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Abstract
Conducting statistical inference on systems described by ordinary differential equations (ODEs) is a challenging problem.
Repeatedly numerically solving the system of equations incurs a high computational cost, making many methods based on
explicitly solving the ODEs unsuitable in practice. Gradient matching methods were introduced in order to deal with the
computational burden. These methods involve minimising the discrepancy between predicted gradients from the ODEs and
those from a smooth interpolant. Work until now on gradient matching methods has focused on parameter inference. This
paper considers the problem of model selection. We combine the method of thermodynamic integration to compute the log
marginal likelihood with adaptive gradient matching using Gaussian processes, demonstrating that the method is robust and
able to outperform BIC and WAIC.

Keywords Ordinary differential equations · Model selection · Thermodynamic integration · Gradient matching

1 Introduction

Ordinary differential equations (ODEs) are a powerfulwayof
providing an observed system with a mathematical descrip-
tion. The system can be expressed as

ẋs(u) = dxs(u)

du
= fs(x(u), θ s, u), (1)

where s ∈ {1, . . . , N } denotes one of N components
(referred to throughout as “species”), xs(u) denotes the con-
centration of species s as a function of u (typically time or
space), θ s is the vector of ODE parameters for species s and
x(u) the vector of concentrations of all species of the variable
u.

Examples of biological systems described by ODEs
include predator–prey interactions in ecology (Lotka 1932),
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autocatalysis in chemical kinetics (Atkins 1986), signalling
pathways in a biochemical cascade (Vyshemirsky and Giro-
lami 2008), activation and deactivation of spiking neurons
(FitzHugh 1961), cardiac excitation (Biktashev et al. 2008;
Adon et al. 2015) and kinetics of enzyme reactions (Gratie
et al. 2013).

Parameter inference can be carried out by solving the sys-
tem of equations for a given parameter set and minimising
the discrepancy between the predicted signals from theODEs
and the data. Since solutions to the ODEs typically do not
exist in closed form, explicit solutions of the ODEs need to
be computed numerically. Robinson (2004) contains a back-
groundonmethods used for obtainingnumerical solutions for
ODEs and amongst other topics, discusses the use of Euler’s
method and the Runge–Kutta method as ways to do so.

The main drawback to inference using an explicit solution
of the system is the computational burden. Every time the
parameters are changed, for example at each step of a min-
imisation algorithm or sampling scheme (such as MCMC),
the system needs to be re-solved rendering the approach too
time consuming for practical use in many applications.

In recent years, gradient matching methods have been
developed in order to deal with this computational burden.
The methods start by smoothing data in order to obtain an
interpolant. Gradient matching is then carried out by min-
imising the differences between the predicted gradients from
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the ODEs (for a given parameter set) and slopes of the tan-
gents to the interpolants. In this fashion, theODEs never need
to be explicitly solved, making gradient matching a compu-
tationally attractive approach. Different gradient matching
methods differ by their choice of interpolation scheme and
metric for penalising the difference between the gradients.

Wu et al. (2014) propose a multi-step approach based on
penalised splines. Ramsay et al. (2007) conduct parameter
inference by using a penalised likelihood approach with hier-
archical regularisation to tune the parameter controlling the
mismatch between the gradients from the interpolant and the
predictions from the ODEs and the parameters controlling
the spline interpolant. González et al. (2013) use a penalised
likelihood method where the penalty incorporates the infor-
mation of the ODEs, and then by using the properties of
reproducing kernel Hilbert spaces (RKHS), they perform
parameter inference in a computationally fast manner.

Calderhead et al. (2008) use Gaussian processes (GPs) to
interpolate the data.GPs are able to fit highly non-linear func-
tions and have the added benefit that it is possible to obtain the
derivative process in closed form (see Holsclaw et al. 2013).
The authors penalise the difference between the gradients
using a product of experts approach to link the distribution of
the interpolant gradients with the distribution of the gradients
predicted by the ODEs. Dondelinger et al. (2013) improve
upon the work by Calderhead et al. (2008) by allowing the
estimates of the ODE parameters to influence the reshaping
of the GP interpolant, dubbing the method adaptive gradi-
ent matching (AGM). Macdonald et al. (2016) combine the
method ofDondelinger et al. (2013)with a parallel tempering
scheme of the parameter controlling the amount of mismatch
allowed between the gradients, examining the effect of doing
so across a range of simulation studies.

Wang and Barber (2014) focused on trying to represent
gradient matching with Gaussian processes as a probabilis-
tic generative model, in order to dispense with the heuristics
involved with linking distributions via a product of experts.
The work by Macdonald et al. (2015) shows that it is only
possible to represent gradient matching with GPs as a proba-
bilistic generative model bymaking restrictive independence
assumptions that lead to a non-negligible deterioration in
the accuracy of parameter estimation. Since the function to
be matched using gradient matching is both the output of
and input to the ODEs, gradient matching naturally leads
to a directed cycle. In order to model gradient matching as
a directed acyclical graph, one must assume independence
between the input and output of the ODE. This assumption
is not only implausible, but also causes the model state vari-
ables to no longer be directly associatedwith the data, leading
to intrinsic identifiability issues.

All these approaches focus on parameter inference for
ODEs and have not considered the problem of model
selection. Model selection for ODEs aims at distinguish-

ing between different hypotheses describing the struc-
ture of the systems. There are two main approaches to
model selection—explanatory model selection and predic-
tive model selection. Explanatory model selection is the
method of integrating over the parameters and focussing on
the marginal likelihood of the data i.e. the probability of the
data given the model and not the probability of the data given
some parameter set. The posterior probability of the candi-
date models is given by

p(M |Y) = p(Y|M)p(M)

p(Y)
, (2)

whereY denotes the data and M represents different models.
Assuming a uniform prior over the models, p(M |Y) in

Eq. 2 is maximised by the term p(Y|M) and therefore
explanatory model selection can be conducted by focussing
on this term. This term is known as the marginal likelihood
(for a given model) and is equal to

p(Y|M) =
∫

p(Y|θ , M)p(θ |M)dθ, (3)

where θ is the parameter vector.
The main difficulty in computing the marginal likelihood

is that usually the integral in Eq. 3 is not available in closed
form, and the techniques used to calculate it are computation-
ally expensive.One could follow the approach ofNewton and
Raftery (1994) and use the harmonic mean estimator to esti-
mate 1/p(Y|M), however in practice this works poorly (see
Murphy 2012). The reason for this is that the estimator is a
posterior mean of the inverse of the likelihood

∫
1

p(Y|θ , M)
p(θ |Y, M)dθ = 1

p(Y|M)
. (4)

Typically, the prior is uninformative i.e. the posterior is sim-
ilar to the likelihood. Hence, when the posterior is large, the
likelihood tends to be large and therefore the inverse of the
likelihood is small. Contrariwise, when the posterior is small,
the likelihood tends to be small and the inverse of the likeli-
hood is large. Therefore, most of the important contributions
come from the tail of the posterior distribution. This means
that in numerical MCMC approximations, the majority of
posterior samples make small contributions and the occa-
sional outlier has a large influence. The variance of the esti-
mator, as a consequence, becomes unbounded. Alternatively,
one could implement the method of Chib (1995), which cal-
culates the marginal likelihood by representing it in the form
p(Y|M) = p(Y|θ, M)p(θ |M)/p(θ |Y, M). However, this
method assumes that the posterior has been marginalised
over all modes, which is often not the case and therefore
the method can produce inaccurate results in practice (see
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Murphy 2012; Neal 1998). Thermodynamic integration, suc-
cessfully used in the field of Statistical Physics and more
recently introduced into the wider Statistical community by
Friel and Pettitt (2008), is a promising method for comput-
ing the log marginal likelihood. It uses the components that
are already calculated in the parallel tempering scheme to be
outlined in Sect. 2. This can be done for each of the compet-
ing models to find which one produces the highest marginal
likelihood. Alternatively, one could use the computationally
cheaper approach of BIC, which is asymptotically equivalent
to minus two times the log marginal likelihood, and select
the model that returns the smallest value.

