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Application of a Zonal Decomposition Algorithm, to Improve the Computational
Operation Count of the Discrete Vortex Method Calculation
TAYLOR and VEZZA (1997)

SUMMARY.

The vortex method has proved a very useful tool for analysing separated, incompressible
flow around two dimensional bodies. The method utilises a grid free, Lagrangian approach,
to discretise the vorticity field into a series of vortex particles. These particles are then
tracked in time, using the Biot-Savart law to calculate the velocity field. This calculation
requires the velocity of each vortex to be found as a sum over all other particles in the flow
field. A Discrete Vortex Method (DVM) has been developed at the Department of
Aerospace Engineering, University of Glasgow. Currently, this vortex method uses a direct
summation technique, which although relatively simple, leads to a computational operation
count proportional to the square of the number of particles. In calculations that use a large
number of particles, such as bluff body models, the direct summation technique becomes

prohibitively expensive.

A new algorithm for the velocity calculation has now been included in the DVM and is
presented in this report. The procedure uses a zonal decomposition algorithm for the
velocity summation. This allows the effect of groups of particles on the velocity to be
calculated using a single series expansion, thus significantly reducing the operation count
of the calculation. The algorithm utilises a hierarchical technique, so that the largest
possible group of particles is used for each series expansion. The resulting operation count
is O(N+NlogN), and therefore offers a significant improvement over the direct summation

method.

The support and advice of Dr. Marco Vezza, whilst developing this algorithm, is gratefully
acknowledged.
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1.0 INTRODUCTION.
1.1  Overview

The discrete vortex method has proved to be a very useful analysis tool for studying
unsteady, incompressible viscous flows. The method is based on a discretisation of the
vorticity field into a series of vortex particles, which are free to move in the flow field that
they collectively induce. This Lagrangian approach eliminates the necessity for a
calculation grid and hence removes some of the problems associated with grid based
methods; these include numerical diffusion and difficulties in achieving good resolution of
small scale vortical structures. The vortex method has an advantage in this area as the
particles are concentrated in areas of vorticity, and are more likely to capture these small

scale structures.

However, one of the main drawbacks of vortex methods is that the computational cost
becomes prohibitively more expensive as the number of particles used to model the flow
field increases. The velocity of an individual vortex particle is calculated by taking the sum
of the influence of all other particles. It is clear that the time taken for the velocity
calculation of N particles, will be proportional to N2 (Fig. 1.1). It is clear that as the
number of particles increases, the computation becomes prohibitively more expensive. This
is termed the N-Body problem and is common to any model that involves N bodies, where
each body is interacting with all the remaining bodies. Examples of similar problems occur
in Astrophysics where the bodies are stars, and Plasma physics where the bodies are ions

and electrons.

Techniques have been developed to reduce the cost of this calculation, reducing the
operation count to O(NlogN) or even O(N). A number of these techniques are discussed in
this report, along with the advantages and disadvantages of each of these methods.

Also presented in the report, is the method that has been used to reduce the operation
count of the Discrete Vortex Method (DVM) that has been developed at the Department
of Aerospace Engineering, University of Glasgow [1-3]. Comparison of the speed of the
new algorithm with the original direct summation method of calculation is made, as well as
comparing the accuracy of the new method. Further improvements in the efficiency and
operation count of the vortex method are possible and indications of how these may be
achieved are also presented in the report.
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1.2 Basis of Discrete Vortex Model.

The vortex method is based on the Navier-Stokes equations for two dimensional,

incompressible flow. In velocity and pressure form :

Continuity : V.U=0 (1.1)

Momentum : L1, VP +vV*U (1.2)
Dt p

Boundary Condition : U= ﬁi on S, and U=U_onS_ (1.3)

Using the definition of vorticity, @ =V x U with @ =k, and defining a vector potential,
¥ such that, U=V x¥, ¥ =k¥, V.¥ =0, then the governing equations (1.1 - 1.3) can

be rewritten in vorticity and stream function form :

Continuity : V¥ =—- (1.4)

Momentum : o v (1.5)
Dt

Boundary Condition : V¥=V¥ onS, and V¥=V¥_onS_ (1.6)

The discretisation of the flow field into a series of vortex particles, provide a solution to
these equations. Be employing Green's second identity and implementing the boundary
conditions, the velocity can be found from (1.7). This is analogous to the Biot-Savart law

in electromagnetism, for the magnetic field induced at a point.
_ 1. kx@ -F

U =U_+—|ow

g 2w e, - u P

The body is defined by a series of nodes, that are connected to form panels. The boundary
conditions are implemented such that the vortex strength required at each node is
calculated, to give zero mass flow across each panel. Vortices are then released into the

wake, where the convection and diffusion of the vortex particles are calculated, using (1.7)

Department of Aerospace Engineering, University of Glasgow. Page 4
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and a random walk respectively. A much more detailed description of the method and the
discretisation of the vorticity field is given in [1-3].

2.0 TECHNIQUES FOR FAST SUMMATION IN N-BODY / PARTICLE
SIMULATION METHODS.

2.1 Introduction.

When calculating the velocity in the vortex method at a point in the flow field, the
influence of all the vortex particles must be taken into account. This involves a calculation
of O(N?) interactions for a flow field made up of N particles, which can lead to a large
computational cost. A number ways of reducing the number of interactions in this
calculation have been reported by various researchers. In this section, techniques aimed at
improving the efficiency of the algorithm are presented. A brief review of recent research is
given, highlighting some of the various methods that may be used to give a "fast" velocity
calculation.

2.2  Vortex in Cell Method.

The Vortex in Cell (VIC) method (or sometimes Cloud in Cell method) aims to reduce the
operation count of the velocity calculation, by combining elements of both the Lagrangian
and Eulerian approaches. A fixed mesh is fitted over the domain of the flow field, with the
vortex particles representing the discretised vorticity field flowing through the mesh in a
Lagrangian manner. The key to the reduction in the operation count, lies with the use of
the mesh to calculate the velocity field. The vorticity is initially interpolated onto the mesh
nodes and the velocity at each node can be calculated from the stream function found by
solving the Poisson equation. The velocity of each vortex is then found by interpolating the

nodal values of the velocity to each vortex location.

