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ABSTRACT: Cells can sense and respond to changes in the
topographical, chemical, and mechanical information in
their environment. Engineered substrates are increasingly
being developed that exploit these physical attributes to
direct cell responses (most notably mesenchymal stem
cells) and therefore control cell behavior toward desired
applications. However, there are very few methods available
for robust and accurate modeling that can predict cell
behavior prior to experimental evaluations, and this
typically means that many cell test iterations are needed
to identify best material features. Here, we developed a
unifying computational framework to create a multi-
component cell model, called the “virtual cell model” that
has the capability to predict changes in whole cell and cell nucleus characteristics (in terms of shape, direction, and even
chromatin conformation) on a range of cell substrates. Modeling data were correlated with cell culture experimental
outcomes in order to confirm the applicability of the virtual cell model and demonstrating the ability to reflect the
qualitative behavior of mesenchymal stem cells. This may provide a reliable, efficient, and fast high-throughput approach
for the development of optimized substrates for a broad range of cellular applications including stem cell differentiation.
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hysical, chemical, and mechanical properties of the
P extracellular matrix (ECM) in different tissues have

crucial roles in directing residential cell functions."”
Thanks to progress in engineering, biocompatible materials
with tunable properties and patterns have been developed and
employed to mimic particular ECM characteristics that control
cell functions.’ During recent years, engineered substrates (e.g,

with micro/nanopatterns) have been increasingly applied to

-4 ACS Publications  © 2017 American Chemical Society 9084

trigger a range of cell functions/characteristics including cell
alignment (contact guidance) and differentiation.” Examples
include nanoscale features that direct differentiation of
mesenchymal stem cells (MSCs) toward the osteoblast lineage5
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Figure 1. Prediction of deformation and elongation of the cells on the grooved substrate using a “virtual cell modeling”. (A) Cultivated cells
on grooved substrates with widths of 5 and 50 gm and depths of 100—400 nm. Scale bars indicate 25 pm. (B) Morphological alteration of the
virtual cell on the grooved substrate with a width of 44 (i.e., a is the reduced length unit; see Methods/Experimental Section for details) and a
depth of 0.1a — 0.9a. (C) Aspect ratio of the cell nucleus of the cultured cells in 50 pm (blue) and S gm grooves (red) vs the depth of the
grooves (see Table S2 of the SI for details). (D) Aspect ratio of the nucleus of the “virtual cell” vs the depth of the grooves (left); aspect ratio
of the “virtual cell” in red color and a wallpaper circular sheet with the same size of the virtual cell in gray color vs the depth of the grooves
(right). (E) Effect of grooved substrate on the virtual cells with randomly distributed orientations. Distribution of cell orientations with regard
to groove direction after placing on a flat substrate (gray), grooved substrate with a depth of 0.2a (red), and grooved substrate with a depth of
0.5a (blue). (F) Contact probability matrices of simulated chromatin fibers in equilibrium configurations of the virtual cell in suspension and
on grooved substrates with different groove depth, from 0.1a to 0.94. (G) Number of contacts (red) and the percentage of changed contacts
(blue) of the virtual cell in suspension (denoted by “S”) and on grooved substrates with different groove depth, from 0.1a to 0.9a. Cell
absorption on the substrate increases the number of contacts and decreases the alternation of contacts during the time. (H) Volume of the
virtual cell nucleus (blue) and the number of rigid contacts (red) of the virtual cell in suspension (denoted by “S”) and on grooved substrates
with different groove depth, from 0.1a to 0.9a. Cell absorption on the substrate decreases the volume of the nucleus and increases the number
of robust contacts.

and variation of material surface mechanical properties guiding
stem cell lineage.®

