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SUMMARY

Linearization of the non-linear system arising from Newton's method in solving steady 

state laminar locally conical Navier-Stokes equations results in a linear system with a 

large sparse non-symmetric Jacohian matrix, which will be a block 13-point diagonal 
stencil since high order spatial discretization scheme and structured grid are used. A 

new suitable arrangement of the matrix elements makes a certain BILU factorization 

become a very robust preconditioner in GMRES and CGS solvers. The stmcture of the 

matrix is employed in the procedure of generation of the incomplete lower and upper 

matrices, which greatly reduces the CPU time. These linear solvers significantly 

accelerate the convergence of the Newton's solver for the hypersonic viscous flows 

over a cone at high angle of attack, in which the Osher flux difference splitting high 

resolution scheme is used for capturing both shock waves and shear layers in the 

flowfield.
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1. Inlroduclion

High order accuracy high resolution numerical schemes are most desirable when 

solving increasingly complex physical problems in CFD. However this involves more 

complicated computational formulations and increased CPU times. For solving steady 

state Navier-Stokes equations, the explicit method is robust in the sense that non­
physical states can easily be avoided as long as the initial flow field is physically 

defined, but it can be extremely slow to converge due to the stability restrictions on time 

steps even if some acceleration techniques are employed. The Newton's method has 

been proved to be one of the fastest convergence algorithms for solving the Navier- 

Stokes equations when coupled with a robust and efficient linear solver [1-14]. 
However it is generally not easy to obtain the real Jacobian of the non-linear system and 

to solve the resulting large sparse non-symmetric linear system. As a result, much 

research is currently tackling this problem. In order to avoid the difficulty in generating 

the real Jacobian matrix, the sparse quasi-Newton method (SQN) and sparse finite 

difference Newton method (SFDN) were proposed by Qin and Richards [5-6] for 

getting the numerically approximate Jacobian matrix. A simplified procedure for 

generating the Jacobian matrix which reduces the CPU time was proposed by Xu [3], 
and is used in this paper. After the linearization of the non-linear system is achieved, a 

large sparse non-symmetric linear system results. In this paper, a new BILUF (Block 

Incomplete Lower Upper Factorization) preconditioner will be presented, which proves 

to be very efficient after a suitable arrangement of the matrix elements. The GMRES 

(Generalized Minimal Residual) [15] and CGS (Conjugate Gradient Square) [16] linear 

solvers are used in the Newton's method for fast steady state solution of Navier-Stokes 

equations.

2. High Resolution Discretization and Structured Grid

2.1 Locally conical Navier-Stokes equations and structure grid

Examination of many experimental studies [ 17-21] of supersonic or hypersonic laminar 
flows around conical shapes reveals that these flows exhibit a locally conical behaviour 

downstream of the nose region even though relatively large viscous regions exist. 
Based on this observation, McRae [22] introduced a locally conical approximation to 

the full Navier-Stokes equations for the solution of supersonic/hypersonic viscous 

flows around cones. This approximation has also been used for numerical solutions of 

supersonic/hypersonic viscous flows around other conical shapes [23-25]. The validity 

of this approximation has been well established through these experiments and



computations and tlie comparison between them. Therefore we have the general locally 

conical Navier-Stokes equations

3F dG „ ^ +----+H
ari ac

0 (2.1)

where H is the source term resulting from the locally conical approximation, r\, ^ are 

the curvilinear coordinates. The sharp cone and structured grid in the computational 
section are illustrated in Fig.2.1. Because the yaw angle is 0° just the half side of the 

flow is considered, where the grid overlaps by one point on the line of symmetry 
(Fig.2.2). We call this type of grid the primary grid, which has 1+2 points in the t| 
direction (from solid wall to inllow boundary) and J+2 points in the ^ direction (from 

lower symmetrical boundary to upper symmetrical boundary). A secondaiy grid can be 

obtained by determining the centres of the primary cells and connecting them across cell 
faces. This has 1 cells in the r\ direction and J cells in the ^ direction. We will choose 

the cells in the secondary grid as the control volumes in the cell centred finite volume 

method as illustrated in Fig.2.3. Each cell contains the state variables similar to the 3- 
dimensional How, i.e. 5 conservative components p, pvi, pv2, pv3, pE or primitive 

components p, vi, V2, V3, p. The unknown variables are set in all the IxJ cells of the 

secondary grid for r\ direction i from 2 to 1+1 and ^ direction j from 2 to J+1, and the 

number of grid nodes is (l+2)x(J+2).