The latter approach, predictive model selection, is a mea-
sure of out of sample predictive performance. However,
approaches such as cross validation are computationally
expensive and quite often information criteria are used as an
approximation that is correct in the asymptotic limit. In con-
trast to explanatory model selection, these approaches do not
integrate over the parameters. Instead they use the likelihood,
which is the probability of the data given the parameters, and
therefore model selection in this manner can be thought of
as being conducted by means of predictive performance.

Information criteria tend to be estimates and approxima-
tions to some cross-validated fit (see Gelman et al. 2013).
Cross-validation has been demonstrated to provide an accu-
rate way of estimating a model’s predictive performance
(a survey of cross-validation results is presented in Arlot
and Celisse 2010), however, these methods tend to be time-
consuming. The natural step would then be to approximate
the method of cross-validation to some degree, for exam-
ple, AIC is asymptotically equivalent to cross-validation
(see Fang 2011). WAIC on the other hand (which is an
improvement over DIC, since DIC cannot deal with singular
likelihood functions), is a recent method that is asymptoti-
cally equivalent to Bayesian leave-one-out cross-validation
(see Spiegelhalter et al. 2002 for further details on DIC;
Watanabe 2010 for further details on WAIC).

It should be noted that it can be difficult in practice to
satisfy the asymptotic assumptions of information criteria,
which can often lead to poor approximations of the quantity
of interest.

This paper combines the method of calculating the log
marginal likelihood using thermodynamic integration with
that of gradient matching. This combination is not immedi-
ately straightforward since the general approach to parallel
tempering, seeCampbell and Steele (2012) for example, tem-
pers the distribution of the data only and does not temper
the distribution controlling the mismatch between the gradi-
ents (the general approach to parallel tempering is discussed
in Sect. 2 and the consequences of using this approach are
discussed in Sect. 3). It will be shown that the proposed
way of combining thermodynamic integration and gradient
matching results in accurate estimates of the log marginal

likelihood and a robust way of performing model selection
in systems described by ordinary differential equations. This
new method will be compared to the results of WAIC and
BIC on a set of benchmark problems.

2 Review of adaptive gradient matching

We begin by summarising the method of adaptive gradient
matching from Dondelinger et al. (2013). This is included
for the convenience of the reader and the methodology com-
bining this method with thermodynamic integration is given
in Sect. 3.

Consider a set of T arbitrary timepoints t1 < · · · < ti <

· · · < tT , and noisy observations Y = (y(t1), . . . , y(tT )),
where

y(ti ) = x(ti ) + ε(ti ), (5)

N = dim (x(ti )) is equal to the number of species, X =
(x(t1), . . . , x(tT )), y(ti ) is the data vector of the observa-
tions of all species concentrations at time ti , x(ti ) is the
vector of the concentrations of all species at time ti , ys is the
data vector of the observations of species concentrations s at
all timepoints, xs is the vector of concentrations of species
s at all timepoints, ys(ti ) is the observed datapoint of the
concentration of species s at time ti , xs(ti ) is the concen-
tration of species s at time ti and ε is multivariate Gaussian
noise, ε ∼ N (ε|0, σ 2

s I). Note that here and throughout this
paper the conditional Gaussian distribution is represented as
N (a|b, c), where the distribution describes variable a with
mean b and variance c.

The time-dependent signals of the systemcan be described
by ordinary differential equations

ẋs(t) = dxs(t)

dt
= fs(x(t), θ s, t). (6)

We further define ẋs as the collection of the state derivatives
across all timepoints for species s i.e. ẋs =
(ẋs(t1), . . . , ẋs(tT ))T and fs(. . . , t) as the collection of ODE
predictions across all timepoints for species s i.e. fs(. . . , t) =
( fs(. . . , t1), . . . , fs(. . . , tT ))T. Hence,

ẋs = fs(X, θ s, t), (7)

where X is defined below Eq. 5. Then,

p(Y|X, σ 2) =
N∏

s=1

T∏
i=1

N (ys(ti )|xs(ti ), σ 2
s ), (8)

where the dimension of the matrices X and Y are N by T .
Following Calderhead et al. (2008), a Gaussian process (GP)
prior is placed on xs ,
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p(xs |φs, η) = N (xs |φs,Kηs ), (9)

where Kηs is a positive definite matrix of covariance func-
tions with hyperparameters ηs andφs is amean vector, which
for simplicity we set as the mean of Y.

Differentiation is a linear operation, and therefore a Gaus-
sian process is closed under differentiation, provided the
kernel is differentiable (see Solak et al. 2002; Holsclaw
et al. 2013; Rasmussen andWilliams 2006). Hence, the joint
prior distribution of the concentrations of the species xs and
their time derivatives ẋs is multivariate Gaussian with mean
(φs, 0)

T and covariance functions

cov[xs(ti ), xs(t j )] = Kηs (ti , t j ), (10)

cov[ẋs(ti ), xs(t j )] = ∂Kηs (ti , t j )

∂ti
:= K ′

ηs
(ti , t j ), (11)

cov[xs(ti ), ẋi (t j )] = ∂Kηs (ti , t j )

∂t j
:= ′Kηs (ti , t j ), (12)

cov[ẋs(ti ), ẋs(t j )] = ∂2Kηs (ti , t j )

∂ti∂t j
:= K ′′

ηs
(ti , t j ), (13)

where Kηs (ti , t j ) are the components of the covariance
matrixKηs . The conditional distribution for the state deriva-
tives is obtained using elementary transformations of Gaus-
sian distributions (see p. 87 of Bishop 2006 for details),
yielding

p(ẋs |xs,φs, ηs) = N (ẋs |μs,As), (14)

where

μs = ′KηsKηs
−1(xs − φs) and

As = K′′
ηs

− ′KηsKηs
−1K′

ηs
. (15)

Assuming the model for the gradients has additive Gaussian
error, with a state-specific variance γs , using Eq. 6 gives

p(ẋs |X, θ s, γs) = N (ẋs |fs(X, θ s, t), γsI). (16)

Using a product of experts approach, Calderhead et al. (2008)
andDondelinger et al. (2013) link the distribution of the inter-
polant in Eq. 14 with the distribution of the ODE derivatives
in Eq. 16, obtaining the following distribution

p(ẋs |X, θ s,φs, ηs, γs)

∝ p(ẋs |xs,φs, ηs)p(ẋs |X, θ s, γs)

= N (ẋs |μs,As)N (ẋs |fs(X, θ s, t), γsI). (17)

