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BACKGROUND AND PURPOSE
Human ether-a-go-go-related gene (hERG; Kv11.1) channel inhibition is a widely accepted predictor of cardiac arrhythmia. hERG
channel inhibition alone is often insufficient to predict pro-arrhythmic drug effects. This study used a library of dofetilide deriva-
tives to investigate the relationship between standard measures of hERG current block in an expression system and changes in
action potential duration (APD) in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The interference
from accompanying block of Cav1.2 and Nav1.5 channels was investigated along with an in silico AP model.

EXPERIMENTAL APPROACH
Drug-induced changes in APD were assessed in hiPSC-CMs using voltage-sensitive dyes. The IC50 values for dofetilide and 13
derivatives on hERG current were estimated in an HEK293 expression system. The relative potency of each drug on APD was es-
timated by calculating the dose (D150) required to prolong the APD at 90% (APD90) repolarization by 50%.

KEY RESULTS
The D150 in hiPSC-CMs was linearly correlated with IC50 of hERG current. In silico simulations supported this finding. Three de-
rivatives inhibited hERG without prolonging APD, and these compounds also inhibited Cav1.2 and/or Nav1.5 in a channel state-
dependent manner. Adding Cav1.2 and Nav1.2 block to the in silico model recapitulated the direction but not the extent of the
APD change.

CONCLUSIONS AND IMPLICATIONS
Potency of hERG current inhibition correlates linearly with an index of APD in hiPSC-CMs. The compounds that do not correlate
have additional effects including concomitant block of Cav1.2 and/or Nav1.5 channels. In silico simulations of hiPSC-CMs APs
confirm the principle of the multiple ion channel effects.

Abbreviations
APD, action potential duration; CiPA, comprehensive in vitro proarrhythmia assay; hERG, human ether-a-go-go-related
gene; hiPSC-CMs, human-induced pluripotent stem cell-derived cardiomyocytes; IKr, delayed rectifier potassium current;
TdP, torsade de pointes
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Introduction
The current paradigm of assessing drug-induced pro-arrhythmic
risk is based on a link between drug-induced human ether-a-go-
go-related gene (hERG also known as Kv11.1) channel blockade
and QT-interval prolongation; for review, see Sanguinetti and
Tristani-Firouzi (2006). The abnormal activity of cardiac
myocytes such as early after-depolarizations (EADs) ismore likely
to occur when the cardiac action potential (AP) is prolonged.
EADs manifest as a single spike or oscillations of the membrane
potential at the repolarising phase of the AP (Keating and
Sanguinetti, 2001; Morita et al., 2008; Liu et al., 2012) and are
commonly seen in patients with an acquired long-QT syndrome
(Veldkamp et al., 2001; Pogwizd and Bers, 2004). EADs are pro-
arrhythmic because of their potential to induce dispersed refrac-
tory periods in cardiac tissue, which is a vital condition for the
precipitation of arrhythmias. A link between EADs and torsade
de pointes (TdP) has been previously studied (Volders et al.,
2000), and it is widely accepted that the prolongation of the QT
interval is the precursor of EADs and TdP caused by many drugs
(Hancox et al., 2008; Sager et al., 2014).

Many experimental and theoretical studies have been per-
formed to investigate the ionic mechanisms of EADs in iso-
lated cardiomyocytes (Zeng and Rudy, 1995; Sato et al.,
2010; Liu et al., 2012). The repolarization phase of cardiac
AP results from a complex interplay between several ionic
currents such as inward sodium current (INa), inward calcium
current (ICaL) and several potassium currents mainly rapid de-
layed rectifier potassium current (Ikr). EADs can be produced
either by increasing the inward currents, mainly L-type cal-
cium current (ICaL), or reducing the outward currents (IKr),
or both. So, for example, a cell can be made susceptible to
EADs by inhibiting IKr through hERG with dofetilide, activat-
ing the late sodium current (INaLate) with veratridine or by in-
creasing the conductance of ICaL through Cav1.2 channels
with BAY K8644 (Horváth et al., 2015). Drugs with unidirec-
tional inhibition of inward and outward currents are gener-
ally unable to prolong AP duration (APD) and thus unlikely
to induce EADs. Verapamil is one example that simulta-
neously inhibit ICal and hERG current without prolonging
the QT interval (Zhang et al., 1999).

Kramer J et al. (2013) have found that prediction of
pro-arrhythmogenity may be improved by considering the
effect of drugs on currents from three key ion channels:
hERG potassium channels (Kv11.1), sodium channels
(Nav1.5) and calcium channels (Cav1.2). The development
of multiple ion channel effect models leads to a significant
reduction in false-positive and false-negative predictions
when compared with hERG assays alone. Recently, the Car-
diac Safety Research Consortium and the Food and Drug
Administration proposed a new cardiac safety paradigm la-
belled as ‘comprehensive in vitro pro-arrhythmia assay’
(CiPA). The new CiPA guidelines advocate studying the
pharmacological effects of drugs on multiple ion channels
that play an important role in shaping the ventricular AP
(hERG, Nav1.5, Cav1.2) instead of only hERG screening,
and confirmation of electrophysiological effects using
myocyte assays such as human-induced pluripotent stem
cell-derived cardiomyocytes (hiPSC-CMs).

