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Figure 1: We investigate how graphical filters impact the usability and security of text passwords on mobile devices compared
to displaying them in plain text or asterisks. It is difficult to mentally reverse distortions, hence it is challenging for observers
to know what the text passwords above are. At the same time, if a user knows that the leftmost word is Color-Halftone, they
can easily map the word’s letters to the distortions. This improves error correction, while maintaining observation resistance.

ABSTRACT
Entering text passwords on mobile devices is a significant challenge.
Current systems either display passwords in plain text: making
them visible to bystanders, or replace characters with asterisks
shortly after they are typed: making editing them harder. This work
presents a novel approach to mask text passwords by distorting
them using graphical filters. Distorted passwords are difficult to
observe by attackers because they cannot mentally reverse the
distortions. Yet passwords remain readable by their owners because
humans can recognize visually distorted versions of content they
saw before. We present results of an online questionnaire and a user
study where we compared Color-halftone, Crystallize, Blurring,
and Mosaic filters to Plain text and Asterisks when 1) entering,
2) editing, and 3) shoulder surfing one-word passwords, random
character passwords, and passphrases. Rigorous analysis shows that
Color-halftone and Crystallize filters significantly improve editing
speed, editing accuracy and observation resistance compared to
current approaches.
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1 INTRODUCTION
Despite the significant advancements in authentication on smart-
phones and tablets, text passwords continue to be one of the most
widely used schemes on handheld mobile devices. They are of-
ten used when accessing services such as emails, online banking,
e-shopping, and more [21].

Entering text passwords on mobile devices is not only error
prone and time consuming [13, 21, 23], but also subject to shoulder
surfing [4, 27]. Melicher et al. reported that users take 20% longer to
enter passwords on mobile devices, and made twice as many errors
[21]. We are not aware of any statistics on how often users edit
passwords. Likely because current methods do not allow noticing
typos, which makes correcting typos harder than reentering the
password. Schaub et al. [23] collected information on edits during
password entry, but they aggregated it with incorrect entries to
estimate the error rate without reporting how often edits occur
As for security, a field study by Eiband et al. documented cases of
shoulder surfing text passwords when logging into online shopping
websites where biometric authentication is still widely unsupported
[4]. This underlines the need for improving both the usability and
security of password entry on handheld mobile devices.

Android and iOS either use asterisks tomask the characters of the
password shortly after the user enters them, or keep them clearly
visible in plain text during the entire interaction. While asterisks
reduce the shoulder surfing risk, they make it more challenging for
users to notice and correct typos, which are common on mobile
devices [13, 21]. On the other hand, showing the passwords in plain
text simplifies entering and editing them. The downside is that this
exposes passwords, making them easier to observe by bystanders.

In this work, we investigate the application of graphic filters
onto text passwords to overcome the aforementioned usability
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and security challenges. We leverage properties of filters that take
advantage of the user’s memory and visual perception. Namely,
humans can recognize visually distorted versions of content that
they have seen before [2, 6, 11]. However, the distortions remain
ambiguous to people who have not seen the original content, i.e.,
people struggle to mentally reverse distortions [3, 9, 10, 28]. For
example, it is difficult to understand the text in Figure 1 before
learning that they refer to Color-Halftone, Crystallize, Gaussian
Blur, and Mosaic. While these properties of human perception has
been used for graphical authentication [3, 9, 10] as well as privacy
protection when browsing photos [28] our work is the first to
investigate its impact on text passwords for mobile devices.

Inspired by promising results in prior works, and based on the
results of an online questionnaire (N=163), we chose to investigate:
1) Color-halftone, 2) Crystallize, 3) Gaussian-Blur, and 4) Mosaic
filters. In a follow up user study (N=25), we compared the filters to
current implementations on Android and iOS as baselines, namely,
displaying passwords in 5) Plain text and replacing characters by 6)
Asterisks shortly after they are typed. We evaluated the impact on
one-word passwords, passwords consisting of random characters,
and passphrases consisting of multiple dictionary words. To gauge
usability, we measured entry time and accuracy, and editing time
and accuracy. As for security, we evaluated the susceptibility of the
password to shoulder surfing. While the filters did not impact entry
time and accuracy, we found that the Color-halftone and Crystallize
filters significantly improve both editing accuracy compared to the
other filters and editing time compared to Asterisks. At the same
time, both Color-halftone and Crystallize filters are significantly
more resilient to shoulder surfing than the baselines and the Mosaic
filter. We conclude by discussing the implications of graphic filters
on the usability and security of text passwords.