The basic method in its simplest form is implemented as follows. The vorticity of the nth
vortex in any given cell is interpolated to the four nearest nodes, using an area weighting

scheme,

w,=T,A/A*> i=1234 2.1)
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where I',, is the strength of the vortex and A is the area of the cell (Fig. 2.1). When this
interpolation has been completed for all vortices in all cells, Poisson's equation (2.2) is
solved to obtain the stream function, ¥; jat all mesh nodes (i,j). The velocity components

are then calculated from a simple differencing scheme (2.3).

V¥ =-0 2.2)
Hep= (\Pi,j+1 -l{li,j—l)/zM (2.3a)
Viy =W~V ) 12M (2.3b)

where M is the cell dimension. The velocity of the nth vortex in the cell is then found from,
u,= Y wAIA |, v,=YvAlA (2.4)

For a flow field containing N particles and a mesh containing M nodes, the VIC method
reduces the operation count to approximately O(N+MlogM). The VIC method is discussed

in more detail in [4-7].

Clearly, the accuracy of the method is directly related to the level of refinement of the
mesh, the specification of which is a significant problem for the method. The easiest
method would be to create a fixed, uniform grid at the start of the calculation, with the
required definition. However, in areas where the vortex particles are sparse, unnecessary
calculations are being performed to interpolate the velocity at the large number of nodes in
regions where the velocity gradients are small. The alternative, is to use a fine definition
grid only in regions where the vortex particles are densely clustered. In this case, due to
the convection of vorticity as the calculation progresses, a new mesh will have to be
created for each iteration to ensure the required definition is obtained. The overhead that
this Eulerian part of the calculation carries needs careful consideration. A poor approach in
overcoming these problems could mean that the reduction in operation count could be

disappointingly small.

The simplest version of the VIC method is termed the Particle-Mesh (PM) method. In this
case, both the near and far field contributions to the velocity of any particle are calculated
from the velocity field calculated at the mesh nodes. Although this approach is very simple,

it is unacceptable for modelling the interaction of particles that are clustered closely
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together. The reason for this is that only velocity variations greater than the mesh spacing
can be obtained and any small scale vortical structures smaller than this spacing will not be
successfully modelled.

The Particle-Particle/Particle-Mesh (P3M) method is a simple way of reducing this
problem. In this case, the far field contribution to the velocity are found from the nodal
values as in the PM method. However, the influence of vortices close to the particle of
interest are found by direct summation. Typically, if the distance between any two particles
is less than 3Ax, where Ax is the grid spacing, then direct summation is used (Fig. 2.2).
Hence, the smaller scale vortex interactions and structures can be modelled, but still
gaining the benefits of the VIC method. The disadvantage of P3M is that it can very easily
be dominated by the direct summation terms and so the improvement in the operation

count is compromised as accuracy is improved.

The main drawback of the VIC method is that some of advantages of the vortex method
are lost with the need to fit a Eulerian mesh to the flow field. The interpolation to and from
the mesh will include areas of the flow where there is little or no vorticity. Also, the
interpolations will introduce some numerical diffusion into the solution. LEONARD [4]
reports that researchers have found that "numerical experiments ... indicate that although
these fine scale errors are present they may not seriously affect the large-scale features."
SMITH et al. [5] report good results using the VIC method on a circular cylinder,
although claim that for an accurate calculation, a large number of particles is required.

2.3  Method of Local Corrections.

The method of local corrections, was proposed by Anderson [8], and is a variation on the
P3M discussed above. The method is based on the observation that the difference between
the velocity induced by a point vortex and a vortex blob is very small at large distances
from the vortex centre. From this observation, a velocity field is calculated from a
distribution of point vortices, and is then "locally corrected" about the centre of each
vortex. A more detailed description of the method is given in [7-9].

The first stage of the method is to calculate the velocity field due to a distribution of point

vortices and then to interpolate the velocity obtained to the centre of each vortex. The

velocity calculation is based on the observation that the velocity field due to a point vortex
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(2.5) is harmonic away from the centre of the vortex, where (2.6) is the velocity field due

to a point vortex.
Vii. =0 for X#X. (2.5)

iy =M (2.6)
2nf-x, |

Then for a given grid with a mesh spacing A, an rth order approximation to the Laplacian
on this grid can be denoted by V%", Rather than solving for the stream function, ¥, at the

grid nodes (2.2), Anderson solves a Poisson equation for the velocity field, using (2.7)

Vit =) g, (2.7)
J

where the right hand side is the sum of the approximations to V2u on the grid,

l

-X;|<D
gp,(X) = (2.8)
-%,|2D

i

Vi, [k

Since VZii is harmonic (2.5), a value of D can be selected so that gp is an rth order
accurate approximation to Vi ; on the grid. The constant D is termed the spreading
radius. The reason for using the approximation gj, to Vi, is that for a small value of D,
the right hand side of (2.7) can be evaluated in O(N) operations rather than the O(NM)
operations required to calculate V@ at each of the M grid points. By now solving the

Poisson equation (2.7), the velocity field at the grid nodes can be found.

The interpolation of the velocity back to the vortex centres also differs from the normal
P3M method. Anderson exploits the fact that in two dimensions, away from the centre of
the vortex, the two velocity components form the real and imaginary parts of a complex

analytic function, given by
F(z) =u,(z)—iu,(z) 2.9)

The usefulness of using the complex representation of the velocity field is that an

interpolation formula for the velocity can be found by taking the real and imaginary parts
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of any interpolation formula for complex functions. Thus, one can use Lagrange

interpolation in the complex plane.