Previous studies of pro-arrhythmic effects of hERG inhib-
itors used a variety of chemical classes with different

potencies and different selectivity. In this study, minor
changes in the chemical structure of the highly potent and
selective hERG inhibitor dofetilide generate compounds with
a wide range of IC50 values. A remarkable linear relationship
was observed between the IC50 value and the degree of AP du-
ration change observed in hiPSC-CM a relationship con-
firmed using an in silico model. The few derivatives not
adhering to this linear relationship showed significant effects
on Nav1.5 and Cav1.2 ion channels.

Methods

Group sizes
Numbers (n) for all experiments are provided and refer to in-
dependent single measurements. Data subjected to statistical
analysis have n of at least five per group. In the case of the
APD, experiments on hiPSC-CMs have a minimum of n = 4
in some cases. The n = 4 can discriminate a 15% change in
APD90 (APD at 90% repolarization) with α = 0.95 and
β = 0.2, from power calculations. The variability in APD
values on a well-to-well basis (in 96-well plate) was measured
and can be expressed in terms of a coefficient of variation for
CDI cells [commercially available from Cellular Dynamics In-
ternational (CDI), Madison, WI, USA] after rate correction
(1 Hz) is 0.08.

Randomization
Randomization was not applicable, hence not performed.

Blinding
Blinding of experiments is not applicable.

Human-induced pluripotent stem cell-derived
cardiomyocytes cell culture
Cryopreserved iCell hiPSC-CMs (CDI, Lot no 1093711) were
plated using iCell-Plating Media (CDI, CMM-100-110-001)
by following the manufacturer’s instructions. The cells were
seeded at 25 000 cells per well in 96-well glass-bottomed
plates (MatTek, p96G-1.5-5-F) pre-coated with 1:100 fibro-
nectin (Sigma, F1141) in DPBS (Gibco, ThermoFisher Scien-
tific, UK, 14 040–133) for 3 h at 37°C before cell plating. The
plates were then incubated at 37°C, 5% CO2. Forty-eight
hours post-thaw, 100% of the plating medium was replaced
with CDI Maintenance Medium (CDI, CMC-100-120-001),
and further, 100% media changes were performed every 2-
days after that. Optical recordings were performed

10–14 days post-thaw at 37°C (Hortigon-Vinagre et al., 2016).

Optical measurement of transmembrane
potential signals using voltage-sensitive dyes
Two hours before the experiments, the cells were transiently
loaded with the voltage-sensitive dye (VSD) di-4-ANEPPS
(6 μM, 1 min at room temperature) in serum-free media
(DMEM, Gibco 11 966, supplemented with galactose 10 mM
and sodium pyruvate 1 mM). Afterwards, the medium con-
taining VSD was replaced by fresh serum-free medium, and
the cells were returned to the incubator. The multi-well plate
was placed in an environmentally controlled stage incubator
(37°C, 5% CO2, water-saturated air atmosphere) (Okolab Inc,
Burlingame, CA, USA) of the CelIOPTIQ platform (Clyde
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Biosciences Ltd, Glasgow, Scotland). The di-4-ANEPPS fluo-
rescence signal was recorded from a 0.2 × 0.2 mm area using
a 40× (NA 0.6) objective lens. Excitation wavelength was
470 ± 10 nm using a light-emitting diode (LED), and emitted
light was collected by two photomultipliers (PMTs) at
510–560 and 590–650 nm respectively. LED, PMT, associated
power supplies and amplifiers were supplied by Cairn
Research Ltd (Kent, UK). The two channels of fluorescence
signals were digitized at 10 kHz, and the ratio of florescence
(short wavelength/long wavelength) was used to assess the
time course of the transmembrane potential independent of
cell movement (Knisley et al., 2001). Baseline spontaneous
electrical activity was recorded by capturing a 20 s segment
of fluorescent signal prior to compound (drug) addition.
Acute effects of dofetilide and derivatives were assessed by
exposure to increasing drug concentration with matched
vehicle controls for each concentration. A 20 s recording
was then taken 30 min after exposure to the drug or vehicle
with only one concentration applied per well. The records
were subsequently analysed offline using proprietary soft-
ware (CellOPTIQ). The procedure was repeated from four
to five times, and parallel matched control (vehicle) mea-
surements were taken on cardiomyocytes with equivalent
concentrations of vehicle (DMSO). AP parameters were mea-
sured, including APD at 50, 75 and 90% repolarization
(APD50, APD75 and APD90 respectively). Data are given as
% change from control for the treated groups (vehicle, con-
trol and drug). This allowed a single comparison to be made
at each concentration, and every experiment was performed
with its own set of controls (vehicle). No data were used
more than once.

Cell culture and transient transfection tsA-201
cells
HEK tsA-201 cells were grown at 5% CO2 and 37°C to 80%
confluence in Dulbecco’s modified Eagle’s/F-12 medium
supplemented with 10% (v·v�1) FCS and 100 U·mL�1

penicillin/streptomycin. Cells were split with trypsin/EDTA
and plated on 35 mm Petri dishes (Falcon) at 30–50% con-
fluence ~16 h before transfection.

