN).

Although this is a very simplified analysis of the zonal decomposition algorithm, it is 

clear that the total CPU required for the velocity calculation is approximately given by

ttot =uN +bN logN (B.5)

giving an algorithm that is of 0(N+NlogN). A curve of the form shown in (B.5), has been 

fitted to the CPU timings from the zonal decomposition algorithm, and is shown in Fig. 
4.6, along with the derived constants. The curve is shown to give a reasonable fit to the 

data, giving some validation to the somewhat simplified analysis discussed above.
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Appendix C : Optimisation of Parameters in the Zonal Decomposition 

Algorithm.

The main parameters that affect the speed and accuracy of the algorithm are ;
1. Np - Minimum number of vortices in a zone, such that the zone can be further 

subdivided.
2. Nt - Number of terms in series expansion.
3. H - Series expansion can be used only when the distance of the vortex from the zone 

centre is greater than H multiplied by the zones radius.

These parameters have been optimised to obtain the best combination of calculation 

efficiency and accuracy. The results of this analysis are shown in Figs C.1-C.2. The results 

are very much as expected. Increasing H means that only distant zones can be used in the 

calculation, leading to a larger contribution to the velocity via direct summation and hence 

an increase in the CPU. However, as the zones used are distant, the series is more likely to 

converge giving a reduction in the error as H increases (Fig. C.l).

The CPU also increases as Nt increases, as more calculations are clearly required to 

evaluate more terms in the series expansion (Fig. C.2). As Nt increases, the series is more 

likely to converge and so the error is reduced. The series is also likely to converge much 

more quickly if the vortex is further from the zone, and this observation can be used to 

obtain extra efficiency in the calculation (PRINGLE [15]). For example, if a vortex is 4 

times the zone radius from the zone centre, the series may converge in around 10 terms 

say, whereas a vortex that is only 3 times the zone radius from the zone centre, may 

require 15 terms. As a result, the algorithm uses a varying number of terms in the series 

expansion, depending on the distance of the vortex from the zone centre.

The variation of CPU and error with Np is a httle more complex. If Np is small, the there 

are a large number of small zones, each containing a relatively small number of vortices. 
Each velocity calculation will therefore require a contribution from a large number of 

zones, with the series expansion giving a small saving in operation count over direct 
summation as each zone contains a small number of particles. Hence, for small Np, the 

CPU win be high. Also, the small zones mean that vortices will satisfy the distance from 

zone centre criteria, but will still be a small distance from the zone, and may affect the 

series convergence leading to an increase in the error. For large Np, although when a zone 

is used in the velocity calculation a large saving in operation count is made, each vortex
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will have to be further from the zone before the zonal contribution can be used. Hence, 
there is likely to be a larger contribution from direct summation and a resulting increase in 

CPU. However, this does mean that when series expansion is used, the series is more hkely 

to be converged, and so the error is reduced. These effects can be observed in Fig. C.3.

The optimised code requires a balance to be struck between aU of these parameters to 

obtain maximum efficiency for the desired calculation accuracy. The final optimised 

parameters are:
Np = 200 

H = 2.0
Nt varying from 8 to 13 depending on the distance to the zone centre.

These parameters were used in the calculation results that are presented in Section 4.1

NOMENCLATURE.

A Area of mesh ceU.
a Coefficients of series expansion.
D Spreading radius
F How field.
gD Approximation to Laplacian.
H Factor on zone radius used in zonal decomposition. 
h Mesh spacing.
/ Level of subdivision of zonal structure.
M Number of nodes in mesh.
M Cell dimension.
N Number of vortex particles in flow field.
Np,np Number of particles in a zone.
Nt Number of terms in the series expansion.
P Pressure.
R Zone radius,
r Position vector.
S Body surface,
t Time.
U,V Velocity.
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u,v
U, u 

Ax,Ay
X

x,y
Z,z

m
r
V

p

y¥
CO
_D
Dt
V 

V2 
Vx
V.

Velocity.
Velocity vector.
Grid spacing.
Position of vortex.
Components of position vector. 
Complex position of vortex particle.

Centre of zone.
Circulation.
Kinematic Viscosity.
Fluid density.
Vector potential.
Stream function.
Vorticity.

Lagrangian / material derivative.

Gradient operator.
Laplace operator.
Curl.
Divergence.

Subscripts.
i Index number for solid body, 
i Index number for cell node,
j Index number for vortex,
k Index number for terms in series expansion,
n Index number for vortex,
p Point in flow field,
oo Far field.
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Level 0 Level 1

Level 2 Level 3

Fig. 2.3 - Division of Flow Field into Uniform Square Zones. 
( from GREENGARD 1987 [11] )
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N - Nei^ibouAood, Use 
direct surnmati on.

L - Xnteraction list 
Use senes expansicm.

Fig. 2.4 - Fast Multipole Method: Neighbourhood and Interaction List.

Zone A

Z
o

Zone A, centre Za, radhis R 

Vortex atZ - use series expansion.

Fig. 2.5 - Criteria for using Series Expansion or Direct Summation in Velocity 

Calculation.
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Child Zone 3 Child Zone 4

Child Zone 1 Child Zone 2

Divisicxi of Parent Zone intn 
Four C3iild Zones in Order Shown.

Fig. 3.2 - Order of Child Zones in Zonal Decomposition Algorithm.

a) Initial Flow Field.

Fig. 3.3 - Decomposition of Flow Field into Hierarchical Zonal Structure.
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b) Level 1 of Subdivisions,

Fig. 3.3 - Decomposition of Flow Field into Hierarchical Zonal Structure.

c) Level 2 of Subdivisions
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Fig. 3.3 - Decomposition of Flow Field into Hierarchical Zonal Structure.
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Algorithm For Velocity Calculation using
Zonal Decomposition.

Algorithm performed in a single pass over all vortex particles.

t At lowest level, contribution of other particles in zone calculated from direct

Move up one level to 
the zones parent ?

First Zone - Zone 1

Move down one level 
to the zones children.

Does the Zone Contain 
any Particles ?

Move onto next zone.

Does the zone have 
any children ?

Is the zone the last 
in a group of four 

zones ?

Is the zone at the top
level (zones 1 to 4) ?

Move down one level to 
the zones children.

Does the zone have any 
children ?

Use direct summation to 
calculate the velocity 

influence at the particle 
location from the zone.

Use zonal decomposition 
to calculate the velocity 
influence at the particle 
location from the zone.

Is the particle greater than 
2*(Zone Radius) from 

zone centre ?

Does the zone contain the 
particle for which velocity 

is being calculated ?

Influence of all zones (except 
smallest zone containing 

particlet) to velocity of particle 
completed.

Move onto next vortex particle.

summation later in algorithm.

Fig. 3.5 - Flowchart for Velocity Calculation using Series Expansion and Zonal
Decomposition.
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Zonal Decomposition for Square Model - VER1.53
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Fig. 4.10 - Sample Decomposed Flow Field for Square Model.
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1 Zonal Decomposition for Circle Model - VER1.53
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a) Whole Flow Field

Fig. 4.11 - Sample Decomposed Flow Field for Circle Model.
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##VER1.5|- After 200 Steps ##
Circle - SCR=RCORE=0.0025,DelT=0.015,Nv=5 

WITHOUT Nascent Diffusion 5I2I9T.

A.

a) Zonal Decomposition.

Fig. 4.13 - Comparison of Flow Field for Circle Model after 200 Timesteps.

##VER1 J - After 200 Steps ##
Circle - SCR=RCORE=0.0025,DelT=0.015,Nv=5 

WITHOUT Nascent Diffusion 5/2/97.

\/

A_

b) Direct Summation
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