Fig.2.1 The sharp cone and location of the grid



Fig.2.2 The 2-diniensional grid

symmetrical line
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I+l
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J+2 J+1 1 solid wall c
The plain line is the primary grid. The dashed line is the secondaiy grid 

Fig.2.3 The primary and secondary grids



2.2 High order finite volume di.serelizaiion

Using the cell centred finite volume method for each control volume (i,j) we have the 

discretised equation

X (F , G) • Al + HSij = 0 
L

(2.2)

where L is the bounding line of the cell area Sij. Therefore we obtain:

Rccll = {FIi+l/2,i - FIi.i/2j + FIij+i/2 - FIij.i/2 

+ FVi+i/2,j - FVj.i/2,j + FVij+i/2 - FVy.1/2} + Hij = 0
(2.3)

where FI presents the inviscid fiux and FV presents the viscous flux. Eq. (2.3) is a 

compact form and includes five sub-equations. When a high order Osher flux 

difference scheme used, the calculation of Rccu employs the physical variables in the 13 

cells around cell (i,j) as in Fig.2.4.

N2
i+2,j

NW
i+lj+l

N1
i+l,j

NE
i+lj-l

W2
i.j+2

W1
i,i+l

C
i.,i

El
i.j-1

E2
ij-2

SW
i-l.j+1

SI
i-b.)

SE
i-lj-1

S2

The residuals calculated for the cell (i,j) and 

the di.scretised physical state variables u.sed lie in the 13 cells within the bold line.
Fig.2.4 13 cell stencils

Consolidating all the di.scretised Navier-Stokes equations in every cell we have an N- 
dimensional non-linear algebraic system as follows:

R (V) = 0 (2.4)



where N = IxJx5 is the total number of unknown variables, RT = ( Ri, R2, Rn ) is
the residual vector and v1 = ( vi, V2.....vn ) is the discretised physical state variables
vector. We note that {vn,vn+i,vn+2,vn+3,vn+4}e v are the discretised physical state 

variables in the cell (i,j), and {Ru,Rn+i,Rn+2,Rn+3>Rn+4}eR are the residuals in the 

same cell, where we can choose

n = 5x(Jx(i-2)+j-2)+l (2.5)

or

n = 5x(Ix(j-2)+i-2)+l (2.6)

respectively corresponding to the orders of grid cells (( (i,j), j = 2, 3 ,..., J+1), i = 2, 
3, ..., I+l), i.e. cells are given the order from one symmetrical line to another 

symmetrical line first and then from solid wall to inflow boundary, and ( ((i,j), i = 2, 
3, ..., I+l), j = 2, 3, ..., J+1), i.e. cells are given the order from solid wall to inflow 

boundary first and then from one .symmetrical line to another symmetrical line.

3. The Newton's Method

3.1 The Newton's method

For the non-linear algebraic system (2.4) we have the Newton's method

/rlR'k
Avk = - R (vk)

\'by I
Avk = vk+l - Vk

(3.1)

where V is cho.sen as the primitive variables. For each cell (i,J) Eq. (3.1) is

(flRccll/^vf Avk = - Rccii (Vk), cell = (2,2)......(I+l,J+1) (3.2)