Patch-clamp studies on hERG, Nav1.5 and
Cav1.2 channels
Currents through hERG channels (Anaxon GmbH) and
Nav1.5 channels stably expressed in HEK293 cells were stud-
ied within 8 h of harvest in the whole-cell configuration of
the planar patch clamp technique (NPC-16 Patchliner,
Nanion Technologies GmbH, Munich, Germany), using an
EPC 10 patch-clamp amplifier (HEKA Elektronik Dr. Schulze
GmbH, Lambrecht/Pfalz, Germany) (Milligan et al., 2009).
Currents were low-pass filtered at 10 kHz using the internal
Bessel filter and sampled at 25 kHz. The extracellular solution
for hERG current recording contained 140 mM NaCl, 4 mM
KCl, 2 mM CaCl2, 1 mM MgCl2,5 mM D-glucose and
10 mM HEPES (pH 7.4) (Sigma-Aldrich). The intracellular so-
lution for hERG current recording contained 50 mM KCl,
10 mM NaCl, 60 mM KF, 20 mM EGTA and 10 mM HEPES
(pH 7.2). The extracellular solution for measuring sodium
currents in HEK cells stably expressing the human clone of
Nav1.5 (GenBank M77235) contained 4 mM KCl, 20 mM

NaCl, 1.8 mM CaCl2, 0.75 mM MgCl2, 5 mM HEPES,
120 mM choline chloride and pH 7.4 using NaOH. The intra-
cellular solution for sodium current recording contained
120 mM CsF, 20 mM CsCl, 5 mM EGTA, 5 mM HEPES and
pH 7.4 using CsOH. All chemicals were obtained from
Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany). The
compound solutions were applied by means of the auto-
mated NPC-16 Patchliner planar patch-clamp platform. Data
acquisition was done using the PatchMaster software version
2.65 (HEKA Elektronik Dr. Schulze GmbH).

For barium current (IBa) measurements through voltage-
gated Ca2+ channels, HEK tsA-201 cells were co-transfected with
cDNAs encoding the rabbit CaV1.2 α1-subunit (GenBank
X15539) with auxiliary β2a (Perez-Reyes et al., 1992) as well as
α2-δ1 (Ellis et al., 1988) subunits and GFP to identify transfected
cells (see Beyl et al., 2012, for details). The transfection of tsA-
201 cells was performed using the FUGENE6 Transfection Re-
agent (RocheDiagonstics GmbH,Mannheim,Germany) follow-
ing standard protocols. The tsA-201 cells were used until passage
number 15. No variation in channel gating related to different
cell passage numbers was observed. IBa were studied by manual
patch-clamping (Hamill et al., 1981) using an Axopatch 200A
patch clamp amplifier (Axon Instruments, Foster City)
36–48 h after transfection. The extracellular bath solution (in
mM: BaCl2 20, MgCl2 1, HEPES 10, choline-Cl 90) was titrated
to pH 7.4 with methanesulfonic acid. Patch pipettes with resis-
tances of 1 to 4 MΩ were made from borosilicate glass (Clark
Electromedical Instruments, UK) and filled with pipette solu-
tion (in mM: CsCl 145, MgCl2 3, HEPES 10, EGTA 10), titrated
to pH 7.25 with CsOH. The drugs were applied to cells under
voltage clamp using a microminifold perfusion system. Ca2+

channel block was estimated as peak IBa inhibition during a
train of short (50 ms) test pulses from �80 mV at a frequency
of 0.2 Hz. Patch clamp experiments to study hERG, Nav1.5
and Cav1.2 currents were performed at room temperature
(22–25°C). All data were digitized and saved to disc. Current
traces were filtered at 5 kHz and sampled at 10 kHz. The pClamp
software package (Version 7.0 Axon Instruments, Inc.) was used
for data acquisition and preliminary analysis. Microcal Origin
7.0 was used for analysis, and sigmoidal curves were fitted using
the Hill equation.

In silico studies of hiPSC-CMs’ action
potentials
The cellular AP model of Paci et al. (2012) for ventricular
hiPSC-CMs was used for comparative computational studies
of APD90 prolongation caused by dofetilide and its deriva-
tives. These effects were described by the common pore block
model in which the currents through the channels poten-
tially sensitive to drugs were calculated with a coefficient
equal to a fraction of channels free of drug:

k ¼ 1

1þ D½ �
IC50

All computations were performed in MATLAB R2015b.
AP simulations were performed for a temperature of 310 K
(37°C).

Data processing and normalization
Origin 7.0 (Origin Lab Corp., Northampton, MA, USA) was
employed for data analysis and curve fitting. The cumulative
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concentration–inhibition curves were fitted using the Hill
equation:

IDrug

Icontrol
¼ 1� A

1þ C
IC50

� �nH þ A

where IC50 is the concentration at which hERG inhibition is
half-maximal; C is the applied drug concentration; A is the
fraction of hERG current that is not blocked; and nH is the
Hill coefficient (Windisch et al., 2011). Data are presented as
mean ± SEM for at least five cells from two different batches
or for three independent measurements with HEK293 cells.