F)= 2({1“’—23}@» (2.10)

j=1 \ iz (Zj_

for n points in the complex plane, z;, i=1,n.

The advantage of using this interpolation scheme is that for a mesh cell with 4 nodes, a
fourth order accurate interpolation can be obtained for the velocity in that cell. This should
be contrasted to bilinear interpolation applied to each velocity component separately,
which only achieves second order accuracy. It should also be noted that this interpolation

scheme does not generalise very easily into three dimensions.

The last stage of the calculation is the local correction to the velocity of each vortex. The
interpolation formula described above is not very accurate near the centre of the vortex
due to the singular nature of the point vortices. However, this error can be removed by
applying a local correction to the velocity of each vortex. This correction consists of
subtracting the velocity component which is influenced by the nearby point vortices, and
adding the correct (or exact) velocity influenced by the nearby vortex blobs (2.11)

velocity exact velocity interpolated velocity (2.11)
correction for jth = contribution due - contribution due to vortices
vortex to vortices such such that
that | x(0x(0 | <C

| x(0x | <C

This correction step only requires O(N) operations for a field containing N vortices. As the
discrete Laplacian step in (2.7) can be solved in O(MlogM) operations for a grid of M
nodes, then the whole velocity calculation is clearly O(MlogM+N) operations.

Anderson reports that very accurate velocity calculations can be obtained with reasonably
small values of D (approximately 3k, where % is the grid spacing). Also, it is claimed that
the method gives accurate results and preserves the effects of using higher order accurate
vortex blobs. The method has the same operation count as the VIC methods discussed
above and gives considerably more accurate results, but is considerably more complex to

program.

Department of Aerospace Engineering, University of Glasgow. Page 9



Application of a Zonal Decomposition Algorithm, to Improve the Computational
Operation Count of the Discrete Vortex Method Calculation
TAYLOR and VEZZA (1997)

2.4 Tree Codes, Multipole Expansions and the Fast Multipole Method.

Tree codes and multipole expansions utilise very different techniques to the VIC methods
described above. The basic philosophy of these methods is to decompose the flow field
into a series of zones, each containing a cluster of vortex particles. Provided that a zone is
sufficiently far from the point z, at which the velocity is being calculated, then the
contribution of the particles in the zone to the velocity, can be found by a Laurent series

expansion (2.12) rather than from direct summation of all the particles.

U(2)-iV(@)= Y ——* (2.12)

k "2 Tci(z - Z L,)
where a, are the coefficients of the series expansion and Z. is the centre of the zone.

The advantages of this technique are that firstly, the Lagrangian nature of the vortex
method is retained and secondly, accurate results can be obtained with a significant
reduction in the operation count. The main problems with VIC methods are avoided, by
the fact that no interpolation of the vorticity or velocity field to or from a mesh is required.
However, as the method is based on an infinite series expansion, some error is introduced
due to the truncation of this series. This error can be minimised to an almost insignificant
level, by the ensuring that the series expansion is used for points sufficiently far away, to
ensure that the series converges. Judicious choice of the order of the series can also help to

minimise the error.

The implementation of the method varies from application to application and full
descriptions of some of these methods are given in [7,10-14]. Typically, multipole
expansions give an operation count of O(Nlog,N) for a flow field of N particles. The Fast
Multipole Method (FMM) of GREENGARD and ROKHLIN [11] is claimed to give an
operation count of O(N). It is a tree code method, utilising a zonal decomposition and
multipole expansions for the velocity influence of a zone, that has been incorporated into
the DVM. This algorithm will be presented in more detail later. However, it does have
distinct differences to the FMM, a brief description of which will now be given for

comparison purposes.
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2.4.1 The Fast Multipole Method Algorithm.

The first stage of the method is to divide the flow field into a hierarchical structure of
zones. The mitial zone is a square that contains all of the vortex particles and is called level
0. This initial box is subdivided into four smaller square zones of equal size, and these new
zones are at level 1. In general, level [ is obtained by subdividing each zone in level /- into
four smaller zones, and at each level / there will be 4/ zones (Fig. 2.3). Further subdivision
of each zone takes place until the required level of refinement, level %, is reached. Given a
zone A at level [-1, the zones at level [ that are obtained by subdividing A are termed the
children of A, and a zone is termed the parent of its children. This zonal decomposition of
the flow field is best suited to a uniform flow field. An "Adaptive" decomposition, where
subdivision of a zone only takes place if there are greater than some minimum number of

particles in a zone, is presented in [13] and will not be discussed here.

The FMM uses an interaction list for each zone. This is defined as follows and is

demonstrated in Fig. 2.4 :

1) Two zones are neighbours if they are of the same size and share a boundary point.
(Note that a zone is classed as one of its own neighbours).

2) Two zones are well separated if they are of the same size and are not near neighbours.

3) Each zone, A, has an associated interaction list, which consists of all the children of

the neighbours of A's parent, that are well separated from A.

Other terms used in the description of the algorithm are :

Multipole expansion - the series expansion (with p terms) about the zone centre, that gives
the velocity field created by the particles contained within the zone.

Local expansion - the series expansion (with p terms) about the centre of zone i at level /,

describing the velocity field due to all particles outside zone i and its nearest neighbours.

Consider a zone A with centre z4 and radius R (usually half of the zone width) containing
n, particles, located at points z;, such that |zj-zA | <R for all J (Fig. 2.5). Then for a point z
where lzj—zA|>2R, the velocity influence of zone A at point z can be expressed by a

multipole expansion about zone centre z4 (2.13)

: N a,
U()-iV(z) =), (2.13)
k=0 (2—2,4)
where the coefficients a;, of the expansion are given by
Department of Aerospace Engineering, University of Glasgow. Page 11
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1
ak=2_n_zr‘j(zj—zA)k k=0,12.....,00 (2.14)

The coefficients (2.14) can be calculated for each zone as the zonal decomposition is
performed, or calculated for the zones at the lowest level only, and these coefficients used

to calculate the coefficients of each parent zone.