This work contributes 1) the introduction of graphical filters
to improve the usability and security of text passwords, 2) an un-
derstanding of the impact of filters on editing time and accuracy,
and on resilience to shoulder surfing, and 3) recommendations for
improving the UX of authentication UIs.

2 RELATEDWORK
Our work builds on: 1) text passwords on mobile devices, and 2)
security and privacy protection using obfuscation.

2.1 Text Passwords on Mobile Devices
While the research community introduced a plethora of authenti-
cation schemes for mobile devices (e.g., [16, 18, 20, 25, 29]) in this
work we focus on text passwords. Although text passwords were
long predicted that they will cease to exist [22], they are still widely
used for on mobile apps as well as online websites and services
accessed from mobile devices [26].

Several works studied text password entry and creation on mo-
bile devices. It is generally agreed upon that entering text passwords
onmobile devices is error prone [21], time consuming [26], and frus-
trating [13, 21]. For example, a study by von Zezschwitz et al. [26]
showed that authentication is slower onmobile devices compared to
desktop computers. Greene et al. [7] found that password entry on
mobile devices is more error prone and takes more time. Like Yang
et al. [30], they attributed this to the lack of tactile feedback and

the size of virtual keyboards on mobile devices. Schaub et al. [23]
highlighted that switching layouts on virtual keyboards (e.g., to
enter symbols) is one reason behind increased authentication time
on mobile devices. Haque et al. [8] found that users create weaker
passwords on mobile devices, and proposed layouts to encourage
the use of special characters and digits on mobile devices. Melicher
et al. [21] found that users need 20% longer time to authenticate
on mobile devices, and make twice as much errors. Jakobsson and
Akavipat [13] proposed Fastwords, which employs pass phrases
with flexibility to synonyms and order of words, auto-correction,
and auto-completion to make entries faster and more accurate.

While the aforementioned works highlighted usability issues re-
lated to text passwords, a survey by Eiband et al. asked participants
for their experiences with shoulder surfing, and concluded that
text passwords are among the content that is being successfully
shoulder surfed in daily situations [4]. For example, in one of the
reported stories, a person observed a user sitting next to them and
learned their Amazon account’s username and text password.

From previous work, we learn that there is a need to improve
the usability and security of text passwords on mobile devices.
In particular, there is a need to improve entry time [23, 26], error
correction [13, 21], and observation resistance [4] of text passwords.
We hence explore alternatives to mask text passwords, and compare
them to baselines from commonly used operating systems.

2.2 Security and Privacy Protection through
Obfuscation

Humans excel at recognizing patterns in images and relating them
to patterns that they know [19]. Interestingly, humans can recog-
nize patterns even in distorted or low quality images. For example,
humans can recognize faces they know in low quality surveillance
videos [2, 11]. Humans can also recognize the content of distorted
versions of images that if they had seen the original undistorted
versions before [6, 9]. These abilities stem from multiple human
properties that were studied extensively in previous research on
visual perception and cognitive psychology [2, 6, 19].

These properties were exploited in multiple works to improve
graphical passwords [3, 9, 10]. The idea was to show the user an
undistorted image when creating a password, and allow users to
authenticate by selecting the image from a set of distorted images.
Users were easily able to distinguish the images they chose as pass-
words because they saw the original undistorted versions before,
but observers were unable to understand the content of the images.
Von Zezschwitz et al. also leveraged this property to protect privacy
when browsing photo albums in public [28]. Eiband et al. distorted
text messages using the user’s handwriting, making it difficult for
observers to read but not for legitmate users [5]. In EyeSpot [17], the
phone’s screen is distorted when texting or writing emails except
for the area the user is gazing at. Crystallized masks were favored
over blackout masks in EyeSpot because they maintained some
contextual information (e.g., the user could still see who the last
person to send a text message was), while still providing a relative
protection from shoulder surfing. Compared to the aforementioned
works, our work is the first to explore the impact of graphic filters
on text passwords on mobile devices.



3 THREAT MODEL
In our threat model, the user is entering a text password on their
mobile device in a context in which they are subject to shoulder
surfing. For example, text passwords are shoulder surfed in public
transport, public spaces, and at work [4, 12]. The observer has a
perfect view of the interface during and after authentication.