Statistical comparison
Statistically significant differences were calculated using Stu-
dent’s t-tests and one-way ANOVA and data from indepen-
dent recordings. Only P-values <0.05 were accepted as
statistically significant. Linear correlation was used to con-
firm a linear relationship between hERG IC50 and APD data.
The data and statistical analysis comply with the recommen-
dations on experimental design and analysis in pharmacol-
ogy (Curtis et al., 2015).

Drugs
Dofetilide was obtained from Sigma, and its derivatives were
prepared as previously described (Shagufta et al., 2009). All
derivatives were dissolved in DMSO to prepare a 10 mM stock
and stored at �20°C. Drug stocks were diluted to the required

concentration in extracellular solution on the day of each ex-
periment. The maximal DMSO concentration in the bath
(1%) did not affect Cav1.2 or Nav1.5 currents in any of the
preparations. (Supporting Information Fig. S1).

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al.,
2016), and are permanently archived in the Concise Guide
to PHARMACOLOGY 2015/16 (Alexander et al., 2015).

Results

Dofetilide derivatives library
The small library of derivatives used in this study was previ-
ously described by Shagufta et al. (2009). The chemical struc-
tures of dofetilide and its 13 derivatives are shown in Figure 1.
The structural modifications conserved the phenyl rings on
both sides of the molecules and comprised the following: (i)
attaching different substituents to the rings (all excluding
Dofe30); (ii) changing the substituents on the protonated ni-
trogen (Dofe54, Dofe60); and (iii) varying chain length
(Dofe78, Dofe81).

Figure 1
Chemical structures of dofetilide and its derivatives.
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Drug-induced prolongation of APs in
hiPSC-CMs
Effects of different concentrations of dofetilide and 13 de-
rivatives on AP parameters were studied in hiPSC-CMs.
The changes in APD (as % of control) are given in Table 1.
Figure 2 shows representative effects of dofetilide and two
of its derivatives on spontaneous APs in cardiomyocytes.
The derivative Dofe54 represents a potent pro-arrhythmic
compound and Dofe33 is an example with weak (if any)
pro-arrhythmic activity. Dofetilide-induced concentration-
dependent lengthening of the AP was accompanied by
incidence of EADs at concentrations of 10, 30 and
100 nM. The highest concentration used (100 nM) dramat-
ically increased the spontaneous rate of myocyte contrac-
tion (Figure 2A).

The potent derivative Dofe54 produced a slightly differ-
ent pattern of AP distortion: smaller amplitude of oscillation
during EADs and prolongation of APs at relatively low con-
centrations was observed. The 10 nM concentration induced
approximately 700% prolongation of the AP (Figure 2B). The
Dofe33 exhibited a negligible effect on APD90 prolongation
until 100 nM. At a concentration of 300 nM, the APD90 was
increased by approximately 170% of control. The maximal
AP prolongation of 250% was observed at micromolar con-
centrations (Figure 2C). The concentration dependence of
APD90 (in % to control) for dofetilide, Dofe54 and Dofe33
are shown in Figure 2D–F. The sigmoidal curves
(Figure 2D, E) were fitted to the Hill equation.

Derivatives Dofe54, Dofe81, Dofe35, Dofe60 and Dofe78
had the most potent effects on APD (maximal level up to ap-
proximately 1000%), with incidence of EADs at the higher
concentrations. In contrast, derivatives Dofe30, Dofe31,
Dofe33, Dofe43, Dofe41 and Dofe45 exhibited relatively less
effect on the APD90 without (if any) incidence of EADs. Deriv-
atives Dofe42 (Figure 3A, D) and Dofe44 (Figure 3B, E) did not

affect APD90 even at 1 μM while Dofe45 (Figure 3C, F) only
slightly prolonged the AP.

hERG channel inhibition by dofetilide and its
derivatives
hERG channel inhibition by dofetilide and derivatives was
studied in HEK293 cell lines stably expressing hERG channels
using an automated planar patch system (see Methods). After
application of a given drug concentration, 0.3 Hz pulse trains
were applied until a steady-state of hERG current inhibition
occurred. hERG current inhibition by Dofe54 is illustrated in
Figure 4A. The concentration–inhibition relationships were
analysed by plotting the normalized values of peak tail cur-
rent versus peak tail steady current in the presence of the re-
spective cumulatively applied compound concentrations
(Figure 4B, C). Data points were fitted using Hill equation.

Figure 4 illustrates that dofetilide derivatives can be
subdivided into the following: (i) high affinity derivatives
hERG current inhibition with IC50 values ranging be-
tween 3 and 40 nM (Figure 4B); and (ii) low affinity de-
rivatives with an IC50s of >100 nM (Figure 4C). The
concentration–inhibition curves of group 1 derivatives were
close to the dofetilide curve while curves of group 2 deriva-
tives indicated reduced potency (approximately 10-fold) of
channel inhibition.