The joint distribution is given by

p(Ẋ,X, θ , η, γ |φ) = p(θ)p(η)p(γ )

N∏
s=1

p(ẋs |X, θ s,φs, ηs, γs)p(xs |ηs), (18)

where γ is the vector which contains all the gradient
mismatch parameters and p(θ), p(η), p(γ ) are the prior dis-
tributions over the respective parameters. Dondelinger et al.
(2013) show that the marginalisation over the state deriva-
tives yields a closed form solution

p(X, θ , η, γ |φ)

=
∫

p(Ẋ,X, θ , η, γ |φ)dẊ

∝ p(θ)p(η)p(γ )

N∏
s=1

N (xs |0,Kηs )

∫
N (ẋs |μs,As)N (ẋs |fs(X, θ s, t), γsI)dẋs

∝ p(θ)p(η)p(γ )

N∏
s=1

N (xs |0,Kηs )

exp

[
−1

2
(fs − μs)

T (As + γsI)−1(fs − μs)

]
, (19)

where fs is the vector containing theODEpredicted gradients
for species s. Using Eq. 19 and the noise model in Eq. 8, the
full joint distribution becomes

p(Y,X, θ , η, γ , σ 2|φ)

= p(Y|X, σ 2)p(X, θ , η, γ |φ)p(σ 2)

= p(Y|X, σ 2)p(X|θ,φ, η, γ )p(θ)p(η)p(γ )p(σ 2),

(20)

where p(σ 2) is the prior over the variance of the observa-
tional error and from Eq. 19

p(X|θ,φ, η, γ ) ∝ 1

C
exp

[
− 1

2
N∑

s=1

(
xTs K

−1
ηs

xs + (fs − μs)
T (As + γsI)−1(fs − μs)

) ]
,

(21)

where C = ∏N
s=1 |2π(As + γsI)| 12 .

Dondelinger et al. (2013) want to perform Bayesian
inference using Eq. 20, but ODE models tend to produce
multi-modal likelihood landscapes. In order to efficiently
sample from the posterior distribution, and avoid getting
stuck in local optima for example, the authors temper the
likelihood.

Consider a series of “temperatures”,1 0 = α1 < · · · <

αi < · · · < αM = 1 and a power posterior distribution (see

1 Note that our “temperatures” are equivalent to inverse-temperatures
in Statistical Physics. It is however common in the likelihood temper-
ing literature (see Friel and Pettitt 2008; Campbell and Steele 2012;
Dondelinger et al. 2013; Macdonald et al. 2016 for examples) that the
“temperatures” are scheduled according to our notation.
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Friel and Pettitt 2008 for more details) of the parameters and
latent variables in Eq. 20

pα(θ,X, η, γ , σ 2|Y,φ)

∝ p(Y|X, σ 2)α p(X|θ,φ, η, γ )p(θ)p(η)p(γ )p(σ 2),

(22)

where the first termon the second line in Eq. 22 is an annealed
likelihood. It is clear that Eq. 22 becomes the prior for α = 0
and is the posterior when α = 1. For 0 < α < 1 a dis-
tribution between the prior and posterior is created. The M
αi s are “temperature” parameters that create annealed likeli-
hoods that are used as the target densities of parallel MCMC
chains (see Campbell and Steele 2012). Denote Ω as short-
hand for the parameters and latent variables in Eq. 22 i.e.
Ω = {

θ ,X, η, γ , σ 2
}
. At each MCMC step, all “tempera-

ture” chains independently perform a Metropolis–Hastings
step to update Ω , the parameters and latent variables associ-
ated with “temperature” α. This has acceptance probability

pmove

= min

(
1,

p
(
Y|Ωprop)α

p
(
Ωprop) q (

Ωcurr|Ωprop)
p

(
Y|Ωcurr)α

p
(
Ωcurr) q (

Ωprop|Ωcurr)
)

,

(23)

where q( ) represents the proposal distribution and the super-
scripts “prop” and “curr” indicate whether the algorithm is
being evaluated at the proposed or current state, respectively.
At eachMCMCstep, two “temperature” chains are randomly
selected (uniformly) and the corresponding parameters are
proposed to swap between them. This proposal has accep-
tance probability

pswap = min

(
1,

pα j (Ω
i |Y)pαi (Ω

j |Y)

pαi (Ω
i |Y)pα j (Ω

j |Y)

)
, (24)

where Ω i are the parameters and latent variables associated
with “temperature” αi and Ω j are the parameters and latent
variables associated with “temperature” α j .

3 Methodology

A primary challenge of model selection using Bayes fac-
tors is to calculate the marginal likelihood of a model. The
Bayes factor is then computed by calculating the ratio of the
marginal likelihoods, or the difference of the log marginal
likelihoods, of the competing models. Computing the log
marginal likelihood is challenging, however, and thermo-
dynamic integration is widely regarded as one of the most
promising approaches to its calculation in practice (Friel and

Pettitt 2008). This gives a framework for the computation of
the integral in Eq. 3, which is one of the main difficulties
in practically performing explanatory model selection. Note
that for the remainder of this paper the dependency on the
particular model is not made explicit in the notation, for ease
of reading, i.e. p(Y) = p(Y|M).

Friel and Pettitt (2008) show that the log marginal like-
lihood can be computed by adapting the thermodynamic
integration method used in Statistical Physics for computing
free energies (see Schlitter and Husmeier 1992) and taking
the derivative of log p(Y|α) with respect to the “tempera-
tures” and then integrating over the “temperatures”. In what
follows, we show how this scheme can be adapted to the
gradient matching method discussed in the present paper.

Based on Eq. 19, it is possible to write the joint probability
of the latent variables and parameters as

p(X, θ , η, γ ) = ζ(X, θ , γ )p(X|η)p(θ)p(η)p(γ )

C
, (25)

where ζ(X, θ , γ ) is a potential function (an un-normalised
probability distribution), defined by the last line in Eq. 19
(ζ(·) here is being used as shorthand for the solution to the
integral of Eq. 19), p(X|η) is the distribution of the Gaus-
sian process with hyperparameters η and the normalisation
constant C is defined as

C =
∫
X

∫
θ

∫
η

∫
γ

ζ(X, θ , γ )p(X|η)p(θ)p(η)

p(γ )dXdθdηdγ . (26)

The joint probability of the whole system now becomes

p(Y,X, θ , η, γ , σ 2)

= p(Y|X, σ 2)p(X, θ , η, γ )p(σ 2)

= p(Y|X, σ 2)ζ(X, θ , γ )p(X|η)p(θ)p(η)p(γ )p(σ 2)

C
,

(27)

which therefore implies that the tempered posterior distribu-
tion of the latent variables and parameters is given by

p(X, θ , η, γ , σ 2|Y, α) = 1

Z(Y|α)[
p(Y|X, σ 2)ζ(X, θ , γ )

]α

p(X|η)p(θ)p(η)p(γ )p(σ 2),

(28)

and Z(Y|α) as

Z(Y|α) =
∫
X

∫
θ

∫
η

∫
γ

∫
σ 2

[
p(Y|X, σ 2)ζ(X, θ , γ )

]α

p(X|η)p(θ)p(η)p(γ )p(σ 2)dXdθdηdγ dσ 2. (29)
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Taking the derivative of logZ(Y|α) will yield

d

dα
logZ(Y|α)

