
 
 
 
 
 
Alghamdi, I., Anagnostopoulos, C. and Pezaros, D. P. (2019) Time-

Optimized Task Offloading Decision Making in Mobile Edge Computing. 

In: 11th Annual Wireless Days Conference, Manchester, UK, 24-26 Apr 

2019, ISBN 9781728101170 (doi:10.1109/WD.2019.8734210). 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 
http://eprints.gla.ac.uk/179591/    

                    
 
 
 
 
 

 
Deposited on: 11 February 2019 

 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk  
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296214914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/WD.2019.8734210
http://eprints.gla.ac.uk/179591/
http://eprints.gla.ac.uk/


Time-Optimized Task Offloading Decision Making
in Mobile Edge Computing

Ibrahim Alghamdi
School of Computing Science

University of Glasgow, UK
i.alghamdi.1@research.gla.ac.uk

Christos Anagnostopoulos
School of Computing Science

University of Glasgow, UK
christos.anagnostopoulos@glasgow.ac.uk

Dimitrios P. Pezaros
School of Computing Science

University of Glasgow, UK
dimitrios.pezaros@glasgow.ac.uk

Abstract—Mobile Edge Computing application domains such
as vehicular networks, unmanned aerial vehicles, data analytics
tasks at the edge and augmented reality have recently emerged.
Under such domains, while mobile nodes are moving and have
certain tasks to be offloaded to Edge Servers, choosing an
appropriate time and an ideally suited server to guarantee the
quality of service can be challenging. We tackle the offloading
decision making problem by adopting the principles of Optimal
Stopping Theory to minimize the execution delay in a sequential
decision manner. A performance evaluation is provided by using
real data sets compared with the optimal solution. The results
show that our approach significantly minimizes the execution
delay for task execution and the results are very close to the
optimal solution.

Index Terms—Mobile edge computing, tasks offloading, opti-
mal stopping theory, sequential decision making.

I. INTRODUCTION

Over the past years, new mobile devices and applica-
tions, with different functionalities and uses, such as drones,
Vehicular Networks (VN) and very advanced smart phones
have emerged. This development has enabled such devices
to launch applications such as Augmented Reality (AR), in-
tensive contextual data processing, intelligent vehicle control,
traffic management, data mining applications and interactive
applications. Although these mobile devices have computing
and communication capabilities to run such applications, they
still cannot efficiently handle them. The main reason for
this limitation is that these applications require significant
processing in relatively short time and consume significant
battery. Such limitations have motivated the emergence of the
Mobile Cloud Computing (MCC) [14] paradigm.

MCC allows mobile devices to benefit from Cloud Com-
puting (CC) resources to offload and execute their tasks,
applications and/or collected data. A mobile node may use
the computing and storage resources of a remote data-centre
via accessing a cellular network or Wi-Fi connection. Task
offloading from mobile nodes to the cloud leads to extend the
battery lifetime of the mobile nodes and save computational
resources, thus, enabling advanced applications to users and
providing higher data storage capabilities [14]. However, using
CC for task/data offloading of mobile applications introduces
significantly latency and adds more load to the radio and back-
haul of the mobile networks [14].

To deal with the disadvantages of MCC, the Mobile Edge
Computing (MEC) paradigm has emerged. The rationale ar-
chitecture of this concept is to offer cloud services closer to
mobile devices by placing many data-centres at the edge of
the network. The network edge refers to different places e.g.,
mobile network at the Base Station (BS), or indoor places such
Wi-Fi and 3G/4G access points [17].

Motivation & Challenge: An essential use case of MEC is
the computing task/data offloading. Computation offloading is
the task of sending a computation task and data to a remote
server for delegating this computation [1]. As the new emerg-
ing applications require intensive computation processes, com-
putation offloading provides a solution to overcome the limi-
tation of the mobile device. Examples of applications that can
benefit from computing offloading are mobile AR [6], gaming,
Internet of Things (IoT) applications, data analytics tasks at
the edge [15], VN [25] and Unmanned Aerial Vehicles (UAV)
[28] . A study showed the benefit of using offloading for the
Percipio AR application on a real MEC testbed [7]. The study
showed that the computation offloading reduces latency up to
88% and energy consumption of mobile devices up to 93%.