The FMM method then performs a downward pass through the zonal hierarchy (largest
zones to smallest). For zone A the multipole expansion for each zone in A's interaction list
is converted to a local expansion about the centre of A. The coefficients of the local
expansion is shifted to the centres of A's children. This process is repeated until the lowest
level is reached. In general, each zone A at level I/, will have coefficients of a local
expansion that represents the velocity field due to all vortices in zones that are well
separated from A's parent. These are added to the coefficients of the local expansions from
the zones in A's interaction list. At the lowest level, each zone will have a local expansion
the represents the velocity field due to all zones except its nearest neighbours. The velocity

influence of the neighbouring zones will be evaluated from direct summation.

A more detailed discussion of the FMM along with the mathematical proofs and techniques
for creating and shifting the centres of the local expansions is given in [11]. The total cost
of the calculation is O(N), due to the zone-zone interactions rather than the particle-
particle interactions of the direct summation. As mentioned above, an adaptive FMM
algorithm is presented in [13] and a parallelised version, giving further improvements in the

operation count, is given in [12].
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3.0 IMPLEMENTATION OF A ZONAL DECOMPOSITION
ALGORITHM IN THE VORTEX METHOD.

The zonal decomposition technique was chosen as the method with which to improve the
efficiency of the DVM. The choice of this technique over a VIC method was primarily
based on the fact that the Lagrangian nature of the method, and the benefits this brings, is
retained. The technique utilised in the DVM uses an adaptive zonal decomposition using
square zones. The series expansion for the velocity influence from a zone is similar in form
to the FMM, although the interactions between zones and particles are handled very
differently. This leads to a much simpler algorithm for the velocity calculation, without any
great loss in accuracy when compared to direct summation. The algorithm will now be

presented in more detail.

3.1 Decomposition of Flow Field into a Hierarchical Structure of Square
Zones.

As with many other applications, it was decided to use square zones in the decomposition
of the flow field. CLARKE et al. [10] use rectangular zones in the zonal decomposition
and divide each zone into two, along the longest side, such that each sub-zone contains
half the particles of the parent zone. This method was investigated, as it leads to less
"dormant" zones that contain no particles. However, it was found that some zones with
high aspect ratio were created, which can lead to a large radius around the zone.
Consequently there is less chance of using the zonal influence in the velocity calculation
(Fig. 3.1). This extra use of the slower direct summation negates the benefit of eliminating
the "dormant" zones in the algorithm.

The DVM discretises the vorticity field into two sets of vortex particles, nascent
(contained in a small control zone close to the body) and wake [1-3]. These two sets are
joined together into a single set of particles, with the zonal decomposition being performed
on this combined set of particles. The initial zone is the smallest square that contains all the
particles in the flow field. If there are greater than some predetermined number of particles
in the wake region, NP, ;. say, then this initial zone can be subdivided into four smaller
zones in the order shown in Fig. 3.2. Each of the children of the initial zone are subdivided
if they contain greater than NP, ;, particles. The children of these new zones are then

subdivided, where appropriate, until no further subdivision can take place. This procedure
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is illustrated in Fig. 3.3, along with the resulting hierarchical zonal structure for a typical
flow field.

This procedure is similar to that described by VAN DOMMELEN et al. [14], although a
much simpler method of numbering the zones is used here. The initial zone containing the
flow field is numbered zone 0. The four subzones of zone 0 are zones 1 to 4 respectively.
If zone 1 can be subdivided, then its children will be zones 5 to 8. In general, the children
of a zone k will be numbered Nz+1 to Nz+2, where Nz zones have previously been created.
As the children of each zone are always created in the same order (Fig. 3.2), only the first
child is recorded when a zone is subdivided. Also, when each zone is created, its parent
zone will be recorded. Using this numbering scheme, for any zone, its parent and all of its
children can easily be traced. The resulting zonal decomposition, of all the vortex particles
in the flow field, provides an hierarchical structure of zones, that can be used as part of a
fast algorithm for the velocity calculation in the Vortex Method.

3.2 Velocity Calculation using Zonal Decomposition and Series Expansion.

As discussed previously (section 2.4), the velocity influence of a group of particles
contained within a zone can be used, if the velocity is being calculated at a point
sufficiently far from the centre of the zone. It is usual to define "sufficiently far" as some
specified multiple of the zone radius, where the radius is half the side length of the zone
(Fig. 3.4). The velocity influence of a zone, at a point z can be calculated from a truncated

series expansion (3.1 - 3.2).

Nt
a,

U()-iV(z)= Yy —+— 3.1

ity kzzl(z—zA)k G-b
1 & -

a, _%Z; T(z;-z)"" k=12,3.....,Nt (3.2)

where Nt is the number of terms in the series expansion, z, is the zone centre, Np is the
number of particles in the zone, and z; and T are the position and circulation respectively,
of vortex j in the zone. The derivation of these formulae is given in Appendix A. The
coefficients a; of the series expansion for each zone, are calculated as the zonal

decomposition is being performed.
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It should be noted that the flow field is only decomposed into the zonal structure if greater
than some predetermined number of wake particles are present in the calculation. If there

are less than this limit, then the velocity calculation is performed using direct summation.

If a zone contains Np particles, then the operation for the velocity influence at a point is
O(Np?) using direct summation, compared to O(Nt ) using zonal decomposition. It is clear
that the larger Np is, then the greater will be the reduction in the operation count for the
velocity calculation. For this reason, the largest possible zone is always used in the

calculation, to give the maximum improvement in the speed of the algorithm.