4 DESIGNING THE FILTERS
Prior work experimented with a variety of filters to obfuscate con-
tent. The most promising ones were crystallize [17, 28], mosaic (aka
pixelate) [28], and Oil Paint [10, 28]. The latter was shown in mul-
tiple works to be limited in terms of observation resistance [10, 28].
On the other hand, filters such as Color-halftone and Gaussian-Blur
were never investigated before. Thus, we chose to experiment with
Color-halftone, Crystallize, Gaussian-Blur and Mosaic.

Filters can be applied in a wide range of ways and degrees (e.g.,
radius of the distortions). To determine the optimal parameters, we
ran multiple pilot tests and an online questionnaire (N=163) where
we experimented with different strengths of each filter.

4.1 Online Questionnaire
In the online questionnaire we evaluated the four different filters
with two strengths each. We distributed the questionnaire via uni-
versity mailing lists. We asked participants about visual impair-
ments: 1 had Keratoconus, 4 were long sighted, 51 were short
sighted (7 of which had astigmatism), and 8 reported poor eye-
sight without further details. The majority reported using sight
correction Participants answered 20 questions out of a pool of 48
questions about 1) guessability with prior knowledge of the clear
text (e.g., which of those distorted texts correspond to the word uni-
versity?), and 2) guessability without prior knowledge of the clear
text (e.g., which of the following texts is the clear version of this
distorted image?). Questions of type (1) are to simulate cases where
a user knows the clear version of their password, and matches it
to a distorted version. While questions of type (2) simulate cases
where an observer guesses distorted versions of passwords but they
do not know the undistored version. Out of the 48 questions, 24
were type (1) and 24 were type (2). Each participant was randomly
allocated 10 of each type. Each of the 48 questions was answered at
least 50 times All participants answered questions from both types.

We used Adobe Photoshop to apply the filters on pre-prepared
text snippets. All snippets used 11pts font-size, normal font-weight,
character-spacing of 0%, and were in black color (#000000). The text
snippets were then rasterized with a resolution of 300 Pixels/inch
in sRGB IEC61966-2.1 Mode with a bit depth of 8 bit. Afterwards,
the distortion filters were applied on the text-elements, each in two
variants that were found promising through pilot tests:

• Color-halftone: 5 pixels and 6 pixels radii.
• Crystallize: 7 pixels and 8 pixels cell size.
• Gaussian-Blur: 7.5 pixels and 8 pixels radii.
• Mosaic: 10 pixels and 11 pixels cell sizes.

The light and strong variants were based on pilot tests in which
we heuristically tested all possible variants among the authors and
4 participants to exclude those very clear to observers (lower limit)
and those unclear to users (upper limit).

Figure 2: Results from an online questionnaire (N=163) in-
dicate that prior knowledge of distorted text (e.g., a user ex-
amining a distorted password that they have just entered)
improves guessability. On the other hand, not having prior
knowledge of the distorted word (e.g., an observer shoulder
surfs a distorted password that a user has entered) makes it
more difficult to guess the distorted password.
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Figure 3: Participants entered passwords using A) Color-
halftone filter, B) Crystallize filter, C) Gaussian-Blur filter,
D) Mosaic filter, E) Plain text and F) Asterisks.

A total of 163 participants completed the questionnaire. In open
questions where participants had to provide their guesses in text,
we measured the Levenshtein distance between the response and
the correct answer. While multiple choice questions were evaluated
as either correct (1/1) or incorrect (0/1). The results for each filter
type and strength are aggregated and summarized in Figure 2. The
figure shows that for all filters of all strengths, participants are
better at interpreting distorted words when they know the original
clear version, which is inline with prior work [2, 3, 6, 9, 10, 19]. We
raffled 3 online shop vouchers to compensate participants.

We chose to prioritize usability over security in our selection of
the filters. This was done to ensure that we reach an implementation
that users would actually accept to be willing to use. Otherwise,
optimizing for security at the expense of usability might result in
lower acceptance, which eventually reduces security and reduces
the overall value. Hence, we picked the filter strengths that provide
higher guessability to the user who has prior knowledge of the
text, i.e., the user who has just entered a password rather than the
observer who does not know the password. Therefore, we chose to
focus on these filters in our follow up study: the light variation of
Color-halftone (5 pixels radius), the light variation of Crystallize
(7 pixels cell size), the strong variation of Gaussian-Blur (8 pixels
radius), and the light variation of Mosaic (10 pixels).