Computation offloading faces several challenges, the most
significant ones being: (i) the decision of when to of-
fload tasks/data to a MEC server and (ii) mobility pat-
terns/behaviour of the users in such MEC environments. The
decision making of tasks/data offloading is of high importance
as it is expected to directly affect the Quality of Service (QoS)
of the user application including the inherent latency due to
the offloading process. Therefore, different parameters have
to be considered when to decide to offload tasks and/or data
including: the current MEC server load and the transmission /
communication status between the mobile node and the MEC
server. The decision can be spatial or temporal as stated in
[10]. The spatial decision refers to realising the computing
tasks locally at the mobile device, in the cloud, or at the edge
server [11]. The temporal decision refers to a situation where
it is advisable to optimally delay the tasks/data offloading
due to the current expected cost in terms of the transmission
delay and the processing delay at the MEC server, e.g., from
the user prospective, the Wi-Fi connectivity is low, or from
the network operator perspective, the server is fully loaded,
thus, expecting high latency for delivering the outcome of the
delegated computation tasks to the user.



In this work, we propose a time-optimised task offload-
ing decision algorithm in MEC environments by finding the
optimal task offloading time taking into consideration the
expected transmission delay and the expected processing delay
for the task execution at the MEC server. In our context,
while the mobile node is sequentially roaming (connecting)
through a set of MEC servers, the mobile node has to locally
and autonomously decide which server should be used for
offloading the data to perform the computing task. Such
decision takes into account the MEC server load and the
transmission delay between the mobile node and the server,
which are expected to affect the application QoS. To deal
with this sequential decision making problem, we cast the
considered offloading decision making problem as an optimal
stopping time problem adopting the principles of optimality
of the Optimal Stopping Theory (OST) [19]. Based on the
OST, our contribution is to determine the best strategy of
when to choose the server with the minimum execution delay
for minimizing the expected holistic cost when offloading.
We believe that the adapted algorithm can be suitable for
MEC applications such VN [25], UAV [28] or for data mining
applications such activity recognition as in [23] as the mobile
nodes roam between a set of MEC servers deployed at the
edge of the network.

The remainder of this paper is organised as follows: we sum-
marise related work and present our contribution in Section
II, while details of the proposed OST-based decision making
system are described in Section III. Performance evaluation
results are provided in Section IV, and Section V concludes
the paper and outlines future research directions.

II. RELATED WORK & CONTRIBUTION

A number of studies on the decision of offloading data
and computing task to an edge node have been conducted
aiming to address different challenges. Two main objectives
prior work focused on included the minimization of the
execution delay and energy consumption. The goal of the
former objective is considered in [13] by applying a one-
dimensional search algorithm. This approach decides, during
each time slot, whether the application waiting in a local buffer
should be processed locally or at the MEC while minimizing
the execution delay. Moreover, it is assumed that the mobile
users are not moving before and during the offloading [14].
The offloading decision in this study is to optimally decide
whether the offloading should be realised (executing the task at
the MEC server) or not (executing the computing task locally
at the mobile device) to minimize the execution delay.

Other studies on the offloading decision to an edge node
have been conducted [10], [16], [21], [22], [24], [26], [27].
The most relevant work to our approach is ST-CODA [10].
ST-CODA is a spatial and temporal computation offloading
decision algorithm that helps the mobile device to decide
where and when to offload tasks in consideration of the
advantages and disadvantages of the computation nodes and
the different transmission costs in edge cloud-enabled het-
erogeneous networks. Our work is different from ST-CODA

because our time-optimised sequential decision refers only to
task offloading to the edge servers rather than the cloud. In
[10], the temporal decision refers to deferring the offloading
decision until a low cost network is found. In our approach, we
defer the offloading decision until a lightly loaded server with
low transmission delay is found. By considering the load of the
MEC server and the transmission delay, we are more likely to
provide higher expected QoS for the users’ applications. Other
works among these studies considered different scenarios in
which the users and the MEC node are mobile and they assume
that the MEC server is another mobile device, e.g., when the
MEC server is a vehicle that has the computing utilities.