3.2 Two different orders of the matrix elements

For any vceii, ^RcLil/^vceii is a 5x5 matrix, where Rceii is in a cell (i,j) and vceii is in a
cell (l,m), where i, 1 = 2..... I+l, and J, m = 2, ..., J+1. From Fig.2.4 we know that
3RCcii/rivcell is not equal to zero only for the cell (l,m) within the thirteen cells around 

cell (i,j). Thus corresponding to each cell (i,j) the elements of the Jacobian matrix, in



five rows, have the form of thirteen 5x5 sub-matrices

3ficelKi,j)/^vcclI(i-2,j). f^RccIKij/^VcclKi-l,]-!), 9Rcell(i,j)/3vCell(i-l,j), 
5Rcell{i,i)/^vcclI(i-l,j+l)> 3Rcci|(ij)/f')vceii(ij.2), 3Rcell(i,j)/5vCell(i,j-l),

3Rcdl(i,jy,^vcell(ij)’ (3-3)

5Rccll(i,,j)/3vcell(i,j+l), 9Rcell(i,i)/3vCeii(i>j+2), 5Rcell(i,,j)/3vcell(i+lj-l), 
3Rcell(i.jV^vccll(i+l,j)» 3Rcell(i,j)/9vcelI(i+l,j+l), 3Rcell(i,j)/5vceIl(i+2,j),

or

3Rcell(i,j)/^vCeii(i,j-2), 3Rccll(i,i/9vccii(i.ij-i), 3Rcell(io)/9vcell(i>j-l), 
5Rcell(i.j)/f)vccii(i+i,j-i), 3Rcell(i,j)/3vceii(i.2,j), 3Rcell(i,j)/9vCeii(i-i,j).

^RcclKij/^VcclKi,.])’ (3-4)

5Rcdl(i,j)/f)vcdl(i+l,j)> 5Rcdl(i,j)/5vcdl(i+2,i), 3Rcdl(i,j)/9vCell(i-l,j+l), 
5Rcdl(i,j)/f)vccii(i,j+i), BRcdKi.j/^VceiKi+ij+i), 3Rcdl(i,j)/9vCeii(i,j+2),

which coiTcspond to the grid order (2.5) and the grid order (2.6) respectively.

3.3 The structure of the Jacobian matrix

From Fig.2.4 we can illustrate the block elements in a row by using the name of the 

cell, that is for (3.3) we have

S2 ... SE SI SW ... E2 El C W1 W2 ... NE N1 NW ... N2 (3.5) 

but for (3.4) we have

E2 ... SE El NE ... S2 SI C N1 N2 ... SW W1 NW ... W2 (3.6)

Therefore we obtain the Jacobian matrix of Eq. (3.1) which is an order N, block 13- 
point diagonal matrix and each block is a 5x5 submatrix, which can be denoted:



We denote the linear system in the Newton's fomiulation by

j^X=b (3.7)

Different arrangements of the Jacobian matrix elements (3.4) and (3.5) give significant 
differences in the characteristic of the Jacobian matrix of the linear system to be solved, 
which will be .seen in Section 6.

4. The Block Incomplete LU Factorization

For the block 13-point diagonal matrix, in which the block row elements are arranged 

as in (3.6), we can respectively construct lower and upper matrixes L\, Ui as follows:

E2L ... SEL EIL NEL ... S2L SIL CL (4.1)

CU NIU N2U ... SWU WIU NWU ... W2U (4.2)

where the lower and upper matrices retain the sparsity of the Jacobian matrix. Therefore 

we obtain a block incomplete LU factorization (BILUF), where each of the block 

elements will be generated using the following foiTnuIations:

C(i,j) = E2L(i,J)*W2U(i,j-2)
+ ElL(i,j)*WlU(i,j-l) 

+ S2L(i,j)*N2U(i-2,j)
+ CL(i,j)*CU(i,j) 

Nl(i,j) = El L(i,j)*NWU(i,j-l)

•+• SEL(i,j)5i<NWU(i-l,j-l) 

+ NEL(i,j)*SWU(i+l,j-l) 

-h SlL(i,j)*NlU(i-l,j)

+ NEL(i,j)*WlU(i-Hl,j-l)