= 1

Z(Y|α)

d

dα
Z(Y|α)

= 1

Z(Y|α)

d

dα

∫
X

∫
θ

∫
η

∫
γ

∫
σ 2[

p(Y|X, σ 2)ζ(X, θ , γ )
]α

p(X|η)p(θ)p(η)p(γ )

p(σ 2)dXdθdηdγ dσ 2

= 1

Z(Y|α)

∫
X

∫
θ

∫
η

∫
γ

∫
σ 2

log
[
p(Y|X, σ 2)ζ(X, θ , γ )

]
[
p(Y|X, σ 2)ζ(X, θ , γ )

]α

p(X|η)p(θ)p(η)p(γ )

p(σ 2)dXdθdηdγ dσ 2

=
∫
X

∫
θ

∫
η

∫
γ

∫
σ 2

log
[
p(Y|X, σ 2)ζ(X, θ , γ )

] 1

Z(Y|α)[
p(Y|X, σ 2)ζ(X, θ , γ )

]α

p(X|η)p(θ)p(η)p(γ )

p(σ 2)dXdθdηdγ dσ 2

=
∫
X

∫
θ

∫
η

∫
γ

∫
σ 2

log
[
p(Y|X, σ 2)ζ(X, θ , γ )

]

p(X, θ , η, γ , σ 2|Y, α)dXdθdηdγ dσ 2

= Eα

[
log p(Y|X, σ 2)

]
+ Eα

[
log ζ(X, θ , γ )

]
. (30)

where the posterior distribution in the second last step of
Eq. 30 comes from Eq. 28. This in turn means that

logZ(Y) = logZ(Y|α = 1) − logZ(Y|α = 0)

=
∫ 1

0

d

dα
logZ(Y|α)dα

=
∫ 1

0
Eα

[
log p(Y|X, σ 2)

]
dα

+
∫ 1

0
Eα

[
log ζ(X, θ , γ )

]
dα, (31)

where Z(Y|α = 0) = 1 follows from Eq. 29. Note then,
that Z(Y) = Z(Y|α = 1) and by setting α = 1 in Eq. 29, it
follows from Eq. 25 that Z(Y) = p(Y)C . Hence,

log p(Y) = logZ(Y) − log (C). (32)

C can depend on the ODE model structure, but it does not
depend on the data. This term can be estimated even before
the data are collected, in order to speed up the whole pro-
cess. We would assume that the integrand for C would be a
lot smoother than for the likelihood, and so we try to approx-
imate Eq. 26 using a simple Monte Carlo sum i.e.

C = 1

Niter

Niter∑
i=1

ζ(Xi , θ i , γ i ), (33)

where the draws required to compute ζ(Xi , θ i , γ i ) are sam-
pled from the priors p(η), p(γ ), p(θ) and p(X|η), with
acceptance probability 1. In the examples looked at in Sect. 5,
the simple Monte Carlo sum was quick to converge and
thus Eq. 33 was used to compute C . For ODE models that
cause the integrand for C to be unsuitable for approximation
using a simple Monte Carlo sum, it is possible to compute
log (C) using thermodynamic integration. We have included
this description in Section 9.3 of the supplementary material
(SM).

We finally note that there is an alternative version of the
thermodynamic integration scheme that we have proposed
in Sect. 3, which we describe in Section 9.2 of the SM and
which, naively, appears to be more straightforward. We dis-
cuss, in the same section of the SM, the disadvantages of that
scheme, and justify the choice of the present scheme.

4 Benchmark ODE systems

The ODE systems used as benchmark models throughout
this paper are detailed in this section. Details of the specific
parameter setting used to simulate data for a particular set-up,
can be found in Sect. 5.

4.1 The Lotka–Volterra system (LV)

The Lotka–Volterra system is a simple model for prey–
predator interactions in ecology (Lotka 1932), and autocatal-
ysis in chemical kinetics (Atkins 1986). The standard model,
which we refer to as LV1, is given by Eq. 34 without the
quadratic decay term, θ5 = 0.

d[x1]
dt

= [ẋ1] = θ1[x1] − θ2[x1][x2] − θ5[x1]2
d[x2]
dt

= [ẋ2] = −θ3[x2] + θ4[x1][x2] (34)

Here, [x1] and [x2] denote the time-dependent concentrations
of two species, prey (x1) and predator (x2).

Equation 34 has one extra parameter than the standard
form, θ5, to account for intra-species competition; we refer
to this model as LV2. The most complex version, referred to
as LV3 and given by Eq. 35, is described using a saturation
term (similar to a Michaelis–Menten term that can appear in
biological systems described by chemical kinetics).

d[x1]
dt

= [ẋ1] = θ1[x1] − θ2[x1][x2]
1 + θ5[x1]
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Fig. 1 An example of the signals produced from the Lotka–Volterra
model (Eq. 34 with θ5 = 0). The solid line is [x1] (abundance of prey)
and the dashed line is [x2] (abundance of predators)

d[x2]
dt

= [ẋ2] = −θ3[x2] + θ4[x1][x2]
1 + θ5[x1] (35)

An example of the signals produced from the standardLotka–
Volterra model (LV1, given by Eq. 34 with θ5 = 0) can be
found in Fig. 1.

4.2 Protein signalling transduction pathways
(PSTPs)

These equations describe protein signalling transduction
pathways in a signal transduction cascade (Vyshemirsky
and Girolami 2008), where the parameters indicate the
kinetic rates of the reactions. There are 6 parameters
(k1, k2, k3, k4, V , Km) and 5 “species” (S, S∗, R, RS, Rpp).
The system describes the phosphorylation of a protein,
R → Rpp, catalysed by an enzyme S, via an active protein
complex (RS), where the enzyme is subject to degradation
(S → S∗). The chemical kinetics are describedby a combina-
tion of mass action kinetics and Michaelis–Menten kinetics.
A graphical representation of this system can be seen in the
left panel of Fig. 2, and is referred to as PSTP1. Species in [ ]
denote the time-dependent concentration for that species and
a dot over a symbol is shorthand for the temporal derivative
d
dt of that symbol:

˙[S] = −k1[S] − k2[S][R] + k3[RS]
˙[S∗] = k1[S]
˙[R] = −k2[S][R] + k3[RS] + V [Rpp]

Km + [Rpp]
˙[RS] = k2[S][R] − k3[RS] − k4[RS]

˙[Rpp] = k4[RS] − V [Rpp]
Km + [Rpp] (36)

An example of the signals produced from these ODEs can
be found in Fig. 3.

The following are different alternative candidate models
of the protein signalling transduction pathway, all with vary-
ing degrees of complexity.

Equation 37 is a simplified version of Eq. 36, where now
a less detailed description of the activation process is con-
sidered. It uses Michaelis–Menten kinetics to describe the
phosphorylation of protein R and no longer has an interme-
diate complex RS. A graphical representation of this system
can be seen in the top centre panel of Fig. 2, and we refer to
it as PSTP2.

˙[S] = −k1[S], ˙[S∗] = k1[S]
[Ṙ] = −V1[R][S]

k2 + [R] + V2[Rpp]
k3 + [Rpp]

[ ˙Rpp] = V1[R][S]
k2 + [R] − V2[Rpp]

k3 + [Rpp] (37)

The least complex form of the pathway is given when there is
nodegradationof protein S to S∗, andhence the concentration
of S is constant. Mathematically, this corresponds to setting
k1 = 0 in Eq. 37. A graphical representation of this system,
which we refer to as PSTP3, can be seen in the bottom centre
panel of Fig. 2.