The work in [23] presents an computation offloading strat-
egy for a data mining application, i.e. activity recognition
application for mobile devices. Basically, while the user is
moving, data is collected from different sources and stored in
the mobile device. This data is processed in order to get a
decision: whether to be offloaded to an edge server, doing the
task locally or in the cloud. When the decision is to offload
the data to an edge server, the communication interface in the
mobile device starts scanning and gets a list of edge servers. In
this work, the authors assume that there is going to be a list of
edge servers and then the offloading decision strategy will pick
the best one in terms of available resources of these servers.
However, if the mobile node is moving, there might be a
better server in its path (that is not seen by the communication
interface at the moment of doing the scan) as it is moving to
different places. Thus, there might be a better MEC server in
terms of the execution delay.

The work in [28] proposes a cooperative mobile edge
computing to minimize the energy consumption and task exe-
cution latency. The considered use case is for UAV application
that captures photos or videos regularly for different tasks
such as identifying a certain object or acquiring the traffic
condition. The captured photos/videos are then offloaded to
an edge server. When the task is generated by the UAV,
a system orchestrator should determine which server should
be selected, what data rate ought to be adopted to transmit
data to the selected server and how much workload each
servers (cooperators) should be allocated. It is assumed that
the decision is made by the system orchestrator. However, in
our work, the decision is made by the mobile node itself as
in some situations, there might be heterogeneous applications
or different operators for the MEC servers. In such case, the
decision of selecting the MEC server is only done by the
mobile node itself without having a global information or
knowing about the next encountered server and its current
load. In fact, all we need in our proposed model as we will
see in the next sections, is historical data for the servers load
in similar time.

In [25], the authors introduce a predictive off-loading frame-
work in vehicular networks. The motivation for this work is
the development of vehicles which provide intelligent vehi-
cle control, traffic management, and interactive applications
with their equipped computation units and communication
technologies. These applications require higher computing



capabilities which are limited in such environment [25]. In
short, the scenario the authors consider is that a set of vehicles
want to offload tasks to MEC servers that are connected to
roadside unites. Two communication methods were proposed:
Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V).
In the first method, when a task is generated by a vehicle, the
vehicle sends the required data through the roadside unit, and
get the results back from another predicted roadside unit which
is located near to the user at the time when the result is ready.
In the other method, when a task is generated, a vehicle sends
the required data through other vehicles in the road. The data
is submitted to the roadside unit by which the user is more
likely to connects when the result is ready. In the first method,
the task is always submitted to the first MEC. In our work, we
delay the decision in the light of connecting to a better MEC
server by applying the concept of OST.

Contribution: To the best of our knowledge, this is the
first work to consider the decision offloading strategy as an
OST problem under the context where the user is passing by
many MEC servers deployed at the network edge with the goal
of minimizing the execution delay by providing an offloading
strategy of when to select a MEC server. Our work is a general
model that can be adapted in different applications and it is
easy to apply and implement in the decision maker device.

III. TIME-OPTIMISED OFFLOADING DECISION MAKING

A. System Model

We consider a MEC system as shown in Fig. 1, where a
mobile device can offload data to perform a computing task
on a specific MEC server. For each MEC server, at each
time instance, there is a temporal load associated with it.
Such load refers to the number of user requests the server is
processing. The offloaded tasks can be computing tasks over
offloaded data e.g., image recognition, image processing, data
correlation analysis, inferential and predictive analytics [9],
statistical learning models building and/or models selection
[8], [3]. The mobile node can be a smart phone as in [23],
UAVs as considered in [28] or a VN as proposed in [25].
For each server, there is also a transmission delay from the
mobile node to the server, which represents the expected time
for uploading the data to the MEC server and receive the
processed data/analytics results back.

The execution delay for a task (hereinafter is referred to as
total delay) on the MEC server, Do, incorporates, as stated
in [14]:

1) Transmission duration of the offloaded data to the server
Dot.