It is clear that MSCs’ function closely follows form and that
the degree of cell spreading is strongly correlated to phenotype.
For example, adipocytes are a low-adhesion/poorly spread
MSC phenotype that produce little cytoskeletal tension.”
Osteoblasts, on the other hand, are well-spread MSC
derivatives with high levels of cytoskeletal tension’~ supported
by the formation of supermature adhesions.'” MSC phenotype
itself is maintained by intermediate levels of intracellular
tension and spreading, between the spreading states of
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fibroblasts and adipocytes.'' ™" Further, if MSCs are placed
onto substrates imprinted with the morphologies of mature
MSC derivative phenotypes, then they adopt those phenotypes,
e.g, chondrocytes. More specifically, if the cells are grown of
morphological imprints of naive stem cells, then they retain
MSC phenotype for longer in culture.”'*™® This morpho-
logical control has generated a lot of interest in high-
throughput materiomics,'” screening technologies for chem-
ical,"® mechanical,"” and topographical®® substrate functional-
izations. However, predictive modeling could also provide a
powerful tool if it can be truly predictive.
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Figure 2. Virtual cell model can predict cell/nucleus response to the ECM stiffness. (A) Resulting shapes of the nucleus of an anisotropic
virtual cell on the substrates with the elastic network bond parameters of 1.0k,, 2.0ky, and 20.0 k, (k, is the parameter of elasticity in
simulation units; see Methods/Experimental Section). (B) Relaxed configuration of an isotropic virtual cell on an elastic substrate. (C)
Stochastic optical reconstruction microscopy (STORM) images of the cultivated cell on a polyacrylamide (PA) gel substrate with different
stiffness (1, 8, and 20 kPa). Scale bars indicate 1 ym. (D) Aspect ratio of the cell nucleus vs the substrate stiffness in an in vitro study (see
Table S3 of the SI for details). (E) Top view area (u*) of the cell nucleus vs the substrate stiffness in an in vitro study (see Table S3 of the SI
for details). (F) Illustrated schematic of an anisotropic virtual cell on a 3D-elastic network with a triangular top surface. (G) Aspect ratio of
the anisotropic virtual cell nucleus vs the stiffness of the ECM substrate linkages. (H) Top view area (a?) of the virtual cell nucleus vs the
stiffness of the ECM substrate linkages. (I) Volume (a®) of the virtual cell nuclei vs the stiffness of the ECM substrate linkages. (J) Percentage
of changed chromatin contacts during the averaging vs the stiffness of the ECM substrate linkages. The stiffness of the ECM could affect the
shape and the volume of the virtual cell nucleus and consequently the dynamics of the virtual chromatins. Statistically the chromatin contacts
on stiffer ECMs are more stable than the contacts on softer ECMs. (K) Spatial density of averaged contacts between the segments of
chromatin fiber for the virtual cell on an elastic substrate. The measurements of averaged contacts are performed on the horizontal cross-

section of the nucleus.

To achieve this, we developed a multicomponent cell model,
the “virtual cell model”, which can be used to predict cell
behavior on substrates with a wide range of characteristics. The
model can provide reliable information on cell, nucleus, and
chromatin conformations in response to different material
characteristics. The artificial cell, which we will describe, is
made up from components that virtually model outer and
nucleus membranes, cytoplasm and cytoskeleton, and chroma-
tin fibers. The virtual substrate has also been developed in a
way that allows it to have different morphological (topo-
graphical) and elastic characteristics. The model has the
capacity not only to predict shape and conformation of the
cells qualitatively but also to give quantitative results if the
adequate and proper parameters are used. To show how
powerful and accurate the model is, we compare the model
results with the experimental readouts.