4.2 Implementation
Based on the results of the online questionnaire, we implemented
the filters in Javascript to allow experimenting with the different fil-
ters in real timewhile authenticating onmobile devices.We used the
JSManipulate library1 to implement the Gaussian-Blur and Mosaic
filters using the blur_default and pixelate_default functions
respectively. We implemented Color-halftone and Crystallize filters
by creating custom web fonts. To create the web fonts, we first
applied the respective filters on all alphanumeric characters using
Adobe Photoshop the same way we did for the online questionnaire.
Distorted characters were then exported as TFF images, which were
then used to create the web font.

5 USER STUDY
To evaluate the impact of the filters on the text password’s usabil-
ity and security, we conducted a study that is divided into two
experiments: a usability evaluation experiment and a security one.
Both experiments complied with university’s ethics regulations. All
participants started with the usability experiment, followed by the
security experiment. We used a repeated-measures design for both
experiments with two independent variables:
IV1 Filter: we experimented with two baselines: Plain text, Aster-

isks, and four filters: Color-halftone, Crystallize, Gaussian-
Blur, and Mosaic filters.

IV2 Password type: we experimented with three types: one-
word passwords, random characters passwords (including
digits, uppercase, lowercase, and special characters), and
passphrases [15].

We invited 25 participants (11 females) aged between 18 and
32 years (M = 26.64, SD = 3.74) through the word of mouth and
university mailing lists. When asked, participants indicated that
they use text passwords regularly: 9 enter text passwords more
than once per day, 8 enter them more than once per week, 4 enter
them more than once per month, and 4 enter them once or less per
month. Participants were compensated with an e-voucher.

5.1 Usability Experiment
We evaluated impact of using the different filters on the usability of
text passwords on mobile devices. Participants performed 36 blocks
(6 filters × 3 password types × 2 runs). In each block, they had to
input a unique password and then edit the password they had just
entered. The order of conditions was counter balanced using a Latin
square. We measured the input time, input accuracy, editing time,
and editing accuracy.

In the input task, participants had to enter a text password on
their mobile device. They were shown a password on a computer
screen, and were then asked to enter it in an input field on a cus-
tomizedwebsite that ran on a local server (see Figure 3). Thewebsite
was accessed through the participant’s own mobile device. The re-
spective filters were applied on the entered password according to
the Latin square. We measured the input time and accuracy.

In the editing task, participants had to edit the password they
had just entered. They were shown the same password on the
computer screen, but this time with a red arrow pointing between

1https://github.com/JoelBesada/JSManipulate

Figure 4: To evaluate observation resistance, participants
watched high quality videos of users entering passwords
masked with the different filters. Their task was to provide
up to 3 guesses of the observed password.

two characters. Participants were asked to insert the character
‘X’ at the shown position. Although actions like replacing and
deleting characters are also typical editing tasks, we opted for this
task because 1) it requires recognizing certain characters before
knowing where to add the ‘X’, and 2) it is a prerequisite step for
replacing, and deleting characters. We measured the editing time
and accuracy.

Participants used their own smartphones in both tasks to avoid
the impact of using an unfamiliar device. Some mobile devices
provide feedback about the tapped key by enlarging the tapped key
briefly. We disabled this feature on the participants’ smartphones
to ensure a fair comparison.

5.2 Security Experiment
Since the filters affect the way the passwords are shown, we evalu-
ated the impact of using filters on their observation resistance.

To this end, we showed participants videos of users entering text
passwords on a mobile device from an optimal angle (see Figure 4).
Those videos were previously recorded from the same angle as one
of the authors authenticated. The participant’s task was to act as a
shoulder surfer and try to infer the entered password. Participants
watched two high quality video recordings of a user entering a text
password in 18 conditions (6 filters × 3 password types). Thus, par-
ticipants performed a total of 36 attacks. Participants were provided
with pen and paper to take notes, and were allowed to provide up
to 3 guesses. We measured the successful guessing rate, and the
accuracy of the guesses. To motivate participants to put an effort
in their attacks, we arranged a raffle where every correct guess
increases the chance to win an additional voucher.