2) Processing time at the MEC server Dop.
3) Time spent to receive the processed data from the MEC

Dor.
We consider the case of tasks/data offloading as an incen-
tivisation mechanism so that the expected total delay at the
MEC server E[Do] is lower than the expected delay when
executing the tasks locally on the mobile device E[Dl], i.e.,
E[Do] < E[Dl]. That said, the mobile node desires to offload

Fig. 1: MEC Scenario for time-optimised tasks/data offloading.

tasks and data for processing to a MEC server as it does not
have the computational capabilities to do so and/or sufficient
energy for such tasks.

B. Problem Statement

We consider a mobile node who desires to offload data to
an edge server, and there are many deployed MEC servers
in the user path as shown in Fig. 1 and considered in
[25]. The deployed MEC servers are sequentially observed
as candidates and the mobile node has to decide which server
is the best in terms of total delay to offload the tasks/data. We
are challenged to determine the best offloading strategy that
minimizes the expected total delay. We abstract this problem
into the context of sequential decision making whether to
offload the tasks/data to the currently available MEC server or
not. The deal with the above-mentioned strategy, we rely on
the OST to determine an optimal offloading rule for the mobile
node. In the following sections, we provide an overview about
the OST and, subsequently, we show how we develop the
offloading rule in our context.

C. Optimal Stopping Theory

The OST is concerned with the problem of choosing a time
to take a given action based on sequentially observed random
variables in order to maximize an expected payoff or to
minimize an expected cost [19]. There are several models that
can be categorised under the OST with different objectives,
such as the Secretary Problem (SP), the House Selling (HS)
problem, or in problems that aim to maximize the average as
in the Fair Coin Problem [19].

In the HS problem, as stated in [19] and applied in [2],
the optimal stopping rule is to stop at some stage k∗ (optimal
stopping time) to minimize the expected cost. A stopping rule
problem has a finite horizon if there is a known upper bound
n on the number of stages at which one may stop. If stopping
is required after observing S1, S2, . . . , Sn, the problem has
horizon n. In principle, such problems can be solved by the
method of backward induction. Since we must stop at stage
n, we first find the optimal rule at stage n−1. Then, knowing
the optimal cost at stage n − 1, we find the optimal rule at
stage n− 2, and so on back to the initial stage (stage 0). Let
Jk(x) (1 ≤ k ≤ n) represent the minimum expected cost one
can obtain starting from stage k. We define Jn = yn and,



then, inductively for k = n− 1 backward to k = 0, Jk(x) =
min(yk,E[Jk+1](xk+1)). The meaning of this equation is that,
at stage k, we compare the cost for stopping, namely yk, with
the cost E[Jk+1(xk+1)] that we expect to incur by continuing
and using the optimal rule for the stages k+1 through n. The
optimal cost is, therefore the minimum of these two quantities,
and it is optimal to stop at the earliest k when the criterion
yk ≤ E[Jk+1(xk+1)] holds true, that is

k∗ = min
1≤k≤n

{k > 0|yk ≤ E[Jk+1(xk+1)]} (1)

We treat the sequential offloading decision problem as a
finite horizon OST problem, since we should take an of-
floading decision within n observations as assumed in [25].
Specifically, when a task is generated to be offloaded to an
MEC server, the mobile device can either stop the observation
process and offload to the current MEC server k or continue at
observation k+1 server. All past s∗l = 1, . . . , k−1 servers that
are not accepted by the decision maker to offload to are not
recalled in this mode. The last server, i.e., at stage n, must be
accepted if every prior server has been rejected for offloading
the task. Note that in our future work we are dealing with a
recall-mechanism, where the mobile node can recall any past
rejected MEC server.

The objective is to find an optimal stopping time k∗ for
stopping with the minimum total delay D∗ok to guarantee
the QoS of the decision maker. We define a discrete-time
dynamic system, which expresses the evolution of a scalar
variable, hereinafter referred to as the systems state xk, under
the influence of decisions made at discrete instances of time
associated with the kth observation. A state xk summarizes
past information that is needed for future optimization. By
writing that the system is at state xk = s∗k−1 at k ≤ n, we
mean that the decision maker has not offloaded the data to a
MEC server.