RESULTS

Prediction of Cell and Nucleus’ Geometries on
Grooved Substrates. It is well understood that microgrooved
patterns can guide cell elongation with width and depth of the
grooves dictating the degree of alignment.21 Further, it has
previously been observed in elongated nuclei that signaling
interactions at the nuclear membrane show an increase in
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activated signaling components, providing us with the shape as
an indicator of “cell health”.***> Here, we have fabricated
grooved patterns on poly(methyl methacrylate) (PMMA)
substrates (Figures S1 and S2 of the Supporting Information
(SI)) with various widths and depths (specifically widths of S
and 50 ym and depths of 100, 300, and 400 nm). These
parameters were selected to give the cells strong guidance cues
(narrow and deep grooves) and weak guidance cues (wide and
shallow grooves).24 After culturing of the MSCs on the grooves
at a seeding density of 1 X 10* cells per sample in complete
media for 4 days, MSCs were fixed and stained for actin
cytoskeleton and DAPI (nucleus stain) as described (Figure
1A; Figure S3 of the SI). We concomitantly experimented with
the artificial cell on a model substrate to illustrate the capability
of our developed model for predicting cell elongation on the
grooved substrates (Figure 1). To measure elongation, we
calculated the aspect ratio of the cells and nuclei by measuring
the ratio of the larger to the smaller diameter of the fitted
ellipses to the cell or nucleus. The results revealed that the
virtual cell (see Table S1 of the SI for details on physical
parameters of the model) became elongated along the grooved
substrate with elongation increasing with direct proportionality
to increased groove depth (see Figure 1B and Movies S1—S3 of
the SI for more details).
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The virtual cell also elongated along the grooves, and this led
to change in nuclear morphology from spherical to ellipsoidal,
which was also seen in the cell cultures (Figure 1A,B). The
observed ellipsoidal shape of the nucleus is likely due to the
propagation of stress from the outer membrane to the nucleus
via the viscoelastic cytoskeleton and cytoplasm medium™ (for
more information see the Methods/Experimental Section). A
part of the measured cell elongation, cell aspect ratio, could be
caused by the effect of attachment of the cell to the vertical
walls of the substrate. One may potentially counterpostulate
that this is similar to elongation in visible cross-section of a
“nonextensible circular wallpaper” when it covers the grooved
substrate. The circular “wallpaper”, after covering the grooved
substrate, looks like an ellipse with the aspect ratio as a function
of the depth and the width of the grooves (see Figure S1 of the
SI for more information). However, the observed elongation of
the virtual cell is greater than this geometrical effect, as shown
in Figure 1D.

We next investigated whether the grooved substrates affect
nuclear orientation. We found that the anisotropic virtual cells
can adopt the shape of the substrates’ grooves and thus orient
along the groove direction. The degree of orientation is directly
correlated to the increase in groove depth (Figure 1E).

A recent study revealed that large-scale cell shape changes
have dramatic consequences on the nuclear shape and
structure, resulting in a chromatin condensation. S This
deformation in the nucleus can consequently alter the spatial
configuration of the chromatin fibers and may change the cell
behavior and fate.”® To gain more insight into how chromatin
reorganization may be influenced by the nuclear shape
remodeling, the probability of contact between all pairs of
chromatin beads (.., fibers are modeled with bead—spring
chains) in relaxed configurations is calculated and stored in
contact probability matrices for the suspended virtual cell and
the virtual cell on each groove depth (Figure 1F; for more
information see the SI). The results show that cell attachment
and elongation can change the pattern of spatial contacts
between different sections of the chromatin fibers. As shown in
Figure 1G and H, while increasing groove depth leads to a
larger volume of the nucleus, when the suspended virtual cell
(denoted by “S”) is absorbed on the substrate, the volume of
the nucleus significantly decreases; consequently, the number
of contacts between chromatin beads increases. On the other
hand, since there is less available volume inside the nucleus
after absorption, the percentage of the changed contacts (see
the SI for definition and more information) decreases, and as a
result the number of robust (rigid) contacts increases. Briefly,
the virtual cell model suggests that the cell absorption on the
substrate creates more stable contacts (or exposures) between
different parts of the chromatin fibers, and the strength of this
effect depends on the substrate configuration.

Cell-Substrate Stiffness Modeling Using a 3D-Elastic
Network. Cells exist in a dynamic mechanical environment
where they are subject to a wide range of forces including
mechanical stretching.””*® The interactions at the cell—-ECM
biointerface could trigger a range of responses that regulate cell
fate. The process of sensing dynamic changes (i.e., both changes
in ECM stiffness and externally applied mechanical stretch) by
cells is called mechanotransduction. As has been discussed, cell
shape and function (eg, survival, growth, and differentiation)
can be linked to substrate stiffness.””*™>" Understanding how
cells can sense the matrix stiffness through computational 3D-
modeling with simulated features will help to design optimal
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scaffolds to accelerate translational research in biology and
tissue engineering.