Equation 38 is the most complex of the candidate models,
it describes how the phosphatase PhA deactivates the protein
Rpp. All reactions are defined by mass action kinetics. A
graphical representation of this system can be seen in the
right panel of Fig. 2, and we refer to it as PSTP4.

˙[S] = −k1[S] − k2[S][R] + k3[RS]
˙[S∗] = k1[S]
˙[R] = −k2[S][R] + k3[RS] + k7[RppPhA]
˙[RS] = k2[S][R] − k3[RS] − k4[RS]
˙[Rpp] = k4[RS] − k5[Rpp][PhA] + k6[RppPhA]

[ ˙PhA] = −k5[Rpp][PhA] + k6[RppPhA]
+ k7[RppPhA]

[ ˙RppPhA] = k5[Rpp][PhA] − k6[RppPhA]
− k7[RppPhA] (38)

5 Simulation

The proposedmethodwas tested on data generated from each
of the LV models and from the PSTP1 model. Ten datasets
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Fig. 2 PSTP1 Graphical representation of the protein signalling trans-
duction pathway in Eq. 36. There are 5 “species” (S, S∗, R, RS, Rpp)
and 6 parameters (k1, k2, k3, k4, V , Km ). The system describes the
phosphorylation of a protein, R → Rpp, catalysed by an enzyme S,
via an active protein complex (RS), where the enzyme is subject to
degradation (S → S∗). PSTP2 Graphical representation of the pro-
tein signalling transduction pathway in Eq. 37. This is a simplified
version of Eq. 36, where now a more general description of the acti-
vation process is considered. There are 4 “species” (S, S∗, R, Rpp)
and 5 parameters (k1, k2, k3, V1, V2). PSTP3 Graphical representa-

tion of the protein signalling transduction pathway in Eq. 37 when
setting k1 = 0. It is the least complex of the candidate models
and does not describe the degradation of protein S to S∗. There are
3 “species” (S, R, Rpp) and 4 parameters (k1, k2, V1, V2). PSTP4
Graphical representation of the protein signalling transduction path-
way in Eq. 38. The most complex of the candidate models, it describes
how the phosphatase PhA deactivates the protein Rpp. There are
7 “species” (S, S∗, R, RS, Rpp, RppPhA, PhA) and 7 parameters
(k1, k2, k3, k4, k5, k6, k7). Figures adapted fromVyshemirsky andGiro-
lami (2008)

were generated from each model in turn and iid Gaussian
noise was added with a standard deviation (SD) chosen such
that the average signal to noise ratio (SNR) was 10 (which
we call medium SNR throughout). All simulations were then
repeated with two additional SNRs, a lower value, and a
higher value. The choice of these values is discussed in Sec-
tion 9.4 of the supplementary material.

5.1 Lotka–Volterra original model (LV1)

Data were generated with the following parameters: θ1 = 2,
θ2 = 1, θ3 = 4 and θ4 = 1. Starting from initial values of
x(t = 0) = (5, 3) for the two “species”, 11 timepoints were
generated over the time course [0, 2], producing one period.
Gaussian noisewas addedwith SD = 0.5. The priors over the
parameters were Γ (4, 0.5) distributions, reflecting our prior
knowledge that the parameters are positive. These settings
were chosen to correspond with the set-up in Dondelinger
et al. (2013).

5.2 Lotka–Volterra intra-species competitionmodel
(LV2)

Data were generated with the following parameters: θ1 = 4,
θ2 = 1, θ3 = 4, θ4 = 2 and θ5 = 5. Starting from initial
values of x(t = 0) = (5, 3) for the two “species”, 11 time-
points were generated over the time course [0,2], producing
one period. Gaussian noise was added with SD = 0.2. The
priors over the parameters were Γ (4, 0.5) distributions for
θ1, θ2, θ3 and θ4 and a U (0, 9) distribution for θ5 as there
was no indication from previous work what a suitable prior
distribution would be for the parameter governing the intra-
species term. These distributions reflect our prior knowledge
that the parameters are positive.

5.3 Lotka–Volterra saturation termmodel (LV3)

Data were generated with the following parameters: θ1 =
2.8, θ2 = 3.5, θ3 = 1, θ4 = 2.5 and θ5 = 1. Starting from
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Fig. 3 An example of the signals produced from the protein signalling
transduction pathway in Eq. 36. The solid line is [S], the light dotted
line is [S∗], the dashed line near the top of the figure is [R], the longer
dashed line near the bottom of the figure is [RS] and the dot-dashed
line is [Rpp]

initial values of x(t = 0) = (5, 3) for the two “species”, 11
timepointswere generated over the time course [0,2], produc-
ing one period. Gaussian noise was added with SD = 0.5.
The saturation term included in theseODEs shouldmean that
the less complex models are unable to produce signals that
match the shape of the signals produced by the LV3 model.
Hence, if the model selection method is working properly,
this model should be clearly favoured over the other two. The
priors over the parameters were Γ (4, 0.5) distributions for
θ1, θ2, θ3 and θ4 and a U (0, 9) distribution for θ5 (reflecting
the extra uncertainty surrounding the 5th parameter). These
distributions reflect our prior knowledge that the parameters
are positive.

5.4 Protein signalling transduction pathway

For ease of reading, Eqs. 36–38 will be referred to as PSTP1,
PSTP2, PSTP3 and PSTP4, respectively. Graphical repre-
sentations of these models can be found in Fig. 2. Data
were generated from the PSTP1 model as it provided a
reasonable degree of complexity and was neither the least
complex model nor the most complex model out of the four
(to rule out a scenario where amethodmay be biased towards
the least/most complex model, selecting the true model by
fluke). 10 datasets were generated and iid Gaussian noise
(SD = 0.0635, average SNR for each “species” = 10) was
added. Since the PSTP1 model has two fewer “species” than
the most complex model (PSTP4), generating data from the
PSTP1 system will not produce observations for the compo-

nents PhA and RppPhA (the two “species” not present in the
PSTP1model). Hence, for the less complexmodels (PSTP1–
3), any “species” not present that are present in the PSTP4
model, had a zero rate of change included for that “species”,
corresponding to components that are disconnected from the
rest of the system. After generating data from the PSTP1
model and addingGaussian noise, the concentrations for PhA
and RppPhA can be thought of as fluctuating slightly around
their initial values, since they have a zero rate of change.

Data were generated with the following parameters: k1 =
0.07, k2 = 0.6, k3 = 0.05, k4 = 0.3, V = 0.017 and
Km = 0.3. Starting from initial values of x(t = 0) =
(1, 0, 1, 0, 0, 1, 0) for the seven “species”, 15 timepoints
were generated, one at each of the following points
{0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100}. The pri-
ors over the parameters were Γ (4, 0.5) distributions, reflect-
ing our prior knowledge that the parameters are positive.
These settings were chosen to correspond with the set-up in
Dondelinger et al. (2013).