By writing that the system is at state xk = xT , we mean that
the decision maker has already offloaded the data to a MEC
server, k ≤ n, where xT is defined as the terminating state.
We take x1 = 0 (a fictitious state). With these conventions
(adopted from [18]) the system equation (the mechanism by
which the system is updated) has the form:

xk+1 =

{
xT , if xk = xT (stop).
s∗k, otherwise (continue).

(2)

Let Jk(xk) be the optimal server to offload data/task to. The
Bellmans equation for this system is then:

Jn(xn) = xn (3)

for k = n, and

Jk(xk) = min
[
(1 + r)n−kxk,E[Jk+1(s

∗
k)]
]

(4)

for k = 1, ..., n− 1.
Note that E[Jk+1(s

∗
k)] = E[Jk+1(xk+1)]. The r ∈ (0, 1)

parameter is a delay factor, which prompts the decision maker
to delay its optimal decision. In our model, a smaller r value

denotes that the decision maker will skip a relatively high
number of observations before proceeding with a offloading
decision. The term (1+r)n−k denotes the risk if the offloading
happens at k and E[Jk+1(s

∗
k)] denotes the expected risk if the

decision maker continues the observation process. Hence, it is
optimal to stop at stage k iff

xk ≤ ak =
E[Jk+1(s

∗
k)]

(1 + r)n−k
, (5)

else, it is optimal to continue. The optimal stopping rule is
determined by the scalar values a1, a2, . . . , an through which
the mobile node decides either to offload or not. Specifically,
the optimal stopping rule of the mobile node is:

Optimal Task Offloading Rule: stop the observation
and offload the data at the k-th MEC server if xk ≤ ak;
otherwise continue the observation if xk > ak.

In particular, the optimal stopping rule states that the
offloading decision (stopping) should happens right after re-
ceiving the k-th observation for which the total delay Do ≤ ak.
The scalar variable ak values are calculated once through the
method of backward induction using the equations (6) and (7).

ak =
1

1 + r

(
ak+1(1− F (ak+1)) +

∫ ak+1

0

udF (s)

)
(6)

an =
1

1 + r

∫ 1

0

udF (s) =
1

1 + r
E[s], (7)

where F (s) = P (s∗ ≤ s) is the cumulative distribution
function of s∗.

As it was mentioned earlier, the r value is a delay factor
which prompts the decision maker to delay or speed its optimal
decision.

Before calculating the stopping rules, we need to know the
probability distribution of the random variable. For example, if
the total delay Do, including Dot, Dop and Dor, is uniformly
distributed, we would first get the cumulative distribution
using:

F (c ≤ X ≤ d) =
∫ d

c

f(x)dx =
1

b− a
dx =

d− c
b− a

(8)

with a ≤ c < d ≤ b. After that, we calculate the expected
delay of the load using:

E(X) =

∫ b

a

f(x)dx =

∫ b

a

x

b− a
dx =

b− a
2

, (9)

were a ≤ X ≤ b.
For example, if we have an idea that the Dop in a specific

time interval is uniformly distributed between a = 1 and b =
20 seconds by studying the previous Dop of the same servers
at similar time, we start obtaining the scalar variable an and
ak by the backward induction method using equations (7) and
(6).

The scalar decision values {ak}nk=1 are illustrated in Figure
2. Now, it is optimal to offload at time k, i.e., on the k-th MEC,
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Fig. 2: The values of the decision scalars {ak}nk=1 for n = 20 observations
based on a uniform distribution of the load for different delay factors r.
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Fig. 3: The values of the decision scalars {ak}nk=1 for n = 20 observations
based on a normal distribution of the load for different delay factors r.

if the total delay Do ≤ ak; otherwise, continue. In other words,
it is optimal to stop if the value of the total delay is under the
curve shown in Figure 2. By doing this, we are minimizing
the expected total delay.