6 RESULTS
This section presents the results of the usability and security evalu-
ations.

6.1 Usability Evaluation Results
We measured 1) input time, 2) input accuracy, 3) editing time, and
4) editing accuracy.
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Editing Time
Color-halftone

7.1 s
Crystallize

7.97 s
Gaussian-Blur

10.54 s
Mosaic
9.67 s

Plain text
6.18 s

Asterisks
9.94 s

Color-halftone
7.1 s - p > 0.05 p < 0.05 p > 0.05 p > 0.05 p < 0.005

Crystallize
7.97 s p > 0.05 - p > 0.05 p > 0.05 p > 0.05 p < 0.05

Gaussian-Blur
10.54 s p < 0.05 p > 0.05 - p > 0.05 p < 0.005 p < 0.001

Mosaic
9.67 s p > 0.05 p > 0.05 p > 0.05 - p > 0.05 p > 0.05

Plain text
6.18 s p > 0.05 p > 0.05 p < 0.005 p > 0.05 - p < 0.001

Asterisks
9.94 s p < 0.005 p < 0.05 p < 0.001 p > 0.05 p < 0.001 -

Editing Accuracy
Color-halftone

0.207
Crystallize

0.227
Gaussian-Blur

1.067
Mosaic
1.067

Plain text
0.04

Asterisks
9.94 s

Color-halftone
0.207 - p > 0.05 p < 0.001 p < 0.005 p > 0.05 p > 0.05

Crystallize
0.227 p > 0.05 - p < 0.001 p < 0.005 p > 0.05 p > 0.05

Gaussian-Blur
1.067 p < 0.001 p < 0.001 - p > 0.05 p < 0.001 p < 0.001

Mosaic
1.067 p < 0.005 p < 0.005 p > 0.05 - p < 0.001 p < 0.001

Plain text
0.04 p > 0.05 p > 0.05 p < 0.001 p < 0.001 - p > 0.05

Asterisks
0.193 p > 0.05 p > 0.05 p < 0.001 p < 0.001 p > 0.05 -

Table 1: The tables highlight the pairs with significantly different editing time (left) and accuracy (right). Plain text, Color-
halftone, and Crystallize filters result in both the fastest and most accurate editing. Editing when using Asterisks is accurate
but slow, because participants count the Asterisks until they find the desired position rather than recognizing the characters.

6.1.1 Input time. was measured in milliseconds from the moment
the user started entering the first character until the moment the
last character was entered. The input times are: 12.1 s for Color-
halftone (SD = 0.55 s), 12.64 s for Crystallize (SD = 0.69 s), 12.73 s for
Gaussian-Blur (SD = 0.67 s), 12.33 s for Mosaic (SD = 0.66 s), 12.32 s
for Plain text (SD = 0.66 s), and 12.45 s for Asterisks (SD = 0.63 s).
We found no significant effect of filter type in input time (p = 0.68).
This means we found no evidence that the filters impact input time.

On the other hand, a repeated measures ANOVA revealed a
significant main effect of password types on input time (F2,48 =
236.723, p < 0.001). Post hoc pair-wise comparisons with Bonfer-
roni correction showed significant differences between all pairs (all
p < 0.001): one-word passwords are significantly the fastest to en-
ter (M = 7.66 s , SD = 0.42 s) followed by passphrases (M = 12.53 s ,
SD = 0.73 s), and then random character passwords (M = 17.32 s ,
SD = 0.615 s). This confirms prior work on passphrases [14, 15]. We
found no interaction between filter and password type (p = 0.856).

6.1.2 Input accuracy. wasmeasured by calculating the Levenshtein
distance between the entry and the actual password. The input ac-
curacy for each filter type is: 0.07 for Color-halftone (SD = 0.26), 0.11
for Crystallize (SD = 0.36), 0.09 for Gaussian-Blur (SD = 0.38), 0.05
for Mosaic (SD = 0.23), 0.05 for Plain text (SD = 0.24), and 0.05 for As-
terisks (SD = 0.23). While the input accuracy for each password type
is: 0.05 for one-word passwords (SD = 0.22), 0.04 for randomized-
characters passwords (SD = 0.22), and 0.12 for passphrases (0.41).
We found no significant effect of filter type or password type on
input accuracy (both p > 0.05). No interaction was found between
filter type and password type as well (p > 0.05). This means that
there is no evidence that the filters or password types influence
input accuracy.

6.1.3 Editing time. wasmeasured from themoment the user tapped
a button that shows the last entered password with the filter ap-
plied on it, until the user has entered the character ‘X’. A repeated
measures ANOVA with Greenhouse-Geisser correction (due to vi-
olation of the sphericity assumption) revealed a significant main
effect of filter type on editing time (F2.47,59.17 = 6.45, p < 0.005).
Table 1 shows the results of the pair-wise comparisons (all Bon-
ferroni corrected). In summary, users edit passwords in Asterisks
in significantly more time compared to Color-halftone, Crystal-
lize, Gaussian-Blur and Plain text. Color-halftone results in signif-
icantly shorter editing time compared to Gaussian-Blur. Editing
in Plain text is significantly faster than in Gaussian-Blur, but no

significant differences were found between Plain text and either
of Color-halftone or Crystallize. This means that that Plain text,
Color-halftone, and Crystallize are fastest in terms of editing time.