Here, in order to study virtual cell response to ECM
elasticity, anisotropic virtual cells (i.e., virtual cells with one
arbitrary preferable direction of elongation; for more
information see the Methods/Experimental Section) are placed
on simulated substrates with different stiffness (Figure 2A and
C). Since the elastic network model is utilized for the substrate,
the stiffness of the substrate depends on the elastic modulus of
the network linkages, which varies from 1k, to 20.0k, (k, is the
parameter of elasticity in simulation units; see Methods/
Experimental Section). 3D-elastic networks with triangular
shapes were employed to mimic a virtual cell interaction with
an elastic substrate (Figure 2B and F).

Experimentally, stochastic optical reconstruction microscopy
(STORM) images were employed to probe the applicability of
the virtual cell model. It is noteworthy that STORM images
were generated by superlocalizing the positions of ~10° single
molecules collected over ~50000 frames of raw single-
molecule images. The interaction of cells on polyacrylamide
(PA) gel substrates with different stiffness (1, 8, and 2 kPa; see
Figure S4 of the SI; these values were chosen as they are known
to differentially regulate MSC fate from neural to myoblastic to
osteoblastic differentiations, respectively”*”) was probed in
terms of the effect of substrates on the cell nucleus shape. We
note that the modulus of elasticity of the ECM is referred to in
a biological context as stiffness. Figure 2E illustrates the nucleus
spreading area on the ECM substrates and shows that a “stiffer
ECM” causes an increase in nucleus spreading. Moreover,
localized shape deformation of the cell nucleus is associated
with an increase in substrate stiffness (Figure 2C and D). On
the basis of the in-silico analysis, cell nucleus aspect ratio, as a
measure of nucleus elongation, as well as nucleus area was
observed to increase on stiffer substrates (Figure 2G and H and
Movies S4 and S5).

As the consequence of elongation, the virtual cell nucleus on
the stiffer ECM model had less volume (Figure 2I), as has been
previously described,”® potentially reducing the available space
for chromatin inside the nucleus. As a result, the chromatin
density inside the virtual nucleus and the number of contacts
between chromatin segments increased in direct proportionality
to reduced nuclear volume (Figure 2K). However, the modeled
percentage of changes in chromatin contacts decreases on
stiffer ECMs (Figure 2J). This suggests that the contacts
between the chromatin segments are more stable in higher
chromatin density conditions, such as with stiffer ECM. Our
results provide evidence that the “virtual cell model” could be
employed as a platform to understand how cells sense and
respond to the ECM.

Prediction of Stem Cell Geometry and Chromatin
Conformation on Cell-Imprinted Substrates. We have
developed a platform technology of smart nanopatterned
substrates. These substrates are embossed with morphologies of
mature cells. In response to these morphological outlines,
MSCs differentiate into the cell type represented in the
imprints. We have already demonstrated the success of these
bioinspired cell-imprinted substrates for reliable and efhicient
control of MSC differentiation toward chondrocytes' and
keratinocytes.'® Further, we have also demonstrated that cell-
patterned substrates modulate the growth (self-renewal),
differentiation, and dedifferentiation of a variety of cells."*

To investigate the efficacy of our virtual cell approach to
predict the stem cell geometry after being cultured on the

DOI: 10.1021/acsnano.7b03732
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Figure 3. Virtual cell can predict stem cell behavior on the cell-imprinted substrate. (A) Atomic-force microscopy (AFM) image showing the
topography of the substrate with stem-cell-imprinted pattern (upper part) and resultant configuration of the virtual cell on the substrate with
the directly adapted morphology from the stem-cell-imprinted pattern (lower part). (B) AFM image showing the topography of the substrate
with keratinocyte-cell-imprinted patterns (upper part) and the resultant configuration of the virtual cell on the substrate with the directly
adapted morphology from the keratinocyte-imprinted pattern (bottom). The AFM images are reproduced with permission from ref 16;

American Chemical Society (2014).