Figure 3 shows the a values when the random variable, i.e.
Dop, is normally distributed. When the random variable is nor-
mally distributed with known mean and standard deviation, we
follow the same steps as we did with the uniform distribution
in order to get the a values. We get the cumulative distribution
function of the normal distribution using:

F (X) =

∫ x

−∞
f(x)dx =

1

σ
√
2π
e−(x−µ)

2/2σ2

(10)

To summarize, the first procedure of the HS model is to obtain
the scalar values {ak}nk=1 considering the above-mentioned
model. In real world scenario, the values of a can be calcu-
lated and distributed by the operator of the MEC servers to
the mobile nodes. After that, the mobile node will run the
lightweight process shown in Algorithm 1. The mobile node
observes the total delay Do of MEC servers, which is provided
by each of them upon request. Then, the mobile node offloads
their tasks/data to the first MEC server k which has total delay
Do less than or equals to the variable ak. Based on this optimal
offloading rule, the mobile node is more likely to minimize
the total delay Do. If no offloading decision is made after
observing the n MEC servers, the mobile node offloads the
tasks/data to the n-th MEC server, since no recall is allowed
in the work of this paper. In our future research agenda, we
consider the recall option.

Algorithm 1 Optimal tasks/data offloading rule
Input: Decision scalar values a1, a2, ..., an
Output: Decision of which MEC server to
offload

Offload ← FALSE
for k = 1 : n do

if Do,k ≤ ak then
MEC-Server ← k ;
Offload ← TRUE; break;

end if
end for
if Offload == FALSE then

MEC-Server ← n;
end if
Offload tasks/data to the MEC-Server;

IV. PERFORMANCE EVALUATION

A. Real Datasets

We used two real data sets in order to evaluate the proposed
optimal strategy and show the benefit of the OST approach in
tasks/data offloading. The first data set is a real mobility trace
[12] which contained the location (Access Point association)
and the timestamp of each wireless card seen on Dartmouth
university campus. The second data set is a real-world mobile
network traffic data set, published in 2014 by Telecom Italia
[4]. It contained mobile users’ activities, such as call, SMS,
and Internet data connectivity, in terms of the observed traffic
for each cell over one hour. We considered the period from
1-11-2013 until 7-11-2013 and adopted the Internet activities
data in our simulation.

The considered data sets have been used in the literature to
study mobility, offloading decision and resource management
in MEC as in [20] and [5]. The movements between the MEC
servers are represented by the users’ traces obtained from the
first data set. The MEC servers with the temporal load for
each are represented by the second data set, i.e the Internet
traffic. Thus, the two data sets were combined together to form
a new data set that was used to simulate a MEC environment.
Specifically, we mapped the cells, from the mobile network
data set, to the APs in the mobility trace in order to have a
load for each AP to simulate the considered scenario. Hence,
the APs with the mapped cell and the Internet activity form
the MEC servers with a load for each one. Tables I, II and
III show a sample of the two data sets and how they were
combined for the purpose of our simulation.

For example, if we consider the first row in Table III,
we see that the user at the time of 1039045116 (a UNIX
timestamp equivalent to 04/12/2002 23.38) connects to AP
AcadBldg18AP2 (simulated as a MEC server) with the load
of 10.466 (The load of the mapped cell). We assumed that the
Internet load is the processing delay Dop at the MEC. Also,
we add a transmission delay, i.e., 0 < Dot, Dor ≤ 1 for each
server. Hence, the total delay Do is the sum of Dop, Dot, and



TABLE I: Mobility Trace

Time Access Point
1043522712 ResBldg55AP2
1043523266 AcadBldg18AP5
1043523287 ResBldg55AP2
1043523792 ResBldg55AP4

TABLE II: Internet Traffic For a Set of Cells
Time Cell ID Internet Traffic

06/11/2013 01.00 1 42.68
06/11/2013 01.00 2 42.76
06/11/2013 01.00 3 42.84
06/11/2013 01.00 4 42.45

TABLE III: Combined Data Set
Time1 Time2 Access Point Cell ID Cell Internet Load

1039045116 04/12/2002 23.38 AcadBldg18AP2 2158 10.466
1039045116 05/12/2002 22.52 AcadBldg18AP2 2158 19.1095
1040424957 20/12/2002 22:52 AcadBldg10AP15 5395 20.1029
1040424957 20/12/2002 22:55 AcadBldg10AP12 1643 13.2935

Dot and the random variable we care about is Do. Our goal
is to minimize the total delay Do.