-t SlL(i,j)*N2U(i-l,j) -1- CL(i,j)*NlU(i,j)
N2(i,J) - NEL(i,j)*NWU(i-t-l,j-l) -t- CL(i,j)*N2U(i,j)
SW(i,j) = SEL(i,j)*W2U(i-l,j-l) -t- S2L(i,j)*NWU(i-2,j)

-1- SlL(i,j)*WlU(i-l,j) -1- CL(i,j)*SWU(i,j)
Wl(i,j) - ElL(i,j)*W2U(i,j-l) + S1 L(i ,j) * NWU (i-1 ,j)

-1- CL(i,j)*WlU(i,j)
NW(i,j) = NEL(i,j)*W2U(i+l,j-l) -t- CL(i,j)*NWU(i,j)
W2(i,j) = CL(i,j)*W2U(i,j)
Sl(i-^l,j) = SEL(i-tl,j)*WlU(i,j-l) -1- ElL(i-t-l,j)*SWU(i+l,j-l)

+ S2L(i+l,j)*NlU(i-l,j) -t- SlL(i+l,j)*CU(i,j)
S2(i+2,j) = SEL(i+2,j):f!SWU(i-i-l,j-l) -1- S2L(i-t2,j)*CU(i,j)
NE(i-l,j+l) - E2L(i-l,j+l)*NWU(i-l,j-l) -1- SEL(i-l,j+i)*N2U(i-2,j)

+ ElL(i-l,j+l)*NlU(i-l,j) -t- NEL(i-l,j+l)*CU(i,j)
El(i,j-fl) = E2L(i,J+l)*WlU(i,j-l) + SEL(i,j+l)5i!NlU(i-l,j)

+ ElL(i,j+l)*CU(i,j)
SE(i+l,j+l) -- E2L(i+l,j-t-l)*SWU(i+l,j-l) + SEL(i-f-l,j-i-l)*CU(i,j)
E2(i,j-i-2) zz E2L(i,j+2)*CU(i,j)

First we calculate CL(i,j) and CU(i,j) using a rank 5 matrix LU factorization, then 

calculate NlU(i,j), N2U(i,j), SWU(i,j), WlU(i,j), NWU(i,j), W2U(i,j) successively 

by using CL(i,j) to generate the block row elements of the upper matrix, finally 

calculating SlL(i+l,J), S2L(i+2,j), NEL(i-l,j+l), ElL(i,j + l), SEL(i+l,j+l), 
E2L(i,J+2) successively by using CU(i,j) to generate the block column elements of the 

lower matrix.

For (3.5) we can process similar BILUF. On the other hand, we can implement a 

BILUF for the 5-point diagonal matrix of the Jacobian matrix, and present this 

incomplete LU factorization of the Jacobian matrix as 5BILUF.

5. Preconditioned GMRES and CGS Linear Solvers

Since the block incomplete lower matrix L\ and upper matrix Ui have been generated 

we can change Eq. (3.7) as follows:

£[1j^‘Z7f1y=Alb

7/iX=y
(5.1)

Therefore the procedure for solving Eq. (3.7) is divided into three steps.

10



Step 1:

Step 2: 

Step 3:

Set new right hand side vector

B=£[1b, or £iB=b

Solve for y

Obtain solution of Eq. (3.7)

Zlix=y

Step 1 and 3 correspond to solving the lower and upper linear equations respectively. 
For solving y in step 2 we use the GMRES and CGS linear solvers in which the new 
matrix, C= vector manipulation can be implemented by solving an upper
linear equation, matrix-vector manipulation, and then by solving a lower linear 

equation.