5.5 Other settings

Twokernelswere considered in this study (to correspondwith
simulation experiments that have been set up in the current
literature e.g. see Dondelinger et al. 2013), the radial basis
function (RBF) kernel

k(ti , t j ) = σ 2
RBF exp

(
− (ti − t j )2

2l2

)
(39)

with hyperparameters σ 2
RBF and l

2, and the sigmoid variance
kernel

k(ti , t j ) = σ 2
sig arcsin

a + (bti t j )√
(a + (bti ti ) + 1)(a + (bt j t j ) + 1)

(40)

with hyperparameters σ 2
sig, a and b (see Rasmussen and

Williams 2006).
The RBF kernel, Eq. 39, was used to fit the Gaussian pro-

cess for the Lotka–Volterra models, and the sigmoid variance
kernel, Eq. 40, was used to fit the Gaussian process for the
protein signalling transduction pathway models. Examples
of the signals produced from the PSTP1 model can be found
in Fig. 3. Since the signals are non-stationary, we use the sig-
moid variance kernel when fitting all the protein signalling
transduction pathwaymodels, since it is a non-stationary ker-
nel (Rasmussen andWilliams 2006). The initial fits from the
GPs using the specified kernels were plotted against the data
and showed good agreement.

We have followed Wang and Barber (2014) and a pri-
ori restricted the range of the latent species concentration
profiles xs to a three-standard deviation width around an
initial GP interpolant fitted to the data. The motivation is
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two-fold. Firstly, it is a priori unlikely that the true concen-
tration profiles are in drastic mismatch to the data. Secondly,
this prior constraint avoids entrapment in a suboptimal attrac-
tor state corresponding to a flat latent profile of xs = 0 for
all species s, leading to Eq. 21 becoming the dominating
term in the calculation of the joint distribution. This phe-
nomenon is discussed in Macdonald et al. (2016), and we
also briefly discuss it in Section 9.5 of the supplementary
material. In addition, the standard deviation of the noise was
held at the true value and subsequent draws of the latent
variables were constrained to lie within a region of 3 stan-
dard deviations around the initial GP interpolants. This was
enforced for every scenario of every candidate model used
to compute Eq. 31 in this paper. Following Wang and Barber
(2014) and Macdonald et al. (2015) sampling from the pos-
terior distribution was conducted via Gibbs sampling with a
discretisation of the parameters and latent variables. Further
details, including pseudo code, are provided in Section 9.6
of the supplementary material. When sampling from the pos-
terior using the method that explicitly solves the ODEs (see
Sect. 6 for details), the Metropolis–Hastings algorithm was
implemented due to the availability of existing software. The
difference in sampling schemes does not affect the conclu-
sion of the results, since the method that explicitly solves
the ODEs was used as benchmark and was not a com-
peting method. Since we implemented Gibbs sampling by
discretising the parameters and latent variables (in order to
calculate the normalisation constant of the posterior by brute
forcemarginalisation), wewould expect that switching to the
Metropolis–Hastings scheme (which does not require any
discretisation) would only improve our results. The Gibbs
sampling strategy was employed to save on computational
resources.

In order to ensure the integrals in Eq. 31 are calculated to
a high level of accuracy, the number of “temperature” chains
was set to 20. Following Calderhead (2008), each αi was
configured as

αi =
(

i

M

)5

, (41)

where i = 1, . . . , M and M is the total number of “temper-
ature” chains (20 in this case).

6 Results

In order to assess the performance of the new schemeoutlined
in Sect. 3, the method will be tested on twoODE systems and
various candidate models of each. For comparison purposes,
the results of BIC and WAIC (Watanabe 2010) will also be
provided. For details onhowwecomputed these two informa-
tion criteria, see Section 9.1 of the supplementary material.

There are two possible ways of defining successful model
selection. (1) How well the results match the marginal likeli-
hood scores computed using a method that explicitly solves
the ODEs (since parameter inference with gradient matching
additionally approximates the solution of the ODEs using an
interpolant). We refer to this as the ‘exact’ method. (2) How
often a method selects the model the data were simulated
from, i.e. the network reconstruction accuracy. Both of these
benchmarks will be considered and discussed.

Assuming an iid sample from a binomial distribution of
sample size n, we get a standard error of

√
p(1 − p)/n =√

(1/3)(2/3)/10 = 0.15 for the LV model (3 alternative
models) and

√
p(1 − p)/n = √

(1/4)(3/4)/10 = 0.14 for
the PSTP model (4 alternative models), we can get a sim-
ple estimate of the confidence level by approximating the
upper tail of the binomial distribution with a normal distri-
bution, and calculating the standard 95% confidence interval
(4-standard deviation width). This gives a critical upper sig-
nificance threshold of 0.33 + 2(0.15) = 0.63 for the LV
model, and 0.25+ 2(0.14) = 0.53 for the PSTP model. The
probabilities of selecting the model the data were generated
from are shown, for medium SNR values in Table 1, for low
SNR values, in Table 2, and high SNR values, in Table 3.
Due to space restrictions we relegate all tables showing the
probability of selecting any proposed model and all figures
to the supplementary material.

6.1 Lotka–Volterra original model (LV1)

By examining Tables 1, 2 and 3, we can see that the ‘exact’
method consistently favours the model the data were gen-
erated from for all noise levels. The proposed method also
consistently favours the model the data were generated from
for all noise levels. Both BIC and WAIC significantly favour
the model the data were generated from, but less often than
the proposed method. The percentages of the time any of
the models were favoured by a particular model selection
method, as well as graphical representations of the results,
can be found in Tables 5–7 and Figs. 4–15 in the supplemen-
tary material.

6.2 Lotka–Volterra intra-species competitionmodel
(LV2)

The second row of Table 1 contains the probabilities for how
often a model selection method favoured the data generating
model, for medium SNR and when that model was LV2.

At first glance, it would appear that model selection using
the method proposed in this paper, BIC and WAIC are not
able to select the correct model for this scenario, since none
of themethods significantly favour the LV2model. However,
the settings to simulate data from this system were arbitrar-
ily chosen, since there was no indication from previous work
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Table 1 The probability of
selecting the model the data
were generated from, for
medium SNR values

Model ‘Exact’ method Proposed method BIC WAIC

LV, LV1 true 1.0 1.0 0.7 1.0

LV, LV2 true 1.0 0.1 0.0 0.6

LV, LV2 true, shorter time domain – 0.8 0.6 0.8

LV, LV2 true, stronger intra-species effect 1.0 0.7 0.0 0.3

LV, LV3 true 1.0 1.0 0.5 0.8

PSTP, PSTP1 true 0.7 1.0 0.0 0.1

Significant results are shown in bold-face fonts

Table 2 The probability of
selecting the model the data
were generated from, for low
SNR values

Model ‘Exact’ method Proposed method BIC WAIC

LV, LV1 true 1.0 1.0 0.8 0.7

LV, LV2 true, shorter time domain – 0.0 0.1 0.5

LV, LV2 true, stronger intra-species effect 1.0 0.8 0.0 0.6

LV, LV3 true 1.0 0.8 0.8 0.6

PSTP, PSTP1 true 0.6 1.0 0.0 0.1

Significant results are shown in bold-face fonts

Table 3 The probability of
selecting the model the data
were generated from, for high
SNR values