B. Performance Metrics & Assessment

We implemented the Algorithm 1 and applied it to 40
mobile user traces considering an interval time of one day
to evaluate our OST-based offloading model. As the total
delay for these traces follows Gaussian distribution, we use
the mean and the standard deviation of the same interval and
applying the model in Section III-C to calculate the values
of {ak}nk=1. The results are presented in Fig 4 in which we
show the difference between the HS model with different delay
factor values and the optimal solution in seconds. The optimal
solution is obtained by selecting the server with the minimum
total delay in each interval. In general, the HS model is close
to the optimal and this is due to the fact that the mean and
the standard deviation is obtained from the same interval.
However, this situation might not be realistic in a real world
scenario, as sometimes, the mean and the standard deviation
of the current time interval will not be available.

A realistic case would be based on the mean and the
standard deviation obtained from previous records for the
servers’ load in the user route. For example, If we have an
idea about the route the user is taking as proposed in [25],
we look at the mean and the standard deviation of the load of
the MEC servers in that path in a previous day (similar time).
Thus, for each interval, before running the HS model, we first
get the mean and the standard deviation for the servers’ load in
that interval from the whole trace. For example, let’s say that
the user in the current interval connects to server A,B,C and D.
First, we get the load for these servers from all intervals in the
trace, then we calculate the average and the standard deviation.
The results are shown in Fig 5. Again, the HS model is very
close to the optimal and the difference is less than the previous
first experiment. The obvious reason for this good results is
that the average and the standard deviation are known (from
the trace) and very close to the actual average of each interval.
Thus, in real world scenario, if we have good statistics about
the load of the MEC servers’ load, then the HS model is good
to apply and it guarantees to offload to an edge server with
minimized total delay.

To see the behaviour of the HS model in one interval for
different values of delay = {0, 0.25, 0.5, 1}, we considered
one interval, i.e one day. In this interval, the servers the user

connects to are very similar to the ones in the interval before.
Thus, it is more realistic to consider the mean and the standard
deviation from the previous record. Thus, we considered the
mean and the standard deviation from the previous interval.
The results are shown in Fig 6. As you can see, the HS is
very close to the optimal and the difference is high for r = 0
and for r = 1 . When r value is low, the decision is delayed.
This gives the model higher chance of picking the optimal one
as observed in Fig 4 and 5. But, for some cases, the optimal
can be at the beginning of the interval and sometimes it can be
the last server, but after all, the goal of the HS is to minimize
the total delay and not to pick the optimal one.

In general, when considering the value of r, we observe two
important things. First, in overall, as it can be seen in Fig 2,
3, 4 and 5, when the value of r is high, the model picks the
server earlier, and most of the time, the first server is picked.
In such case, we have big difference comparing to the optimal
solution as shown in Fig 4 and 5. When the value of r is
low, we observe that the model is very close to the optimal.
Such results give us an indication that speeding the offloading
decision to the first servers is not always a good idea to have
a minimized delay. Second, sometimes, in addition to finding
a minimized delay, we have some constrains or a deadline for
the task. In that case, we can adjust the value of r and force
the model to make the selection in an early stage.
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Fig. 4: Overall difference between the Optimal and House Selling model;
The σ and µ are taken from the same interval.
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Fig. 5: Overall difference between the Optimal and House Selling model;
the σ and µ are taken from the all traces.
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Fig. 6: The Optimal and the House Selling model for one interval for
different delay factors r.

V. CONCLUSIONS

In this paper, we proposed an Optimal Stopping Theory-
based offloading sequential decision strategy for mobile users
in Mobile Edge Computing environments. In this context,
mobile users sequentially determine when and which server
to offload their tasks/data considering the total delay incurred
at each server. Our model is very close to the optimal solution
and in sometimes, it obtains the optimal server to offload a
task. We believe that this model can be suitable for several
MEC applications involving drones or novel/emerging smart
phones mobile applications. As future work, we aim to con-
sider the case where there is a deadline by investigating the
value of the delay factor r and how it can be adapted for
different uses cases.
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