6. Numerical Tests and Discussion

The foregoing numerical tests have been earned out to solve the locally conical Navier- 
Stokes equations for compressible How. The spatial discretization scheme used is the 

Osher flux difference splitting scheme, and the high order scheme is achieved by using 

MUSCL method for variable extrapolation. The formal accuracy is third order for the 

convective fluxes in which the MUSCL method for variable extrapolation is used, and 

second order for the diffusive fluxes. The case is a laminar Mach 7.95 flow around a 

sharp cone at an angle of attack of 24° and with a cold wall. This case produces a flow 

which has a large separated flow region with embedded shock wave in the leeward side 

of the cone and strong gradient in the thin boundary layer on the windward side. 
Accurate validation with experiment was achieved in flow field and heat transfer 

distribution. In the numerical tests for any real data, double precision is used. The 

computer u.sed is an IBM RISC System/bOOO 320H workstation in the Department of 

Aerospace Engineering, University of Gla.sgow.

Two computational grids in the cross section are 34x34 and 66x66 respectively for the 

numerical test. Thus the resulting matrixes to be solved are the block 13-point 
structured matrixes of order 32x32x5 and 64x64x5. For solving the linear system the 

diagonal preconditioner is also used to enhance the characteristic of the matrix in 

Eq.(3.7) even though it is not nece.ssary, i.e.

t/)-1j?x=®-1b

1 1



where ‘D is the block diagonal matrix composed of the block diagonal elements of

Fig.6.1 shows the convergence histories for the 34x34 grid, which includes the result 
of lOOO four-step Runge-Kutta explicit iterations as the initial guess and Newton's 

method with GMRES linear solver, in which the Jacobian matrix elements are arranged 

as in (3.6) and BILUF preconditioning is used. Fig.6.2 shows the convergence 
histories for the 66x66 grid, which includes the result of 2000 four-step Runge-Kutta 

explicit iterations as the initial guess and Newton's method with the GMRES linear 

solver, in which the Jacobian matrix elements are airanged as in (3.6) with BILUF and 

5B1LUF preconditioning. From this figure we can see that the 5BILUF preconditioner, 
although efficient, is much slower than the BILUF preconditioner.

Explicit method
Newton - GMRES - BILUF

600 b
CPU(sec)

Fig.6.1 Convergence history for N-S solution for 34x34 grid

Table 1 shows the CPU time, in seconds, for different computation procedures, in 

which the Jacobian matrix elements are arranged as in (3.6) in the Newton's method. 
From this table we can see that the fastest algorithms have been obtained for (1) the 

Jacobian matrix generation, (2) the BILUF generation (for 66x66 grid the 5BILUF 

takes only 0.96 seconds), and (3) for solving the lower and upper linear systems 

involved in GMRES or CGS solvers. Tables 2 and 3 show the convergence details of 

GMRES and CGS solvers for the two differing grids above for the Jacobian matrix 

elements arranged as in (3.6), in which Res is the relative residual. Memory 

requirements for different schemes and different grids are shown in Table 4. The flow 

is a demanding case including massive flow separation, bow and flow embedded 

shocks and very high temperature gradient in the windward boundary layer as 

illustrated in Fig.6.3.

1 2



Explicit method
Newton - GMRES 
Newton - GMRES

10000 20000
CPU(sec)

Fig.6.2 Convergence history for N-S solution for 66x66 grid

Table 1 CPU time (second) for one step implementation
Explicit Matrix Diagonal BILUF CiMRES GMRES CGS

ilcnilion Generate Precon. (k=30) (k=50)