The implementation of the algorithm will now be demonstrated by considering the
calculation of the velocity for one vortex particle. First consider the distance of the particle
from the first zone (zone 1). If the particle is greater than twice the zone radius from the
zone centre, then the particle is sufficiently far from the zone, and the influence of the zone
can be used in the velocity calculation. However, if the particle is less than the required
distance and the zone has no children, then the velocity influence of the zone is calculated
from direct summation. If the zone however does have children, then each of the children
are considered in the same manner as described above. The procedure is repeated until
either a zonal influence can be used, or the lowest level of decomposition is reached, and
direct summation is used. If the particle is contained within the zone, and the lowest level
has been reached, then the zone’s contribution is calculated using direct summation later in
the algorithm. Otherwise the zone’s children are considered as usual. This continues until
all the children and "grandchildren" of zone 1 have been considered. The procedure is then
repeated on the remaining zones at the top level (zones 2-4). This algorithm is summarised
in the flowchart shown in Fig. 3.5. This procedure is then repeated for the next vortex
particle.

The procedure described above, gives the velocity influence on a particle, of all the
particles outside of the zone at the lowest level, which contains the particle (Fig. 3.6).
Also, as discussed above, the largest possible zones are used to give the velocity influence,
and are found by considering the least number of possible zones. The final part of the
algorithm is a single pass through each of the childless zones, so that the velocity influence
of the particles contained in the zone on each other, can be calculated using direct

summation. This provides the final contribution to the velocity of each particle.
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3.3 Comparison of Algorithm with Fast Multipole Method.

The FMM algorithm described in section 2.4.1 uses a zone vs. zone interaction, and gives
an operation count of O(N) [11]. The algorithm implemented in the Vortex Method and
described above uses a particle vs. zone interaction, and gives an operation count of
O(N+NlogN) (Appendix B). The reason for the use of an apparently slower algorithm, was
primarily due to the simpler implementation of the method. Also, the shifting of the
multipole expansions to local expansions in the FMM, can introduce an extra source of

error into the calculation, as well as that incurred by the truncation of the series expansion.

As discussed later in section 4, the algorithm gives very satisfactory results in terms of the
calculation efficiency. Typical calculations of the Vortex Method use around 6000
particles, and the extra efficiency of the O(N) FMM only becomes more significant when N
is much greater than this. For this reason, even though the FMM algorithm was
investigated, it was decided to implement the simpler, if slightly slower, algorithm. Future
work on further improvements to the operation count may include a re-evaluation of the
FMM method.
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4.0 RESULTS.
4.1 Performance of Algorithm.

Three different test cases were used to assess the performance of the zonal decomposition
algorithm. Each test case involved a very different body geometry and resulting flow field.
The test cases were as follows :

1. Static aerofoil at 40 degrees incidence.

2. Circular cylinder.

3. Square cylinder at 0 degrees incidence.
In each cases, the calculations were performed first using the original velocity calculation
via direct summation and then using the zonal decomposition algorithm. The calculations
were performed on a Silicon Graphics workstation with a 150MHz IP22 R4400 processor,
16Kb cache size and 64Mb main memory size (Dept. of Aerospace label : ATLAS). The
performance of each calculation was obtained by outputting the CPU time taken for the
whole timestep as well as the CPU for the velocity calculation. The results are shown in
Figs. 4.1 to 4.9 and show the CPU plotted against the total number of vortices (wake and
nascent combined) for the timestep and velocity calculation respectively. Typical
decomposition of the flow field into the hierarchical zonal structure are shown for both the
square and circle models in Figs. 4.10 and 4.11.

Comparing first the velocity calculation only for both the direct summation and zonal
decomposition algorithms, it is clear for each method that the relationship between the
CPU and the number of vortices is very similar in each of the three test cases, especially
when direct summation is used (Fig. 4.4). As expected, this shows that the calculation is
dominated by the number of vortices contained in the flow field rather than their physical
location within the flow field. There is slightly more variation in the zonal decomposition
case, as the location of particles will determine whether the series expansion can be used
for the velocity calculation. However, a strong relationship between the CPU and number

of vortices is clear, irrespective of which model is used.

The operation count for the direct summation method is O(N2) as discussed above. For the
zonal decomposition, analysis of the operation count is a little more complex and is shown
to be O(N+NlogN) in Appendix B. A least squares curve fit has been fitted to the CPU
timings for both direct summation and zonal decomposition, using the operation counts
given above. The curve fits, and the derived constants are shown in Figs. 4.5 and 4.6.
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Table 4.1 shows the improvement obtained by the zonal decomposition algorithm for the

CPU required for one timestep, based on the curve fits to the data.

Number of CPU from Direct CPU from Zonal Factor
Vortices. Summation. (secs.) | Decomposition. Improvement.
(secs.)
1000 2.041 _1.381 1.478
2000 8.164 3.638 2.244
3000 18.370 6.225 2.951
4000 32.658 9,027 3.618
5000 51.028 11.988 4.257
7500 114.812 19.904 5.768
10000 204.110 28.356 7.198
20000 816.440 65.470 12.470
30000 1836.990 105.890 17.348
Table 4.1

The factor improvement for the whole timestep is also shown in Fig. 4.7, and is compared
with the factor improvement in the velocity calculation only. An extra saving was made in
the timestep by using the zonal structure as part of the vortex merging calculation [2].
Instead of checking against any vortex in the flow field to find if the merging criteria is
satisfied, which can also lead to an O(N2) calculation, only vortices within the same zone
at the lowest level are checked. The CPU taken for the merging calculation using the new
and old methods is shown in Fig. 4.8. The breakdown of the timestep into various elements
of the calculation is shown in Fig. 4.9. It is clear that the main element of each timestep is
the velocity calculation. As discussed above, the merging calculation now uses little CPU.
Importantly, the zonal decomposition and sorting of the vortices also takes a relatively
small amount of CPU.

The speed and accuracy of the algorithm can be optimised by judicious selection of a

number of parameters that define the zonal decomposition. The optimisation of these

parameters is discussed in Appendix C.
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4.2 Error Introduced by the Zonal Decomposition Algorithm.