Editing time is 8.15 s for one-word passwords (SD = 0.58), 8.62 s
for randomized-characters passwords (SD = 0.57), and 8.94 s for
passphrases (SD = 0.61). No Significant main effect of password
type was found on editing time (p > 0.05).

6.1.4 Editing accuracy. was measured by counting the number of
characters between the correct position and the expected position.
A repeated measures ANOVA with Greenhouse-Geisser correction
(due to violation of the sphericity assumption) revealed a signifi-
cant main effect of filter type on editing time (F2.47,59.17 = 6.45,
p < 0.005). Table 1 shows the results of the post hoc pair-wise com-
parison with Bonferroni correction. Editing is most accurate when
using Plain text. Interestingly, participants’ edits were accurate
when using Asterisks because, as they explained, they counted the
characters until they found the correct position. This however takes
time as reflected by the long editing times associated with Asterisks
(see Table 1). On the other hand, Color-halftone and Crystallize
result in significantly higher accuracy than Gaussian-Blur and Mo-
saic. This means that that Plain text, Asterisks, Color-halftone, and
Crystallize result in the most accurate editing.

Mean editing accuracy is 0.44 for one-word passwords (SD = .79),
0.43 for randomized-characters passwords (SD = .82), and 0.56 for
passphrases (SD = .92). We found no significant effect of password
type on editing accuracy p > 0.05.

6.2 Security Evaluation Results
We measured the successful attack rate, and the accuracy of the
guesses. Out of the 3 guesses made in each attack, only the best
guess (i.e., the one with the shortest Levenshtein distance to the
actual password) was considered in the analysis. This was done to
evaluate the filters in worst case scenarios.

6.2.1 Successful Attacks. Figure 5 summarizes the rate of successful
attacks against each filter and each password type. Participants were
least successful when attacking passwords on which Color-halftone
and Crystallize filters were applied. Gaussian-Blur and Mosaic were
moderately secure against shoulder surfing, but not when using
one-word passwords.

6.2.2 Accuracy of Guesses. To measure the accuracy of the guesses,
we calculated the Levenshtein distance between the attacker’s guess



Figure 5: Successful attack rates are lowest against pass-
words masked with Color-halftone and Crystallize filters.
Gaussian-Blur andMosaic filters performwell with random
characters and passphrases. Guesses against Plain text are
themost successful, followed by Asterisks because of reveal-
ing the entered character briefly before masking it.

and the actual password. Since the passwords were of different
lengths, the Levenshtein distances were first normalized to a 0 to
1 range. A repeated measures ANOVA revealed a significant main
effect of the filter type (F5,120 = 186.9, p < 0.001) on the accuracy of
guesses. Post hoc pair-wise comparisons with Bonferroni correction
revealed significant differences between multiple pairs as illustrated
in Table 2. In summary, Table 2 shows that guesses against pass-
words on which any of the filters is applied are significantly farther
away from the actual password (i.e., less correct) compared to those
against passwords displayed in Asterisks and Plain text. It shows
that Color-halftone, Crystallize and Gaussian-Blur outperform Mo-
saic, that Crystallize outperforms both Gaussian-Blur and Mosaic,
and that Asterisks outperforms Plain text. The low observation
resistance of Asterisks is due to current implementations on widely
used operating systems, where typed characters are revealed for
some milliseconds before being masked.

A repeated measures ANOVA with Greenhouse-Geisser correc-
tion (due to violation of the sphericity assumption) revealed a signif-
icant main effect of the password type (F1.62,38.78 = 5.7, p < 0.05)
on the Levenshtein distance between the guess and the password.
Post hoc pair-wise comparisonswith Bonferroni correction revealed
that guesses against passphrases (M = 51.7%, SD = 1.6%) are sig-
nificantly less successful than guesses against one-word passwords
(M = 58.3%, SD = 2.5%), p < 0.005 and those against random
character passwords (M = 56.3%, SD = 1.5%) p < 0.05. This is
inline with previous work [14].