Data ‘Exact’ method Proposed method BIC WAIC

LV, LV1 true 1.0 1.0 0.1 1.0

LV, LV2 true, shorter time domain – 1.0 0.8 1.0

LV, LV2 true, stronger intra-species effect 1.0 0.0 0.0 0.0

LV, LV3 true 1.0 1.0 1.0 1.0

PSTP, PSTP1 true 1.0 1.0 0.7 0.6

Significant results are shown in bold-face fonts

what suitable values should be. Upon further consideration of
the set-up, two issues were noted. First, the time domain over
which the signals are observed was set to [0, 2], as this was
consistent with simulation studies that generated data from
the LV1 model. For the LV2 model, the particular parame-
ters chosen produce signals that rapidly decrease over a short
time domain ([0, 0.3]) and then plateau for the remaining
time domain. Since only a small number of observations are
available for these systems, only 1–2 observations were gen-
erated in the domain where the signal decreases i.e. where
most of the information about the signals lies. For the ‘exact’
method, this does not seem to be much of an issue, but for
gradient matching, having the vast majority of observations
lie in the plateaued region can lead to too much information
loss (gradients that are effectively zero across most of the
time domain) and the results deteriorate. In order to test and
demonstrate this, gradient matching was conducted using the
same parameters, number of observations and a smaller time
domain—only considering the time domain [0, 0.3]. This
is something that could be applied in practice, should it be
known that the time domain is too large to produce signals
that are sufficiently informative. For this scenario, the sig-
moid variance kernel was used, since the RBF kernel was

unable to properly model the rapid change in signal concen-
tration. The ‘exact’methodwas not repeated for this scenario,
as it did not struggle with the original time domain and we
expect it to perform as well for LV2 with the shorter time
domain.

Second, an inspection of the structure of the LV2 model
tells us that the parameters were poorly chosen. When θ5 is
large, the component will decrease x1. However, θ5 could
be set to zero and θ2 could made large and again x1 would
decrease. Hence, the LV1 model has a term that is able to
affect the signals in a way very much the same as the LV2
model, without the need for an extra parameter. This essen-
tiallymakes the intra-species componentweakly identifiable.
Gradient matching seems to be more affected by this than
an explicit solution of the ODEs, since it is an approximate
method. The methods were tested again on data generated
when θ5 was more substantial. To this end, data were gener-
ated with the following parameters; θ1 = 100, θ2 = 0.1,
θ3 = 4, θ4 = 0.1 and θ5 = 10. The effect this has on
the system is that for x1, this “species” concentration rises
exponentially and then plateaus, since the intra-species com-
petition term stops the population increasing without end.
The LV1 model should not be able to replicate this because
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concentrations for x2 go to zero. Hence, the LV1 model
should not have a way to regulate the population concentra-
tion and get good agreement with the data. For this set-up, iid
Gaussian noise of SD = 0.1414 was added to each “species”
(average SNR for each “species”= 10). The priors over the
parameters were Γ (4, 0.5) for θ2, θ3 and θ4,U (0, 110) for θ1
and aU (2, 11) for θ5 (reflecting the extra uncertainty of these
two parameters). The time domain was chosen to be [0, 2].
Since the dependency on θ5 is higher, this should compensate
for the information lost by the plateaued signal, allowing us
to see that gradient matching can in principle deal with these
types of signals, should the observed signals be informative
enough.

Since we know that gradient matching cannot deal with
the signals produced using the original settings we used to
generate data from the LV2 model, we do not present results
for low SNRs and high SNRs for the LV2 original settings
scenario.

Now examining Tables 1, 2 and 3, we can see how often
a model selection method favoured selecting the LV2 model
when data are generated over a shorter time domain. For
medium SNR, the proposed method and WAIC perform as
well as one another, significantly favouring the LV2 model,
and outperform BIC, which doesn’t. For high SNR, all meth-
ods significantly favour the LV2 model, with the proposed
method and WAIC favouring it more often. All methods fail
in the low SNR case. This failure is likely a consequence of
the fact that the interpolants get noisier, making the deriva-
tives less reliable (error present in a signal is amplified when
modelling the derivatives).

For the LV2 stronger intra-species effect scenario, the
‘exact’ method consistently favours the model the data were
generated from for all SNRs. The proposed method signifi-
cantly favours the LV2 model (in agreement with the ‘exact’
method) for low andmedium SNRs, outperforming both BIC
andWAIC, which do not significantly favour the LV2model.
Rather strangely, for the high SNR (lowest noise) scenario,
none of the gradientmatching basedmodel selectionmethods
(proposed method, BIC and WAIC) significantly favour the
LV2 model. A closer inspection reveals that the cause of this
is the prior distribution in function space, which forces func-
tions to lie within a 3-standard deviation width around the
initial interpolant (this width was discussed in Sect. 5.5 and
more details can be found in Section 9.5 of the SM). Larger
SNRs increase the tightness of the prior bound. For LV2with
a stronger intra-species interaction, the prior is so informative
that, irrespective of the underlyingmodel, all data fit terms are
always high. Choosing the true model can thus only achieve
little gain in goodness of data fit, which does not compensate
the higher Bayesian penalty for model complexity. Conse-
quently, all gradient matching methods consistently select
the least complex model with the lowest complexity penalty
in this case.

It is important to note that when the ‘exact’ method was
applied to the LV2 stronger intra-species effect scenario, the
initial conditions of the ODEs were fixed at their true values,
since the solver encountered numerical instabilities. For this
choice of parameter settings the differential equations are
stiff, which drives the step size of the solver to small values
belowmachine precision, causing the software to crash. This
is discussed in the literature, for example see pp. 45–47 of
Soetaert et al. (2010). It is alsoworth pointing out that various
solvers were used (euler,lsoda,ode23,ode45,vode)
and this issuewas still present. In order to avoid this problem,
the initial conditions were held fixed at the true values for
the ‘exact’ method. Note that this information would not be
available in practice and that the gradient matching approach
does not require any initial conditions—a practical benefit
that gradient matching has over the explicit approach.

The percentages of the time any of the models were
favoured by a particular model selection method, as well
as graphical representations of the results, can be found in
Tables 8–14 and Figs. 16–40 in the supplementary material.

6.3 Lotka–Volterra saturation termmodel (LV3)

By examining Tables 1, 2 and 3, we can see that the ‘exact’
method consistently favours the model the data were gener-
ated from, for all SNRs. The proposed method significantly
selects theLV3model (in agreementwith the ‘exact’method)
for all SNRs, outperformingBIC formediumSNRandWAIC
for lowSNR(where thesemethods donot significantly favour
the LV3model). BIC andWAIC significantly favour the LV3
model for the other SNRs. The percentages of the time any
of the models were favoured by a particular model selection
method, as well as graphical representations of the results,
can be found in Tables 15–17 and Figs. 41–52 in the supple-
mentary material.