The infinite series expansion that is used in the velocity calculation for the zonal
decomposition algorithm gives the correct velocity as shown in Appendix A. However, for
practical implementation of the method, the series needs to be truncated after a reasonable
number of terms have been evaluated. This truncation introduces an error into the
calculation when the contribution of a zone is used. As discussed in Appendix C, the
algorithm has been optimised to attempt to reduce this error, whilst still retaining the

calculation efficiency.

By comparing the velocity calculation of a sample flow field using the zonal decomposition
and direct summation, estimates of this error can be obtained. The test case was on a
circular cylinder, using a developed flow field similar to that shown in Fig. 4.11, and
comparing the results over a single timestep. The velocity magnitudes of all the vortices
(nascent and wake) was compared. The maximum error was 9.8791e-4, and the rms. error
was 1.1546e-4 compared to the direct summation results. The percentage error is shown in
Fig 4.12. In general, the error is very small, and it is clear that the larger percentage errors
occur for vortices where the velocity is very small, and arise due to some ill-conditioning
when dividing by the velocity from direct summation. Fig. 4.13 shows a comparison of the
flow field around a circular cylinder after the first 200 timesteps of the calculation, using
both the direct summation and zonal decomposition algorithms. Although there are
differences between the two flow fields, in general they are very similar, showing that
despite the errors now introduced into the calculation, the new algorithm gives comparable

results to the original method.

It should be noted that the calculation of the velocity using the zonal influence via a series
expansion, is derived from assuming that the vortices in the zone are point vortices
(Appendix A). However, the vortex method uses vortex blobs, where a core function is
implemented, to avoid singularities arising from point vortices [2]. Clearly, there is an
inconsistency here that may be a further source of error. Long distances from the vortex
locations, the velocity influence of a vortex blob and a point vortex is very similar. This is
also discussed in section 2.3, for the method of Local Corrections. This method is "

based upon the observation that the difference between the velocity field due to a point
vortex and a vortex blob located at the same point in space becomes very small as one

moves away from the centres of the vortices" [8]. As the zonal influence is only used at
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"long" distances from the zone centre, it is clear that the error arising from assuming that

the vortices contained in the zone are point vortices, is small.

No reference has been found in the literature as to how the zonal contribution could
include the effects of modelling vortex blobs rather than point vortices. Solving this
problem could be an area of future research, to give a more accurate, but efficient velocity
calculation for a distribution of vortex blobs. The error value given above is comprised of

both sources of error that have been described in this section.
4.3 Future Work.

The saving that has been obtained using this algorithm is of the order that was being
sought. Typical calculations can now be performed in a matter of hours rather than days.
The benefits of this are clear, better turn around of calculations, each calculation can utilise
more timesteps and more particles may be used without the calculation becoming
prohibitive. However, further improvements in the operation count may be achievable.
Parallelisation of the code is an obvious method to be considered for further savings. Also,
a more detailed investigation of the FMM may yet yield future benefits, with the possibility
of an operation count of O(N) rather than the O(N+NlogN) which has been achieved. Any
future research on improving the calculation efficiency of the vortex method, should be

focused primarily on these areas.
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5.0 Conclusions.

A zonal decomposition algorithm has successfully been incorporated into the Discrete
Vortex Method. The algorithm decomposes all of the particles in the flow field into a
hierarchical structure of square zones. The velocity influence of a zone may then be used in

the velocity calculation using a truncated series expansion.

A zone vs. particle interaction has been used with the largest possible zone always being
used for maximum improvement in the operation count. Direct summation is used for
zones that are close to the particle. The algorithm has been shown to have an operation
count of O(N+NlogN). '

Typically, an improvement of a factor of 4 to 5 has been obtained compared to the direct
summation. Added savings have been made with modifications to the vortex merging

calculation. The error due to the truncated series expansion has been minimised.

Future improvements could be made by parallelisation of the code. A more detailed

investigation of an O(N) algorithm should be made if a more efficient algorithm is required.
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Appendix A : Derivation of Series Expansion for Zonal Decomposition.

Consider a zone D, containing Np point vortices, with strengths/circulations T, at
positions given by the complex co-ordinates z, =x;+iy, , k=1,2 ... Np. The velocity U(z)
induced by the particles contained in D, at an arbitrary point, z=x+iy, outside zone D, is
obtained from the Biot-Savart law using,

i <& (z—z,)T
U(z):-— At Ik
275;:1 A

Now U(z) = u+iv, where

B NCL070) VORI I Y C ot L))

= , V= (A.)
S |z-z [ 20 |e-z [
Taking the conjugate of the velocity and substituting from A.1, we can write
U'(z2)=u-iv
18 T, .
e Y=y ) +i(x=x)
215 IZ—ZkIZ[ ¢ ¢ ]
1 <& T% o,
=-7— (y=y)—(x—x)
znl k=1 |Z—ZkI2[ * ¢ ]
. 1 ¢ T ‘
=>U'(z2)=— E—(2-2) (A.2)
27tl k=1 ‘Z - Zk|
Using |z|” = z.z" for any complex z, then (A.2) can be rewritten
. 1% T
U'(z2)=— £ (A.3)

2mi 5 (2—2)

Taking some arbitrary point, Z,,, within D (centre of D say), and rewrite the positions of

all the vortex particles in D relative to Z,,.
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’

i.e. Zk =Zk —Z

m

then substituting in (A.3)

Np
SU @)=ty — Lk
2M A (2-2, ~Z,)

m

1 <% -T; Ze -
— _ 4
2nikz=1(z—zm>(1 (z—ZmJ (B4

(*) Provided z, <(z—Z,,) for all k, then (A.4) can be expanded as a power series of the
form (1-x)" =1+ x+x2 + x> +..4+ (=) "x" +

o ’ ) , Nt
" 1 Np rk Zk Zk Zk
U = - 1+ + Tl 5 +R t
@ kaz::‘(z—Zm) (z-Z,) ((Z—Z,,,) (z-Z2,) "