A statistically significant interaction effect was found between
the filter type and password type (F5.31,127.46 = 4.57, p < 0.001).
Therefore we ran subsequent one-way repeated measures ANOVA
tests to compare the filters for each password type. In all tests,
attacks against passwords with either Color-halftone or Crystallize
filters were found to be significantly less accurate compared to the
baselines.

Guessing Accuracy
Color-halftone

31%
Crystallize

23.4%
Gaussian-Blur

38.9%
Mosaic
55.8%

Plain text
96.5%

Asterisks
86.8%

Color-halftone
31% - p > 0.05 p > 0.05 p < 0.001 p < 0.001 p < 0.001

Crystallize
23.4% p > 0.05 - p < 0.005 p < 0.001 p < 0.001 p < 0.001

Gaussian-Blur
38.9% p > 0.05 p < 0.005 - p < 0.005 p < 0.001 p < 0.001

mosaic
55.8% p < 0.001 p < 0.001 p < 0.005 - p < 0.001 p < 0.001

Plain text
96.5% p < 0.001 p < 0.001 p < 0.001 p < 0.001 - p < 0.001

Asterisks
86.8% p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 -

Table 2: Pair-wise comparisons show that Crystallize and
Color-halftone filters are significantly more shoulder surf-
ing resilient compared to Mosaic, Plain text and Asterisks.
Crystallize is also significantly more secure compared to
Gaussian-Blur. All filters provide higher protection than
Plain text and current implementations of Asterisks.

6.3 Qualitative Feedback
After both the usability and security experiments, we condluded
with a semi-structured interview. Feedback was analyzed using
thematic analysis and clustered into 3 themes.

6.3.1 Theme 1: Easier editing using the proposed filters. Several
participants (N=7) indicated that editing text passwords that are
masked with the proposed filters is easier than when they are
masked using Asterisks. P2 highlighted that unlike the Asterisks,
the filters allow noticing typing errors and thereby easier error
correction. P7, P18 and P25 similarly stated that they found rec-
ognizing typed characters to be easier when using the filters. P18
added that he needs to count characters to correct errors when
using Asterisks. P21 found it hard to distinguish some letters (e.g.,
a and e) but still commended that “it is nice to see some context
rather than none at all”. P23 added that she prefers the filters over
Asterisks, because with the latter she often needs to reenter the
whole password if she thinks she made a mistake.

6.3.2 Theme 2: Difficulty compared to Plain text. P24 and P14 high-
lighted that they found typing using Plain text to be the easiest,
since it is much easier to notice typing mistakes.

6.3.3 Theme 3: Better observation resistance. P13 and P14 admired
that they are able to perceive the distorted words that they wrote
themselves, but not those that others wrote. P14 added that he “no-
ticed himself [that] the input is better protected from prying eyes”.
P22 expressed concerns that although the filters resist observations
better, attackers might eventually become more proficient in being
able to read distorted text.

6.3.4 Preferences. We asked participants which was easiest to
use and hardest to observe as a proxy for the subjective usabil-
ity/observability trade off. When asked to pick their favorite filter,
9 participants picked Crystallize, 8 picked Color Halftone, 6 picked
Gaussian Blur and 3 picked Mosaic.

7 DISCUSSION AND FUTUREWORK
Overall, the main strength of the filters is in improving editing
performance. Namely, we found that editing speed and accuracy
are significantly higher when using Color-halftone and Crystallize



filters compared to Gaussian-Blur and Mosaic. However, Color-
halftone and Crystallize are outperformed by Plain text in terms of
editing accuracy and speed. This is expected, since no masking is
taking place at all. Participants were significantly slower when edit-
ing Asterisks due to the need to count the characters. At the same
time, the security experiment also shows that the same two filters,
Color-halftone and Crystallize, are significantly more resilient to
shoulder surfing compared to Plain text and Asterisks. The results
show that the idea of showing characters briefly after they are typed
(i.e., Asterisks) indeed improves resistance to shoulder surfing com-
pared to Plain text, but observers can still successfully shoulder
surf the vast majority of inputs. We expect that a desktop version of
Asterisks masking would be more secure against shoulder surfing,
but would make editing time and accuracy even worse than when
using the mobile version of Asterisks.

Asterisks are good at making it difficult to find the entire pass-
word. But a closer look at the accuracy of guesses reveals that
attackers are still able to recover big part of the password even
when masked using Asterisks. This suggests that attackers are
more likely to recover the password after few observations. On the
other hand, the filters reduce both the accuracy of guesses as well
as the successful attack rates.

