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ABSTRACT: Fully functionalized medium-sized cyclic ethers, of the type found in fused polyether natural products, have been
prepared by sequential ring-closing diene metathesis, conversion of the resulting cyclic enone into an allylic enol carbonate, and
Tsuji−Trost allylation using a chiral palladium complex. Very high levels of diastereocontrol, favoring the diastereomer in which
there is a cis relationship between the allyl group at C-2 of the medium-ring ether and the substituent at C-7/C-8, are obtained in
cases where catalyst control and substrate control are matched.

Medium-sized cyclic ethers occur frequently as subunits in
marine natural products. Fused polycyclic ether natural

products such as CTX-3C (1) (Figure 1) have structures that

contain an abundance of both saturated and unsaturated
medium-sized cyclic ethers ranging in size from seven to nine.1

In addition, many smaller monocyclic marine natural products
possessing seven-, eight- and nine-membered rings [e.g.,
laurenyne (2) and laurepinnacin (3)], have been isolated
from marine sources.2

As part of our longstanding research program directed
toward the synthesis of marine fused polyether natural products
of the ciguatoxin and gambieric acid classes,3 we are exploring
novel methods for the rapid and stereoselective synthesis of

highly functionalized medium-sized cyclic ethers and applying
them to the efficient preparation of fused polycyclic ether
frameworks by iterative ring construction.4 In previous work,
we employed an asymmetric variant of the Tsuji−Trost
allylation reaction to couple highly functionalized fragments
and thereby assemble the tetracyclic A−D fragment of the
gambieric acids (Scheme 1).5 In this case, treatment of
carbonate 4 with a palladium complex of the (S)-t-BuPHOX
ligand afforded the rearranged product 5 in good yield with a
high level of diastereocontrol.6

The success of the fragment coupling reaction prompted us
to explore the Tsuji−Trost allylation reaction as a general
method for the synthesis of fully functionalized seven- and
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Figure 1. Examples of marine natural products that contain medium-
sized cyclic ethers.

Scheme 1. Asymmetric Tsuji−Trost Allylation Reaction
Applied to Polyether Fragment Coupling
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eight-membered cyclic ether building blocks and for the
construction of fused polycyclic ether arrays by iterative
construction of cyclic ethers (Scheme 2). We planned to

perform ring-closing metathesis (RCM)7 on enone 6 using
either the Grubbs second-generation catalyst (G-II) or the
Hoveyda−Grubbs second-generation catalyst (HG-II) and then
convert the resulting cyclic enone 7 into the allylic enol
carbonate 8 by treatment with base and allyl chloroformate. A
stereoselective Tsuji−Trost allylation reaction would then be
used to convert 8 into the C-allylated product 9. Subsequent
carbonyl reduction and functionalization would then allow the
RCM and allylation sequence to be repeated.
In previously published work,4f we have shown that

hydrazones prepared from enones such as 7 (R = H) can be
alkylated, but the levels of diastereocontrol are modest, and
subsequent epimerization is required to deliver an acceptable
level of diastereocontrol. An additional step is required to
regenerate the ketone, and modest yields are obtained for the
four-step sequence of hydrazone formation, alkylation,
epimerization, and hydrazone cleavage, which detracts from
the utility of the method.
The seven-membered cyclic ether substrates required for the

Tsuji−Trost allylation reaction were prepared as shown in
Scheme 3. The first substrate, oxepenone 11, was prepared
from chiral-pool-derived alcohol 10 by the use of our published
three-step route.8 Preparation of enone 15, the methyl-
substituted analogue of oxepenone 11, began with alkylation
of alcohol 10 with ethyl 2-bromopropionate to give ether 12.
Reaction of the ethyl ester with methylenetriphenylphosphor-
ane afforded stabilized ylide 13 directly, and subsequent
reaction with formaldehyde delivered enone 14.9 Treatment
of the enone with the G-II resulted in ring closure to produce
enone 15 as a diastereomeric mixture.10

Eight-membered cyclic ether precursors for the Tsuji−Trost
allylation reaction were prepared from the known alcohol 164b

as shown in Scheme 4. Alkylation of 16 with chloroketophos-
phorane 1711 afforded phosphonium ylide 18, and subsequent
reaction with formaldehyde delivered enone 19 (Scheme 4).12

Direct RCM of 19 using G-II was problematic because a high
catalyst loading (30 mol %) was required, and both the level of
conversion and yield of the cyclized product 21 were low. To
circumvent these problems, the enone was reduced to give a
mixture of diastereomeric allylic alcohols, and RCM was
performed thereafter to give a diastereomeric mixture of the

Scheme 2. Stereoselective Iterative Synthesis of Fused
Polyethers

Scheme 3. Synthesis of Allylation Precursors 11 and 15

Scheme 4. Synthesis of Allylation Precursors 21 and 22
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cyclized product 20 in good yield. Oxidation of alcohols 20
afforded the required oxocenone 21, and this compound was
methylated by sequential dimethylhydrazone formation, de-
protonation, alkylation, and hydrazone cleavage to give a
diastereomeric mixture (4:1) of enones 22a and 22b in 44%
yield.13 The mixture of diastereomers was used directly to
generate the enol carbonate required for the Tsuji−Trost
allylation reaction.
Enones 22a and 22b were also prepared by the more direct

route shown in Scheme 5. Alcohol 16 was alkylated with ethyl

2-bromopropionate, and reduction of the resulting ester 23
using DiBAl-H produced a diastereomeric mixture of aldehydes
24. Reaction of the aldehydes with vinylmagnesium bromide
afforded a mixture of the four diastereomeric alcohols 25, and
subsequent RCM produced an isomeric mixture of the
oxocenes in excellent yield. Oxidation of the alcohols then
afforded enone 22 as a mixture of diastereomers (a:b = 1:1.3).
Attempts to perform DBU-mediated epimerization of the
diastereomeric mixture to give predominantly diastereomer 22a
resulted in deconjugation of the enone to produce ketone 26 as
a single diastereomer, as judged by 1H NMR analysis.14