surface of cell-imprinted substrates, the morphologies of the
imprinted substrates were directly captured from our published
experimental data.'>'® The resultant morphologies were then
discretized into triangular elements and inserted into our model
pipeline. Then, virtual cells were placed above these substrates
close enough to permit attachment. The results revealed that
the virtual cell could accurately predict the geometry of the
cultured MSCs according to the cell type that had been used as
a template (Figure 3 and Movies S5—S9). More specifically, the
simulation outcomes for culturing the cells on top of imprints
designed around either naive MSCs (typically fibroblastic in
appearance, Figure 3A) or dedifferentiated chondrocytes (i.e.,
reverted to fibroblasts) (see Figure SS of the SI for details)
revealed the formation of bipolar, fibroblastic morphology and
elongated nuclei, as described in the original experimental
papers.'>'® On the contrary, spherical shapes for both cell and
nucleus geometry were achieved for the nanopatterend
substrates with shapes of keratinocytes (Figure 3B) and
chondrocytes (Figure S5 of the SI), again, in agreement with
the original cell experiments.'*'°

Numerous canonical signaling pathways are activated in
response to the cellular matrix and geometric cues converging
on diverse transcription factors (e.g, Yes-associated protein and
transcriptional coactivator with PDZ-binding domain®”)
through diverse biochemical mechanisms.>® However, the
physical transmission of such stresses through cytoplasmic—
nuclear connections can remodel the chromatin structure, and
this may have a more direct mechanical effect on tran-
scription.” There are very few available techniques to track the
chromatin conformation variations in the nucleus, includin
complex super-resolution microscopy”’* and Hi-C technology’
(i, a genome-wide method resulted from a combination of
chromosome conformation capture and deep sequencing).
Very recent developments in the field of super-resolution
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microscopy have demonstrated the close relation between the
chromatin conformation and various epigenetic states.”
Therefore, our observations on the effect of grooved substrates
on the chromatin conformation perhaps suggest the significant
role of surface topographies on change of gene expression,
which leads to a substantial variation on the cell functions.
More specifically, using the virtual cell approach, we can easily
track the variation of cell and nucleus shapes together with
chromatin conformational changes during differentiation. The
findings should help researchers understand the mechanisms
involved in shape-induced physical differentiation of stem cells.

DISCUSSION

The crucial roles of the physicochemical properties of cell
culture substrates on function and behavior of a wide range of
the cells are becoming well-studied in the current literature,
using experimental approaches.”*>*® However, development of
in-silico approaches for prediction of cell responses to the
physicochemical properties of substrates is still in its infancy.”’
The prediction of cell behavior, using computational
approaches, could be very powerful in speeding up the design
of optimal stem cell culture substrates. In this paper, we have
developed a unifying computational framework and created a
virtual cell model, and by correlation with experimental
outcomes, we have demonstrated the capability of this model
to predict cell behavior outcomes.

Our experimental examples contained substrates with
different surface topographies, various mechanical properties,
and cell-imprinted patterns. The shape and motility of the
employed cells were controlled by both internal and external
stimuli and responses of different components of the cells as
they respond to topographies. Then, to produce a model that
predicts the shape, deformation, conformation, and movement
of the cells, we required the flexibility to model all these
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components together. The elasticity of the membrane is also
important, as cell membranes have fluidity, experience
cytoskeleton and ECM forces, and also are involved in cell
adhesion. Our proposed multicomponent virtual cell model
demonstrated the capacity to provide all the relevant
components of the cell; its outcomes were well correlated
with the experimental readouts. For example, in the grooved
substrates, the artificial cell accurately demonstrated the
elongation in the direction of the grooved virtual substrates.