34x34 0.063 4.700 0.30 0.85 5.63 _ 0.44

66x66 3.622 IS.63 1.62 3.36 _ 40.00 1.96

Table 2 Convergence history for 66x66 grid

Explicit Newton-GMRES Newton-CGS

Nnin. Iter Time Res up to Time Res up to Time Res up to

1-2(X)0 7866.48 6.16x10-4 _ _ _ _

2000-2(X)l _ _ 67.11 1.60x10-2 78.00 1.69x10-2

2000-2(K)2 . _ 132.60 1.01x10-2 147.07 1.01x10-2

2000-2(X)3 . 108.53 4.62x10-3 209.66 4.62xl0-3

2000-2(X)4 _ 263.80 2.52X10-3 277.36 2.52xl0"3

2000-2(X)5 _ _ 320.32 1.07xl0"3 346.80 1.07x10-3

2000-2(X)6 . .305.01 1.76x1 O'3 409.24 1.75x10-3

2000-2(X)7 _ _ 460.73 4.70x10-4 470.15 4.69x10-4

2000-2(X)8 525.8.3 1.42x10-4 530.77 1.41x10-4

2000-2{X)0 . _ 500.75 7.07x10-6 597.46 7.94x10-6

2000-2010 _ _ 655.75 3.03X10-8 655.66 3.01X10-8

20(H1-2011 _ 720.44 4.58x10-13 CGS fail

1 3



Table 3 Convergence history for 34x34 grid

lA plicit Newion-GMRES Newton-CGS

Num. lier rime Res up (o Time Res up to Time Res up to

1-1(X)0 WA.IH 1.68x10-2 _ _ _ _

1000-1(K)1 _ _ 12.18 3.89xl0-3 10.17 3.89x10-3

1000-1002 _ _ 24.1,‘i 1.47xl0'3 21.10 1.47x10-3

1000-100.^ . 36.03 1.86x1 O'5 35.93 1.86X10-5

1000-1(X)4 _ _ 47.94 2.06X10-8 41.85 2.06x10-8

1000-1(X).S _ - 59.8.6 5.13xl0‘14 51.83 5.66X10-14

Table 4 Memory requirements
Explicit methoel Newton-GMRES Newton-CGS

34x34 574597 bvtes 8330833 bvtes 7297833 bvtes

66x66 2035589 bvles 34765617 bytes 27370537 bytes

1()° Cone 

AoA = 24°
Moo = 7.95 

Too = 55.4 K 

Tvv = 309.8 K 

RCoo = 4. IxlO6 

r = 0.1 m 

66x66 Uriel

Fig.6.3 Flow conditions and cross flow temperature contours

14



Tabic 5 shows the divergence phenomenon of the GMRES linear solver with BILUF 

preconditioning when the matrix block elements are arranged as in (3.5).

Table 5 The residual of the b-JDC

N. I. 0 1 2 3 4 5 6 7 8 9 10

Res ,ct.268 0.772 0.6H.S 0.6.S0 0.6.S4 0.6.32 0.648 0.642 0.63.3 0.628 0.621

7. Concluding Remarks

A veiy fast convergent Newton's solver has been developed for the steady state laminar 

locally conical Navier-Stokes equations. Fast convergence is obtained as a result of (1) 
suitable arrangement of the block elements of the Jacobian matrix. In each block row 

we arrange these block elements, which correspond to the cells that the physical 
phenomenon will change most rapidly along, to positions near the diagonal. (2) A fast 
BILUF preconditioner generation. In both grid cases the residual of the linear solution 

decrease by an order of 10 in one step of the GMRFS(k) iteration, in which k=30 for 
the 34x34 grid and k=5() for the 66x66 grid. Therefore it is hopeful that this algorithm 

may be extended to even large grid cases.

From the numerical tests we see that the other airangement of the block elements of the 

Jacobian matrix does not support a convergent linear solver. A special case is that when 

doing block incomplete LU faciori/.ation we consider only those block elements, near 

the diagonal, which correspond to the cells that the physical phenomenon change most 
rapidly along, i.e. the test of 5BILUF discussed above, in which we found that the 

convergence result can he obtained but requires increased CPU time.

The BILUF technique and solving lower and upper linear systems involve sequential 
bottle-necks. However, it is possible for the parallel calculation of the whole Navier- 

Stokes solver developed in this paper, since the proportion of the CPU time has been 

reduced for these sequential steps compared with other parallelizable steps [2-3]. That 
is, the calculation, which is not parallelizable, will have little effect on the efficiency of 

the parallelization of the complete Newton's method. Using parallel techniques we can 

divide the storage to individual processors, therefore solving the storage problem for 
the Newton's method.

1 5
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