Prolongation of AP correlates with potency to
block hERG
The potency of dofetilide derivatives to prolong AP was
related to their apparent affinity for hERG potassium chan-
nels. The drugs inhibiting hERG at lower concentrations
prolonged the AP and induced EADs at lower concentrations
(Table 2). In a first attempt, we failed, however, to observe a
quantitative correlation between IC50 of hERG inhibition

Table 1
Changes in APD90 in hiPSC-CMs after application of dofetilide and derivatives

Compound 0.1 nM 1 nM 10 nM 30 nM 100 nM 300 nM 1000 nM

Dofetilide 191(n = 6) 246(n = 4) 641(n = 4) 827(n = 4) 1032(n = 5) – –

Dofe54 – 107(n = 4) 651(n = 4) 702(n = 4) 710(n = 4) – –

Dofe81 – 117(n = 4) 389(n = 4) 858(n = 4) 1048(n = 5) – –

Dofe60 – 95(n = 4) 112(n = 4) 185(n = 6) 771(n = 4) 413(n = 6) –

Dofe35 – 102(n = 4) 159(n = 4) 770(n = 4) 746(n = 4) 650(n = 5) –

Dofe78 – – 116(n = 4) – 420(n = 4) 300(n = 4) 417(n = 4)

Dofe45 – – 71(n = 4) – 89(n = 4) 95(n = 4) 215(n = 4)

Dofe33 – 122(n = 4) 96(n = 4) 101(n = 4) 112(n = 4) 177(n = 4) 263(n = 4)

Dofe31 – 127(n = 4) 100(n = 4) 103(n = 4) 108(n = 4) 214(n = 4) 296(n = 4)

Dofe30 – – 99(n = 4) 92(n = 4) 105(n = 4) 190(n = 4) 140(n = 4)

Dofe41 – – 140(n = 6) – 144(n = 5) 162(n = 5) 262(n = 4)

Dofe42 – – 113(n = 4) – 92(n = 4) 95(n = 4) 98(n = 4)

Dofe43 – – 167(n = 5) – 156(n = 5) 175(n = 5) 390(n = 4)

Dofe44 – – 90(n = 4) – 83(n = 4) 87(n = 4) 92(n = 4)

The values are presented as a % of control.
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and the concentration that increased APD (D150) by 50%.
Dofe42 and Dofe44 did not induce prolongation of AP and
Dofe45 slightly prolonged the AP at high concentrations.

A plot of D150 versus drug affinities (IC50) is shown in
Figure 5 (see also Table 2). Data points corresponding to de-
rivatives that were not efficient at prolonging the AP

(Dofe42, Dore44 and Dofe45; Figure 3) are illustrated as
red circles in Figure 5. Excluding these data points from
analysis led to a strong correlation (r = 0.94, P < 0.05)
(Figure 5, black line) while taking them into account made
the correlation non-significant. The predicted relationship
between IC50 and D150 by mathematical AP model is

Figure 2
Effects of dofetilide and its derivatives Dofe54 and Dofe33 on AP characteristics in hiPSC-CMs. Representative AP recordings of hiPSC
cardiomyocytes after incubating with dofetilide, n = 4–5 (A), the high affinity derivative Dofe54, n = 4 (B) and the low affinity derivative
Dofe33, n = 4 (C) and plots of APD90 as % of control versus concentrations of dofetilide, n = 4–5 (D), Dofe54, n = 4 (E) and Dofe33, n = 4
(F). The data points represent the mean ± SEM (see Table 1) and were fitted by a Hill equation for dofetilide and Dofe54. The data points
for Dofe33 were connected by lines.

Figure 3
Effect of Dofe42, Dofe44 and Dofe45 on AP. (A–C) Representative AP traces of controls and in the presence of the indicated drugs. (D–F) Show
dependence of APD90 on the concentration of indicated derivatives (n = 4–6, see Table 1).
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Figure 4
Effect of dofetilide and derivatives on potassium currents mediated through hERG channels expressed in HEK293 cells. (A) Representative current
traces of control current (in the absence of drug) and in the presence of Dofe54 after steady state was reached at each concentration applied. The
voltage protocol illustrated was applied every 3 s (A, upper panel). (B) Concentration-inhibition curves for dofetilide (n = 5) and high affinity de-
rivatives: Dofe54 (n = 5), Dofe81 (n = 6), Dofe60 (n = 5), Dofe78 (n = 7), Dofe35 (n = 8), Dofe45 (n = 5) and Dofe44 (n = 6). (C) Concentration-
inhibition curves for dofetilide and low affinity derivatives: Dofe33 (n = 6), Dofe31 (n = 7), Dofe30 (n = 7), Dofe41 (n = 8), Dofe42 (n = 8) and
Dofe43 (n = 5). Peak tail current values (mean ± SEM, see Table 2) were fitted by the Hill equation.