We have previously used our cell-imprinted substrates'” to
demonstrate reliable and efficient control of MSC differ-
entiation toward chondrocytes,'® keratinocytes,'"® and teno-
cytes.'* We have also demonstrated that cell-patterned
substrates modulate the differentiation, redifferentiation, and
transdifferentiation of a variety of cells."* In this work, our goal
was to probe whether the virtual cell can show the mechanism
behind the observed experimental results with regard to the
physical differentiation. The main hypothesis in the exper-
imental approach was that the stem cells cultured on the cell-
imprinted substrates are driven to adopt the specific shape and
molecular characteristics of the mature cell types that had been
used as a template for the cell-imprinting process. Our in-silico
results verified the above hypothesis, as the virtual cell revealed
that the cultured cells can mimic the shape of the imprinted
substrates and change their geometry in both cellular and
nuclear structures. In addition, we use our models to predict
that the confining geometry of the imprints has effects on the
chain arrangement of simulated chromatin fibers in the nuclei,
which may have roles in the physical differentiation process. It
is noteworthy that the process of cell differentiation is a
complex and dynamic phenomenon; to further enhance the
predictability of our virtual cell model, the model should be
further improved to consider the incubation time and its effects
on the differentiation process.

It is important to note that our goal in this step is to provide
qualitative behavior of the MSCs. By using the real parameters
(eg, Young’s modulus and the force generated by actin
polymerization) of a particular cell type in experiments, the
model should be customized in specific cell types to provide
quantitative outcomes.

CONCLUSION

We introduced a virtual cell to probe cell function/behavior in
silico. Using experimental results, we showed promising
capability of the virtual cell to be employed as an eflicient
and fast high-throughput approach to provide the required
information for fabrication of optimal substrates for a broad
range of cellular applications. The optimal substrates, for
directing specific cell function (e.g, differentiation), will have
translational impact through the provision of appropriate
substrates to target desired stem cell phenotypes. We propose
that they will find roles in prevention/prediction of diseases
through better in vitro drug screening and through helping the
cell supply chain to underpin effective cell therapy.

METHODS/EXPERIMENTAL SECTION

Development of the Virtual Cell. A virtual cell model is
developed to capture the cell mechanics on the substrates with
different elastic properties and morphologies. The model consists of
various components to simulate the outer membrane of the cell and
nuclear envelope, cytoplasmic area, chromatin fibers, and extracellular
matrix. A triangulated fluidic membrane is utilized to model the outer
membrane of the cell and the nuclear envelope. In this model, the
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membrane is discretized into a triangulated mesh of vertices that are
connected to each other with elastic bonds. The elastic parameters
have been tuned to reflect the mechanical properties of lipid bilayers.
Furthermore, membrane viscosity would be taken into account via the
fluidity of the vertices.”® The corresponding potential energy is given

by

Umembmne = Ubonding + []repulsion + (]curvature + L]surfacearea
exp| — exp| —
lo— Tij i~ Iy
vy ey et
max ri,j ri,j - Zrnin

()

K, K
+——"C 1—cosf) + —=(S—38,)>
s 3 (1) + 365

(%)

(1)

where Uponding a0d Usepuision are the bonding and repulsive potentials,
respectively, which limit the bond length to be in the range of [,
o). In the first and second terms, the summation is over all
connected vertices ((i¥, j')) and r;; denotes the distance between
neighboring vertices. Here, we use b = 80ky T, I, = 1.334, I, = 0.674,
lo = 1.154, and I, = 0.85a, where a is the initial triangle edge length.>®
Local curvature and its fluctuations are controlled by bending energy
Ueurvaturer i the third term, the summation is over all neighboring
triangular elements ((i°, j°)), 6, ; is the angle between the two normal
vectors of neighboring elements, and K . = 20ksT is the curvature
energy constant. The surface area of membranes is kept constant
during the simulations through constraint energy on the surface area
U b

surface area with Ky = 1 N

The cell membrane geometry is initially considered spherical, and
the nucleus membrane geometry is set the same as the cell membrane,
with a smaller volume. The potential energy introduced in eq 1 is
applied to both the cell and nucleus membranes.

The cytoplasm and cytoskeleton network are modeled by a network
of distributed mass particles, which fill the space between the nucleus
and the cell membrane. These particles are interconnected, and they
are also connected to one-fourth of membrane nodes through Voigt
and Maxwell fractional viscoelastic elements.’”* The network
topology is captured by a three-dimensional tetrahedral mesh,*' and
the potential energy of the network is given as

K,

;Yt 2=

(irj)

K,

o Z (I, - rjl - rfj)z
2 o

Ucyt=

@)

The sum is over all connected vertices, K is the stiffness of the

linkages and is set to be ’%T = Ko, w;; is the potential energy of the
linkage between the i and the j mass particles, and r; and 7; are the
corresponding position vectors. The equilibrium length of elements
(r5)) is not fixed and evolves dynamically in viscous response to

mechanical stress with the following relations:

dt Ho (3)
du,
g, ==t
b dr 4)

where f,; is the value of the generated force between the i and the j
mass particles and f, is the viscous coefficient of the network. The
cytoplasm mass particles are not allowed to penetrate into the cell and
nucleus membranes.