Np 1
i y k21k+(—Z)2FZk+ Z)Zl"(zk)+
- 2mi(z-Z,) 1 ,
+(_—Z_)TZF (2, )N + Ry,
Nt
SU @@= YU LR,

o 5 - ik
2mi(z-Z,) = (z—Z,) (A.5)

Np
where a;= YT, (z-Z,)""

k=1
and Ry, is the error due to truncation of the infinite geometric series after Nt terms.
The above shows the derivation of the series coefficients and the zonal expansion
formula, with (A.5) being equivalent to equations (3.1) and (3.2). Zonal decomposition is

only used if a zone is sufficiently far from the point at which the velocity is being

calculated. This ensures that the condition (*) for the series expansion is satisfied.
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Appendix B : Operation Count of Zonal Decomposition Algorithm.

The analysis of the operation count of the zonal decomposition algorithm is very
complex. Hence, to simplify the analysis, the case of N vortices homogeneously
distributed over a square domain will be considered. The flow domain is continuously
subdivided (as shown in Fig. 2.3) until the lowest level comprises of zones that contain n
particles. The number of zones at the lowest level is given by N/n. The number of zones
at any level of subdivision, /, for a uniform distribution of vortices and uniform

subdivisions, is given by 4. Therefore the number of levels of subdivision is given by
N
[= 10g4(——j (B.1)
n

The total computational time required for one timestep in the calculation is dominated by
the velocity calculation. The dominant two factors in the velocity calculation for a
domain containing N particles, is from the contributions from direct summation and zonal
decomposition. Only the operation count of these two factors will be considered to

simplify the analysis further.

Consider the contribution first from direct summation. For any single vortex, the
contribution from direct summation, will be due to at most, the 9 neighbouring zones
(including the zone that contains the particle). As each zone contains » particles and there
are N particles, then the total CPU required for the direct summation contribution is ty,

where

ty o< 9nN

. (B.2)
e ty=aN

where a is a constant that is derived from the number of zones contributing to the direct

summation, the number of particles in each zone and the floating point operation speed of

the processor.

For the contribution from series expansion due to the influence of distant zones, the
analysis is more complex. Consider the worst case, where a series expansion is required
to be evaluated at every zone at the lowest level, except the 9 neighbouring zones,
1.e.(N/n-9) zones. The number of terms in the series expansion is Nt. To evaluate the

series expansion at the lowest level, each level and each branch of the quadtree must be
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evaluated. The number of operations to perform this calculation will be proportional to
the number of levels, / as shown in (B.1). These are the main factors affecting the
operation count of the zonal contribution to the velocity. Hence, the CPU required to
evaluate the influence of distant zones on a single vortex using series expansion, t,q, is

approximately given by

N
t,y o< Nt(— - 9).0[
n

where c is a constant that is derived from the number of "traverses" around the quadtree.
This expression is the worst case, where the series expansion is used for every zone at the
lowest level, except the neighbours. In general, only p zones will be required, where
p<(N/n-9). The total CPU required for the zonal contribution is then given by

N
t,q o N.Nt. p.clog, (7)

g ~
ogl —
n , log(a)
N.Nt. = B.3
t,g p.c log@) using log,(a) Tog(@) (B.3)
t,s = NblogN (B.4)

where b is a constant that is derived from the number of zones whose series expansion is
used, the number of terms in the series expansion and the floating point operation speed
of the processor. Note that the dominant factor in the logarithm in (B.3) is the number of
particles, N and so t,4 can be approximated using an operation count O(NlogN).

Although this is a very simplified analysis of the zonal decomposition algorithm, it is
clear that the total CPU required for the velocity calculation is approximately given by

t, =aN+bNlogN (B.5)

giving an algorithm that is of O(N+NlogN). A curve of the form shown in (B.5), has been
fitted to the CPU timings from the zonal decomposition algorithm, and is shown in Fig.
4.6, along with the derived constants. The curve is shown to give a reasonable fit to the

data, giving some validation to the somewhat simplified analysis discussed above.
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Appendix C : Optimisation of Parameters in the Zonal Decomposition
Algorithm.

The main parameters that affect the speed and accuracy of the algorithm are :

1. Np - Minimum number of vortices in a zone, such that the zone can be further
subdivided.
Nt - Number of terms in series expansion.

3. H - Series expansion can be used only when the distance of the vortex from the zone

centre is greater than H multiplied by the zones radius.

These parameters have been optimised to obtain the best combination of calculation
efficiency and accuracy. The results of this analysis are shown in Figs C.1-C.2. The results
are very much as expected. Increasing H means that only distant zones can be used in the
calculation, leading to a larger contribution to the velocity via direct summation and hence
an increase in the CPU. However, as the zones used are distant, the series is more likely to

converge giving a reduction in the error as H increases (Fig. C.1).

The CPU also increases as Nt increases, as more calculations are clearly required to
evaluate more terms in the series expansion (Fig. C.2). As Nt increases, the series is more
likely to converge and so the error is reduced. The series is also likely to converge much
more quickly if the vortex is further from the zone, and this observation can be used to
obtain extra efficiency in the calculation (PRINGLE [15]). For example, if a vortex is 4
times the zone radius from the zone centre, the series may converge in around 10 terms
say, whereas a vortex that is only 3 times the zone radius from the zone centre, may
require 15 terms. As a result, the algorithm uses a varying number of terms in the series

expansion, depending on the distance of the vortex from the zone centre.