Table 2
Dofetilide and its derivatives: affinity for hERG potassium channels
and concentration (D150) that prolongs the AP by 50%

Compound MW hERG IC50 (nM) D150 (nM)

Dofetilide 441.567 3.1 ± 0.6 (n = 5) 0.04

Dofe54 395.84 2.6 ± 0.4 (n = 5) 4.3

Dofe81 409.87 10.7 ± 1.4 (n = 6) 2.5

Dofe60 413.83 15.3 ± 8.4 (n = 5) 21.3

Dofe78 345.35 28.2 ± 4.9 (n = 7) 20

Dofe35 381.82 22.1 ± 5.5 (n = 8) 8.3

Dofe45 336.82 38.6 ± 9.2 (n = 5) 538

Dofe33 319.88 221.6 ± 40.8 (n = 6) 215

Dofe31 360.71 125.2 ± 19.4 (n = 7) 151

Dofe30 291.82 296.9 ± 77.5 (n = 7) 213

Dofe41 326.26 164.6 ± 31.8 (n = 8) 157.2

Dofe42 321.84 213 ± 83.5 (n = 8) 650

Dofe43 305.84 184.3 ± 66.9 (n = 5) 99.3

Dofe44 360.71 38.1 ± 12.6(n = 6) 650

Figure 5
Correlation between D150 (concentration that prolongs AP in hiPSC-
CM by 50%) and IC50 (half-maximal concentration inhibiting hERG
channels in HEK293 cells). A significant linear correlation (r = 0.94,
P < 0.05) was observed for 12 data points (black circles) including
dofetilide and 11 derivatives. Derivatives Dofe45, Dofe44 and
Dofe42 (red circles) were not included in the correlation analysis.
Dofe45 prolonged the AP in hiPSC-CM by 50% only at 538 nM
and Dofe42 and 44 at >600 nM. The red line represents a prediction
of the mathematical simulation of the hiPSC-CM’s AP (see Figure 8).

hERG inhibition and AP prolongation BJP

British Journal of Pharmacology (2017) 174 3081–3093 3087



indicated by the red line. This model will be discussed in
more detail later. In order to examine the possibility that
additional block of inward currents may have
counterbalanced hERG inhibition, we investigated effects
of Dofe42, Dofe44 and Dofe45 on calcium (Cav1.2) and so-
dium (Nav1.5) channels.

Inhibition of Cav1.2 by dofetilide and
derivatives
Dofetilide itself does not inhibit Cav1.2 even at a high con-
centration of 100 μM (Supporting Information Fig. S1a).
Figure 6A illustrates the effects of Dofe42, Dofe44 and Dofe45

on Cav1.2 at the indicated concentrations, and Figure 6B
shows the corresponding concentration–inhibition curves
obtained during continuous pulsing at 0.2 Hz. Dofe45 was
identified as a potent Cav1.2 blocker (IC50 = 190 ± 3 nM,
Figure 6B, right panel) while Dofe42 and Dofe44 inhibited
Cav1.2 with comparably low potencies [IC50 of 38 ± 9.3 μM
(Dofe42) and>100 μM (Dofe44)]. Use-dependent channel in-
hibition was studied during trains of 1 Hz and 50 ms test
pulses (from �80 to +10 mV). After the application of 20 test
pulses in control (absence of drug), the cells were incubated
for 3 min with drug at rest. Peak current inhibition during
the first pulse (1st, Figure 6C) in the presence of the drug
reflects ‘resting state’ block. Additional current inhibition

Figure 6
Inhibition of Cav1.2 channel by dofetilide derivatives. (A) Superimposed barium currents through rabbit Cav1.2 in control (black) and in the pres-
ence of indicated concentrations of Dofe42 (left), Dofe44 (middle) and Dofe45 (right). Barium currents were recorded in response to 50ms pulses
(0.2 Hz) from the holding potential of�80 to +10 mV. (B) Concentration-dependence of peak IBa inhibition by Dofe42 (IC50 = 38 ± 9.3 μM, n = 5,
left), Dofe44 (IC50> 200 μM, n = 5, middle) and Dofe45 (IC50 = 192 ± 28 nM, n = 5, right). The IC50 values were obtained by fitting the data by the
Hill equation. (C) Barium currents through Cav1.2 during 1 Hz trains of 50 ms pulses from �80 to +10 mV under control conditions (absence of
drug) and after 3 min incubation in the presence of the indicated concentrations of dofetilide derivatives. The first current in drug reflects the rest-
ing state inhibition. (D) Mean peak current amplitudes during 50 ms pulse trains in control and the presence of the indicated concentration of
Dofe42, Dofe44 and Dofe45. The peak current decay after 20 pulses at 1 Hz in control indicates the development of inactivation. Peak current
decay in the presence of Dofe42 (100 μM, 38 ± 2%, n = 5) and Dofe45 (100 nM, 42 ± 6%, n = 5) versus in control (12 ± 2%, n = 6) illustrates
additional significant (P < 0.05) use-dependent block.
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during a subsequently applied pulse train illustrates use-
dependent block. Peak current inhibition in control and drug
are compared in Figure 6D. Dofe42 and Dofe45 induced pro-
nounced resting state block and additional use-dependent
block (compare last currents of the train in control and in
drug). No use-dependent block was observed for Dofe44
(Figure 6C, D middle panel).