6.4 Protein signalling transduction pathwayModel
1 (PSTP1)

Tables 1, 2 and 3 show that the ‘exact’ method significantly
favours the model the data were generated from for all SNRs.
The proposed method also significantly favours the model
the data were generated from for all SNRs and outperforms
both BIC and WAIC for SNR low and SNR medium (where
these methods do not significantly favour the PSTP1 model).
All methods favour the PSTP1 model for SNR high. The
percentages of the time any of the models were favoured
by a particular model selection method, as well as graphical
representations of the results, can be found in Tables 19–21
and Figs. 53–66 in the supplementary material.
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Table 4 Model selection scores
(to 1 decimal place), for the real
data observations of lynx and
hare populations. Bold values
indicate the model most
favoured by a method

Method LV1 LV2 LV3

Log marginal likelihood, ‘exact’ method (higher is better) − 5955.1 − 4675.1 − 17,486.6

Log marginal likelihood, proposed method (higher is better) 69.9 78.2 71.4

BIC (lower is better) − 154.2 − 153.6 − 156.0

WAIC (lower is better) − 126.9 − 125.1 − 126.0

7 Application to real data

We have applied the Lotka–Volterra model and its two vari-
ants, models LV1, LV2 and LV3, to the hare–lynx time series
recorded by the Hudson Bay Company. These time series
show the annual abundance of the snowshoe hare Lepus
americanus and the Canadian lynx Lynx canadensis in the
boreal forest of North America, as measured by pelts col-
lected by the Hudson Bay Company between 1900 and 1920.
We took the data from Table 2.6 in Howard (http://www.
math.tamu.edu/~phoward/m442/modbasics.pdf), which are
described in more detail on Carpenter (http://mc-stan.org/
users/documentation/case-studies/lotka-volterra-predator-
prey.html) and Mahaffy (https://jmahaffy.sdsu.edu/courses/
f09/math636/lectures/lotka/qualde2.html). The Hudson Bay
time series have been analysed in various articles before
(Zhang et al. 2007, Nedorezov 2016), though not with the
objective of model selection, as in our work. Our results are
shown in Table 4.

As opposed to the simulated data, we do not have a gold-
standard here, i.e. we do not know what the true model is.
However, based on the previous results, one can assume that
the ‘exact’ method gives the most accurate results. It is there-
fore reassuring that our proposed method concurs with the
‘exact’ model selection, whereas the two information criteria
select different models.

8 Discussion

Distinguishing between competing hypotheses as to the
structure of systems described by ODEs is a challenging
problem. In practice, one must first run a sampling algorithm
(such as MCMC) or optimiser given a proposed ODE model
and then either compute the marginal likelihood of the data
given the model or rely on predictive performance measures
such as information criteria. Calculating the marginal likeli-
hood can be difficult since the integral over the parameters is
usually not available in closed form. Information criteria are
easier to compute, but rely on asymptotic assumptions which
can be difficult to satisfy in practice.

Since solving the differential equations in order to perform
statistical inference is usually too computationally onerous to
be viable in practice, this work considers the method of gra-

dient matching instead. The additional advantage of gradient
matching is that, as opposed to approaches based on numeri-
cally integrating the ODEs, it does not require knowledge of
the initial conditions. Previous work on gradient matching,
reported in the existing literature, has focused on parame-
ter estimation. To the best of our knowledge, this is the first
paper to focus on model selection with gradient matching,
by adapting the method of thermodynamic integration.

We have compared these results with two information
criteria—BIC, which is an asymptotically correct approxi-
mation of the log marginal likelihood, and WAIC, which is
asymptotically equivalent to Bayesian leave-one-out cross-
validation (see Watanabe 2010). Since gradient matching
is an approximate inference method, the resulting marginal
likelihood computed by thermodynamic integration will also
be approximate. In order to have a gold standard to compare
the results to, the marginal likelihood was also calculated
by explicitly solving the ODEs (numerically) to obtain the
necessary components to then carry out thermodynamic inte-
gration.

We have evaluated the performance of the proposed
method on three different forms of the Lotka–Volterra model
(Lotka 1932) and four different forms of a protein signalling
transduction pathway model (Vyshemirsky and Girolami
2008) for three signal-to-noise ratios. The results of our sim-
ulation studies can be summarised as follows:

(1) Model selection with gradient matching is more chal-
lenging than parameter estimation. In particular, the
model selection performance with gradient matching
is not as good as with the ‘exact’ method (by which
we mean the method that numerically integrates the
ODEs). We need to point out, though, that we have
run all MCMC simulations for the ‘exact’ method
until convergence (according to established convergence
diagnostics using potential scale reduction factors). For
more complex models, this would not be possible due
to the high computational complexity of the numerical
integration step, and this could bring the advantages of
gradient matching to the fore.

(2) The performance of gradient matching is close to that
of the ‘exact’ method for medium noise levels. The per-
formance of gradient matching sometimes deteriorates
for lower and higher SNRs. The deterioration for lower
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SNRs is a consequence of the fact that the interpolants
get noisier, making the derivatives less reliable. The
deterioration for higher SNRs is a consequence of the
chosen prior in function space, whose tightness distorts
the trade-off between data fit and model complexity.

(3) The proposed thermodynamic integration method for
computing themarginal likelihoodachieves bettermodel
selection results than BIC. This is not surprising, as BIC
is an approximation of the marginal likelihood that only
becomes exact in the asymptotic limit. The proposed
method also tends to be better than WAIC. This is an
encouraging finding, given that WAIC is a competitive
method that has been shown to come close in perfor-
mance to model selection with the marginal likelihood
(Aderhold et al. 2017).

Reliablemodel selectionwith gradientmatching is not some-
thing that one could have taken for granted. Our simulations
show that the posterior means of the parameters are usually
very similar between the gradient matching approach and the
‘exact’ method. However, there are clear discrepancies in the
shapes of the posterior distributions and, consequently, the
posterior credible intervals for the parameters. The widths
of these intervals are sometimes larger and sometimes nar-
rower than the ‘exact’ credible intervals. This deviation is
intrinsic to the methodology of gradient matching per se. A
good illustration is available in Lazarus et al. (2018). Figure 2
of this paper shows that, for a model similar to those investi-
gated in our paper, the log likelihood landscapes for the exact
method and gradient matching are very different, despite the
fact that the maximum likelihood configurations match very
well. The upshot is that gradient matching tends to be a reli-
able method for parameter estimation, but not necessarily
for uncertainty quantification. This could, in principle, affect
model selection. The marginal likelihood is an integral over
the unnormalised posterior distribution, and the question is
how it will be affected by reshaping the log likelihood land-
scape. The novelty of our paper is that it has investigated this
question empirically, on a range of benchmark problems, and
assesses the accuracy of model selection in comparison with
the ‘exact’ method.

Future work could focus on improving the numerical inte-
gration in Eq. 31. Presently, this is calculated using the
trapezoidal rule, which introduces bias into the estimation
of the marginal likelihood; see Friel et al. (2014). The esti-
mation could be improved with the higher-order numerical
integration scheme proposed by Friel et al. (2014). However,
Aderhold et al. (2017) have discussed potential limitations
and occasional deteriorations of this scheme, which sug-
gests further investigations are advisable in the context of the
present work. Future work could also focus on implement-
ing the alternative integration path proposed by Grzegorczyk
et al. (2017). Rather than tempering between the prior and

posterior for each model, calculating the log marginal likeli-
hood, then comparing the values between competingmodels,
the alternative method by Grzegorczyk et al. (2017) tempers
between the posterior distributions of two competing mod-
els and calculates the log Bayes factor directly. The results in
Grzegorczyk et al. (2017) show that this approach can lead to
a substantial variance reduction, which can potentially boost
the performance of the model selection scheme proposed in
the present paper.
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