The variation of CPU and error with Np is a little more complex. If Np is small, the there
are a large number of small zones, each containing a relatively small number of vortices.
Each velocity calculation will therefore require a contribution from a large number of
zones, with the series expansion giving a small saving in operation count over direct
summation as each zone contains a small number of particles. Hence, for small Np, the
CPU will be high. Also, the small zones mean that vortices will satisfy the distance from
zone centre criteria, but will still be a small distance from the zone, and may affect the
series convergence leading to an increase in the error. For large Np, although when a zone

is used in the velocity calculation a large saving in operation count is made, each vortex
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will have to be further from the zone before the zonal contribution can be used. Hence,
there is likely to be a larger contribution from direct summation and a resulting increase in
CPU. However, this does mean that when series expansion is used, the series is more likely

to be converged, and so the error is reduced. These effects can be observed in Fig. C.3.

The optimised code requires a balance to be struck between all of these parameters to
obtain maximum efficiency for the desired calculation accuracy. The final optimised
parameters are:

Np =200

H=2.0

Nt varying from 8 to 13 depending on the distance to the zone centre.

These parameters were used in the calculation results that are presented in Section 4.1

NOMENCLATURE.

A Area of mesh cell.

a Coefficients of series expansion.
D Spreading radius

F Flow field.

Approximation to Laplacian.

Factor on zone radius used in zonal decomposition.
Mesh spacing.

Level of subdivision of zonal structure.

Number of nodes in mesh.

Cell dimension.

ZRXRE T T EE

Number of vortex particles in flow field.
Np,np Number of particles in a zone.

Z

Number of terms in the series expansion.
Pressure.

Zone radius.

Position vector.

Body surface.

Time.

.V Velocity.

R - BT I -
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u,v Velocity.

U,i Velocity vector.

Ax,Ay Grid spacing.

X Position of vortex.

X,y Components of position vector.
Z,2  Complex position of vortex particle.
Z.Z,

Z.,  Centre of zone.

r Circulation.

\% Kinematic Viscosity.

p Fluid density.

b Vector potential.

k4 Stream function.

()] Vorticity.

D , : —
Dr Lagrangian / material derivative.
\% Gradient operator.

V?  Laplace operator.

Vx  Curl.

V. Divergence.

Subscripts.

i Index number for solid body.
i Index number for cell node.

] Index number for vortex.

k Index number for terms in series expansion.
n Index number for vortex.

p Point in flow field.

oo Far field.
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Fig. 1.1 - Demonstration of O(N2) Operation count for Velocity Calculation.
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Fig. 2.1 - Area Weighting Scheme used in Vortex-in-Cell Method.
(from SARPKAYA 1989 [3])



Interpolation from Mesh used at distances >3Ax or 3Ay from vortex

Fig. 2.2 - Use of Velocity Interpolation from Mesh in Vortex-in-Cell Method.
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Fig. 2.3 - Division of Flow Field into Uniform Square Zones.
(from GREENGARD 1987 [11])
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Child Zone 3 Child Zone 4

Child Zone 1 Child Zone 2

Divigion of Parent Zone into
Four Child Zones in Order Shown.

Fig. 3.2 - Order of Child Zones in Zonal Decomposition Algorithm.
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a) Initial Flow Field.

Fig. 3.3 - Decomposition of Flow Field into Hierarchical Zonal Structure.




b) Level 1 of Subdivisions.

_gl 1 1 1 1 1 1 1
-2 0 2 4 6 8 10 12

Fig. 3.3 - Decomposition of Flow Field into Hierarchical Zonal Structure.
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c) Level 2 of Subdivisions
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d) Resultant Zonal Decomposition of Flow Field.
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Fig. 3.3 - Decomposition of Flow Field into Hierarchical Zonal Structure.

Zoae A, centre Za, radius R
Vortex at Z - use series expansion.

Fig. 3.4 - Nomenclature for Zone.
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e) Close up View of Resultant Zonal Decomposition.



Algorithm For Velocity Calculation using

Zonal Decomposition.

Algorithm performed in a single pass over all vortex particles.

First Zone - Zone 1

Move onto next zone.

A

y

A

Yes

zone centre ?

Yes
/

Does the zone have any
children ?

No

No
. h he 1
Does the Zone Contain No _| I,S the Zoug't fef st
any Particles ? 7] PERlp GLIOHL
zones ? <
Yes
No

v

Does the zone contain the
; ; : Does the zone have
particle for which velocity | No ;
. o e »| any children ?
is being calculated ?
’ Yes
Yes
Move down one level
= T to the zones children.

y

Is the particle greater than Use zonal decomposition
2*(Zone Radius) from No | to calculate the velocity

influence at the particle
location from the zone.

Is the zone at the top
level (zones 1 to 4) ?

Yes

No

/

Yes

y

Move down one level to
the zones children.

Use direct summation to
calculate the velocity
influence at the particle
location from the zone.

A 4

summation later in algorithm.

v

Move up one level to
the zones parent ?

v

Influence of all zones (except
smallest zone containing
particle') to velocity of particle

completed.

Move onto next vortex particle.

T At lowest level, contribution of other particles in zone calculated from direct

Fig. 3.5 - Flowchart for Velocity Calculation using Series Expansion and Zonal

Decomposition.
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Zonal Decomposition for Square Model - VER1.53
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a) Whole Flow Field

Fig. 4.10 - Sample Decomposed Flow Field for Square Model.
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Zonal Decomposition for Circle Model - VER1.53
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a) Whole Flow Field

Fig. 4.11 - Sample Decomposed Flow Field for Circle Model.
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VER1.5|- After 200 Steps ##
Circle - SCR=RCORE=0.0025,Del T=0.015,Nv=5
WITHOUT Nascent Diffusion 5/2/97.

a) Zonal Decomposition.

Fig. 4.13 - Comparison of Flow Field for Circle Model after 200 Timesteps.

##VER1.3 — After 200 Steps ##
Circle - SCR=RCORE=0.0025,Del T=0.015,Nv=5
WITHOUT Nascent Diffusion 5/2/97.

b) Direct Summation
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