Inhibition of Nav1.5 by dofetilide derivatives
Dofetilide (100 μM) did not inhibit Nav1.5 (Supporting Infor-
mation Fig. S1b) while block was observed for Dofe42, Dofe44
and Dofe45. Figure 7A shows representative current traces il-
lustrating the inhibition of Nav1.5 by derivatives at indicated
concentrations. The concentration–inhibition curves for all
three derivatives were first estimated at a holding potential
of �140 mV where all Nav1.5 are available (Figure 7B, Wang
et al., 2015). Dofe44 inhibited cardiac sodium channels with
an IC50 of 23.3 ± 1.9 μM (n = 6) compared with statistically
less potent Dofe45 (IC50s of 69.7 ± 1.0 μM, n = 6, P < 0.05)
and Dofe42 (77.9 ± 9.7 μM, n = 6, P < 0.05). However, the re-
ported resting potentials of iPSC-CM range between �75 and
�63mV (Hoekstra et al., 2012) would induce substantial inac-
tivation. In order to evaluate block of inactivated Nav1.5, we
investigated INa inhibition at a holding potential of �80 mV
where more than 60% of Nav1.5 were in an inactivated state
(Wang et al., 2015). Interestingly, the concentration–response
curves where significantly shifted towards lower drug concen-
trations (Figure 7B, Dofe42: 5.6-fold, Dofe44: fivefold and
Dofe45: 7.7-fold), suggesting that inactivated Nav1.5 are
blocked with higher affinity. The application of test pulses at a

higher frequency (1 Hz) did not induce additional channel
inhibition.

Computational studies support experimental
findings
The in silico AP model (Paci et al. 2012) for ventricular hiPSC-
CM was run with a pacing of 1 Hz until limit cycling was
achieved in order to determine control APD90. In the first se-
ries of calculations, we have described a prolongation of AP
under inhibition of hERG potassium channels. The drug dose
D was set as a multiple of IC50, that is, D = x × IC50, enabling
the use of the nonlinear forward mapping F: x → APD90(x).
The factor x corresponding to a prolongation of the control
APD90 by 50% was determined by solving (Engl et al., 2009)
the nonlinear inverse problem F(x) = 1.5 × (control APD90).
The predicted relationship between IC50 andD150 is shown in
Figure 5 (red line). Figure 8A displays AP simulations at differ-
ent levels of inhibition of the hERG channel. The APD exhib-
ited a linear correlation with logarithm of concentration of
hERG channel blocker (Figure 8B).

In order to test whether inhibition of inward currents
compensates for the APD changes seen with hERG channel
block, we simulated APs for different concentrations of
half-maximal Cav1.2 and Nav1.5 inhibition (for Cav1.2,
IC50 = 200 nM and Nav1.5, IC50 = 10 μM). Both IC50s are
characteristic for Dofe 45 (Table 2, Figures 6 and 7). The
simulation (Figure 8C) surprisingly coincides with experi-
mental records (Figure 3C). The ‘selective inhibition’ of
the hERG channels by Dofe45 would induce a substantial
prolongation of the AP. Figure 8D illustrates the sensitivity

Figure 7
Inhibition of Nav1.5 by dofetilide derivatives. (A) Superimposed INa through humanNav1.5 in control (black) and in the presence of indicated con-
centrations of Dofe42 (left), Dofe44 (middle) or Dofe45 (right). Sodium currents were recorded in response to 20 ms pulses (0.2 Hz) from a hold-
ing potential of �140 to �10 mV. (B) Concentration-dependence of peak INa inhibition at a holding potential of �140 mV (squares) and �80 mV
(circles) yielding IC50 values for Dofe 42 of IC50 = 77.9 ± 9.7 (at�140 mV, n = 6) and IC50 = 13.8 ± 1.9 (at�80 mV, n = 5), Dofe 44 of IC50 = 23.3-
± 1.9 (at�140 mV, n = 6) and IC50 = 4.7 ± 2.0 (at�80 mV, n = 6) and Dofe 45 of IC50 = 69.7 ± 1.0 (at�140 mV, n = 6) and IC50 = 6.4 ± 1.0 μM (at
�80 mV, n = 5).
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of the APD to Cav1.2 and Nav1.5 inhibition at different
IC50s. Inhibition of either Cav1.2 or Nav1.5 caused shorten-
ing of APD, the largest effects seen on Cav1.2 inhibition
(Figure 8D red and orange AP).

Discussion and conclusion
Potential pro-arrhythmic effects in early stages of drug de-
velopment have often been assessed solely by examining
hERG channel block. The principle role of hERG channel
block for AP repolarization and its consequences have been
extensively discussed (Sanguinetti and Tristani-Firouzi,
2006). The new CiPA paradigm proposes that drugs should
be tested by screening multiple ion channels including IKr,
IKs and IK1 as well as INaLate and ICaL and predicting their ef-
fect on the human APD using in silico models to integrate
the effects of a number of ion channels (Sager et al., 2014).
The CiPA scheme also suggests analysing pro-arrhythmic ef-
fects using human iPSC-derived cardiac muscle as a surro-
gate for human myocardium. However, not all ion
channels expressed in human myocardium are equally well
represented in hiPSC-CM. In particular, studies suggest that
IK1, IKs and INaLate currents have minimal contributions to
the electrophysiology of the iPS cells (Paci et al., 2012).