The chromatin fibers are confined in the nucleus. We used a bead—
spring model with excluded volume interaction to simulate the fibers.
The interacting potentials of the chromatin fibers consisting of N,
chains are
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N-2

(9;,j+1 - 90)2

c

[]chains = Ubond + Ubending + IJexclucledvolume
Kbending

N, N-1
_Kbonding ZC z ( i )2 +
=, Tij+1 — 1o 2

i=1 j=1 i=1 j=1

Y 4e, [ﬁ
(s)

(irj)
i<jy1i<0y

where N; represents the number of beads of the i chain. Kponding and
Kpending ar€ bond and bending stiffness. 7, and 6,5, are the bond
length and the bond angle, respectively. The equilibrium bond length
and angle are respectively set to r, = 20,4, and €, = 0. In the third term,
only the repulsive part of the Lennard-Jones potential is considered for
each pair of beads. The length and the depth of the potential are given
by 04, and €, respectively. The nuclear envelope is impenetrable for
the chains.

To model the ECM, we employed an elastic network model whose
top surface is triangulated* (this is similar to the cytoskeleton—
cytoplasm model having equal mesh size). The mechanical character-
istics of the substrate are specified by the elasticity of the linkages kgcyy,
and there are two possible ways of interaction between the cell and the
top surface of the ECM: (1) Depending on the mechanical and
chemical properties of the cell membrane, the cell is able to adhere on
the substrate.*”** (2) Due to the activity and polymerization of the
actin network at the cell periphery, the cell membrane is able to spread
on the substrate.**™*® The adhesion of the cell membrane to the
substrate is modeled through a generic potential such that when the
membrane elements are close enough to the substrate elements, they
interact through the following Lennard-Jones potential:

10 4
ij o o
L L (6)

Here d”, is the shortest distance between the center of the i
membrane element and the j surface element (see Supporting
Information), and the depth and the length of the Lennard-Jones
potential are given by E€gcy and o), respectively.

To model the outward pushing force applied to the membrane by
the polymerization of the actin network at the cell periphery, we used
an effective force F,.. whose alignment is parallel to the local
curvature vector of the membrane. This force pushes the membrane
elements from where they are located to within a distance of a + 6,
from the substrate elements. Because the physical sources of F, ., are
internal, F, . should not impose any net force to the cell by its own;
therefore, after applying F,. to the corresponding membrane
elements, the inverse of the net generated force is distributed between
all membrane nodes.

Additionally, the structural and mechanical characteristics of the
cytoplasm of some specific cells (polarized cells) induce anisotropy to
them when they are spreading on the ECM.*”** To include such
substantive elongation anisotropy of the cell, one arbitrary direction on
the ECM substrate is chosen such that along this direction the
magnitude of the F, . is higher than other directions. Consequently,
this enables the virtual cell to spread on the substrate anisotropically.

To perform the simulations, the virtual cell model is implemented
as an integrated program via the C++ platform. In all simulations, the
chromatin chains are initially confined in a spherical volume within the
radius of the nucleus and then are placed inside the nucleus. The
elastic network of the cytoplasm and cytoskeleton consists of (locally
connected) mass particles; the network is also connected to one-fourth
of the nodes of the cell and the nucleus membrane. Putting all
elements together, we let the cell be relaxed by looking at the energy
and the force distributions at constant temperature T. It takes about
100 000 simulation steps until the system equilibrates. Then we place
the cell on the substrate and wait the same time before reporting the

+
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cells’ configurations. Chromatin conformations are averaged over the
intervals of 10000 simulation steps.
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