Preparation of the enone substrates 11, 15, 21, and 22
allowed the Tsuji−Trost allylation reactions to be explored.
Enones 11 and 15 were converted into enol carbonates 27 and
28 in excellent yield by deprotonation with sodium
hexamethyldisilazide and O-acylation of the resulting enolates
with allyl chloroformate (Scheme 6).5 Highly stereoselective
Tsuji−Trost allylation reactions were then accomplished by
exposure of enol carbonates 27 and 28 to the palladium
complex of (S)-t-BuPHOX (29) (Scheme 6 and Table 1). In
the case of enol carbonate 27, ketone 32 was obtained in 96%
yield with a >97:3 preference for diastereomer 32a (entry 1,

Table 1).15 When the reaction was repeated using the
palladium complex of (R)-t-BuPHOX (30), a reversal in
diastereoselectivity was observed, and a mixture of diaster-
eomers (13:87) was obtained favoring diastereomer 32b (entry
2, Table 1).15 The Tsuji−Trost reaction performed using the
palladium complex of the achiral PHOX ligand 31 delivered a
69:31 mixture of diastereomers favoring diastereomer 32a
(entry 3, Table 1). Thus, substrate control favors formation of
diastereomer 32a, and in the case of the reaction catalyzed by
the palladium complex of (S)-t-BuPHOX (29), substrate and
reagent control are matched. The same trend was observed in
the case of methyl-substituted substrate 28; reaction with the
catalyst prepared from (S)-t-BuPHOX (29) delivered the
product 33 in excellent yield with a >97:3 preference for
diastereomer 33a (entry 4, Table 1).15 In the mismatched case,
the palladium complex of (R)-t-BuPHOX (30) produced enone
33 as a 28:72 mixture of diastereomers favoring diastereomer
33b (entry 5, Table 1), and when the reaction was performed
using the palladium complex of the achiral ligand 31, the
product 33 was obtained as an 87:13 mixture of isomers with
diastereomer 33a predominating (entry 6, Table 1).15 These
results reveal that substrate control favors the formation of
diastereomer 33a. It is noteworthy that in the mismatched cases
(entries 2 and 5, Table 1), the yields were significantly lower
than those obtained from reactions in which the catalyst and
substrate were matched (entries 1 and 4, Table 1).
The asymmetric Tsuji−Trost allylation reaction also proved

to be highly effective for the preparation of fully functionalized
oxocenes (Scheme 7 and Table 2). The enol carbonate
precursors 34 and 35 were prepared from enones 21 and 22 by
deprotonation and subsequent O-acylation with allyl chlor-

Scheme 5. Alternative Route for the Synthesis of Allylation
Precursor 22

Scheme 6. Stereoselective Allylation of Oxepenones 11 and
15

Table 1. Palladium-Mediated Rearrangement of Allylic Enol
Carbonates 27 and 28

entry substrate ligand product a:b ratioa yield (%)b

1 27 29 32 >97:3 96
2 27 30 32 13:87 75
3 27 31 32 69:31 92
4 28 29 33 >97:3 95
5 28 30 33 28:72 79
6 28 31 33 87:13 88

aDiastereomeric ratios measured by 1H NMR spectroscopy. bYields of
products isolated after purification.

Organic Letters Letter

DOI: 10.1021/acs.orglett.8b01082
Org. Lett. 2018, 20, 2782−2786

2784

http://dx.doi.org/10.1021/acs.orglett.8b01082


oformate.16 Treatment of enol carbonate 34 with the palladium
complex prepared from the (S)-t-BuPHOX ligand (29)
delivered the product 36 with a 94:6 preference for
diastereomer 36a (entry 1, Table 2).15 In contrast, the
mismatched pairing of substrate 34 with the palladium complex
of the (R)-t-BuPHOX ligand (30) produced a 17:83 mixture of
diastereomers favoring diastereomer 36b (entry 2, Table 2).15

Diastereomers 36a and 36b were produced in a ratio of 66:34
when an the palladium complex of achiral ligand 31 was
employed as the catalyst (entry 3, Table 2). A similar trend was
observed with the methyl-substituted substrate 35. In this case,
the matched pairing of substrate and catalyst produced
diastereomer 37a exclusively (entry 4, Table 2); the
mismatched pairing of substrate and catalyst afforded a 55:45
mixture of isomers favoring diastereomer 37a, and the achiral
catalyst delivered a 91:9 isomer mixture with diastereomer 37a
as the major product.
The data in Tables 1 and 2 show that the methyl-substituted

enol carbonates 28 and 35 exhibit greater intrinsic selectivity
for the formation of diastereomers 33a and 37a than do the
corresponding unsubstituted substrates 27 and 34 for
diastereomers 32a and 36a. However, matched catalyst control
is sufficient to ensure highly selective formation of all of the
required products 32a, 33a, 36a, and 37a.
In summary, we have demonstrated that highly function-

alized seven- and eight-membered cyclic ethers can be prepared
efficiently by sequential diene RCM, enol carbonate formation,
and Tsuji−Trost allylation using a chiral palladium complex.
Exceptionally high levels of diastereocontrol can be achieved in
cases where catalyst and substrate control are matched. The
allylated products 32a, 33a, 36a, and 37a are fully function-
alized building blocks that can be used for the preparation of
polycyclic ether arrays, including those possessing ring-junction

methyl substituents, which are found in marine polyether
natural products such as the ciguatoxins and gambieric acids.
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