7.1 Improved Guessing Attacks
Attackers who have a hint what the distorted password could be,
might have a stronger chance at guessing the password. For exam-
ple, if the attacker knows that the distorted character is a “vehicle”,
it will be easier to notice the password if it is “car”. Another example
can be seen in Figure 1. Once the reader knows that one of the words
(e.g., Crystallize) refers to a graphic filter, it will become easier to
guess some of the other distorted words. This is because any hints
about the domain of the word helps the observer recall relevant
words, hence changing the challenge from a recall challenge (i.e.,
“what is this word”) to a recognition challenge (i.e., “which filter
does this word refer to”). Another interesting question is whether
attackers can improve their skills in attacking distorted passwords
overtime. This can be explored in follow-up longitudinal study.

7.2 Impact on Password Creation and
Memorability

An interesting aspect to be explored in future work is how the filters
influence text password creation. Users could create text passwords
that are more secure against observations if they intentionally
choose characters whose distortions are difficult to interpret. How-
ever it is not clear if users are willing to do that. Another direction
for future work is to explore how filters impact password memo-
rability. Graphical elements (e.g., emojis) in text passwords were
shown to improve memorability [24]. This suggests that graphic
filters might positively impact memorability if users associate the
shape of the distortions with their text password.

7.3 Impact of Password Policies on the
Usability and Security of Filters

In our experiment, we considered passwords that contain digits,
uppercase, lowercase, and special characters. An open direction
for future work is to study the individual impact of each of those

password features on the usability and security of passwords that
are masked with graphical filters.

7.4 Filters on Other platforms
We focused on mobile devices because they would benefit the most
from improved usability of password entry [13, 21]. A direction for
future work is to experiment with filters on desktop settings. Here
we expect that there would be improvement in error correction, but
we do not expect the result to be as significant as in case of mobile
devices. Furthermore, we do know that shoulder surfing is an issue
on mobile devices [4], but we do not have equally strong evidence
for desktop devices. Therefore, overall there is less evidence that
the filters will be significantly useful for desktop settings.

7.5 Usability and Security Trade off
The trade off between usability and security was widely discussed
in previous work. We argue that the ideal security and privacy
protection mechanisms are those that do not reduce usability; for
example, using filters that greatly distort the text password will
make it more secure against observations, but harder to edit. This
drop in usability might discourage users from adopting the filters,
leading to even less security This is why we prioritized usability
in the analysis of the survey results. Still, the trade off is present
in our results: the Crystallize and Color-Halftone filters are more
secure but not as usable as Plain text. However, they significantly
improve both usability and security compared to asterisks.

7.6 Implications for Designers
We drew the following implications based on our results:

(1) Since they improve editing time and accuracy, and observa-
tion resistance, we recommend defaulting to Color halftone
(5 pixels radius) or Crystallize (7 pixels cell size) filters in-
stead of Asterisks, Mosaic and Gaussian Blur.

(2) Filters should be required in contexts in which shoulder
surfing occurs [4]. This can be determined using the device’s
sensors (e.g. user is in public transport), or by detecting
shoulder surfers through the front facing camera [1].

(3) Plain text is ineffective against observations, but editing it
is fast and accurate. To improve usability, allow switching
to Plain text if the context does not suggest the presence of
shoulder surfers, or the user confirms being alone.

8 CONCLUSION
In this work, we investigated the use of filters to mask text pass-
words on mobile devices. We picked the filters to investigate based
on prior work, pilot tests and an online questionnaire. Based on this,
we experimented with the Color-halftone, Crystallize, Gaussian-
Blur, and Mosaic filters. We then conducted follow up usability and
security within-subjects experiments (N=25) where we compared
the filters to two baselines: Plain text and current implementations
of Asterisks. In the usability experiment, we measured input time,
input accuracy, editing time, and editing accuracy. While we found
no significant differences in terms of input time, and input accuracy,
we found that Plain text, Color-halftone and Crystallize result in the
fastest and most accurate editing. In the security experiment, we
found that Color-halftone and Crystallize are significantly better at



observation resistance compared to the other conditions. Based on
the results, we recommend using Color-halftone and Crystallize to
improve editing performance and observation resistance.

In addition to the directions for future work that were suggested
in the previous section, we plan to conduct a field study to study
how well users notice their typing errors when using the filters in
the wild.
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