The Nav1.5 channel that generates the upstroke phase and
the Cav 1.2 responsible for maintaining the plateau phase
of AP are known to be active. At the end of the plateau
phase and beginning of repolarization, inward currents are
small (largely inactivated) and countered by the activation
of outward K+ currents, predominately hERG, which is re-
sponsible for initiating the repolarization phase, is well rep-
resented in iPS cell. We have previously reported the
absence of INaLate effect in the presence of ranolazine in
hiPSC-CM (Hortigon-Vinagre et al., 2016), which shows
that presence of INaLate in hiPSC is unlikely. Yang et al.
(2014) reported an enhancement of INa-L by dofetilide after
chronic (5 h) drug exposure. Drug effects in our experi-
ments were, however, studied a after short-time (several mi-
nutes) of application and no increase in INaLate was
observed. It is under discussion whether commercial hiPSC
cell lines contain a range of cell types or simply broad-
spectrum features. The majority of hiPSC cells appear to
have ventricular phenotype, and they are likely to operate
as a functional syncytium via gap junction links (Bett
et al., 2013; Kane et al., 2016).

Combining in silico studies with hERG (and other ion
channels) inhibition and effects on APD should enable a
more profound understanding of pro-arrhythmic potential.
To test this concept, we compared the prolongation of APs

Figure 8
Simulation of hiPSC-CM AP at indicated levels of hERG, Cav1.2 and Nav1.5 channel inhibition. (A) Simulation of hiPSC-CM APs for different levels
of selective hERG channel inhibition. (B) Dependence of the calculated APD90 (as % of control) on the concentration of a selective hERG channel
inhibitor. (C) Simulated APs at a Dofe45 concentration of 300 nM accounting for hERG inhibition (IC50 = 40 nM) and simultaneous inhibition of
Cav1.2 (IC50 = 200 nM) and Nav1.5 (IC50 = 8.9 μM). (D) Comparison of simulated APs at different IC50s of Cav1.2 and Nav1.5 inhibition. Control
AP is shown in dark blue and AP for selective hERG channel inhibition (IC50 = 40 nM) in light blue. Red 100 nM (Cav1.2) and 1 μM (Nav1.5), orange
100 nM (Cav1.2) and 10 μM (Nav1.5), magenta 500 nM (Cav1.2) and 1 μM (Nav1.5), green 500 nM (Cav1.2) and 10 μM (Nav1.5). See also
Supporting Information Table S1 comparing the values used in silico AP models of adult ventricular myocytes and hiPSC-CM.
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of hiPSC-CM by the selective hERG inhibitor dofetilide and
13 derivatives with respect to their potencies to inhibit hERG
(Figure 5). Derivatives retained the common scaffold of
dofetilide while changing the functional group on both the
ends or modifying the central nitrogen or altering the length
of the molecule. The 13 derivatives inhibited hERG potas-
sium channels with IC50s ranging from 3 to 300 nM
(Figure 4B, C). Examining the effects of these derivatives on
hiPSC-derived cardiac myocyte APD revealed a correlation
between the concentration (D150) inducing a 50% increase
of APD90 of the cardiac AP with half-maximal concentrations
(IC50s) of hERG channel inhibition (Figure 5 and Supporting
Information Fig. S2).

There was no correlation between the Ki values (affinity of
derivatives to hERG estimated in radioligand studies;
Shagufta et al., 2009), and IC50s measured in electrophysio-
logical experiments (see Supporting Information Table S2)
was observed. All derivatives (except Dofe30) were similarly
active in the binding study while IC50s measured in patch
clamp experiments varied over two orders of magnitude
(from 2.6 to 296 nM, Table 2). The lack of correlation be-
tween Ki and IC50 indicates that the interaction of these de-
rivatives with their binding pocket is not the only
determinant of hERG channel inhibition (Saxena et al.,
2016). The Ki value reflects the affinity of a derivative for
the binding pocket putatively located in the channel pore
while the IC50s estimated in patch-clamp studies are affected
by the following: (i) channel state-dependent drug effects
(Fernandez et al., 2004; Sanguinetti and Tristani-Firouzi,
2006; Stork et al., 2007; Perry et al., 2010; Windisch et al.,
2011); (ii) their ability to pass the entrance barrier or leave
the channel cavity; and (iii) their affinity to the binding
pocket within the channel. In this regard, it is interesting
to note that the IC50s estimated from hERG inhibition in
functional studies are in a reciprocal relation to the molecu-
lar weight of the tested derivatives (Supporting Information-
Fig. S3). It is tempting to speculate that the dependence of
IC50 on the molecular size is caused by an energetic barrier
at the channel pore entrance. In such a scenario, bulkier mol-
ecules with higher molecular weight leave the channel with
lower probability, resulting in lower off rates and correspond-
ingly in lower IC50 values.

Three derivatives (Dofe42, 44 and 45) failed, however, to
fit a linear correlation (Figure 5). We hypothesize that the
ineffectiveness of derivatives Dofe45, Dofe44 and Dofe42
to prolong the AP might be due to their interference with
Cav1.2, Nav1.5 and potentially other ion channels. Dofe45
was subsequently shown to be a potent inhibitor of
Cav1.2. In a first series of experiments, performed at a low
stimulus frequency (0.2 Hz), this derivative inhibited
Cav1.2 with an IC50 of 190 ± 3 nM (Figure 6A, B). It is well
established that open and inactivated channels may have a
higher affinity for inhibitors than channels in the resting
state (Hondeghem and Katzung, 1977). Therefore, addi-
tional measurements were made at a higher frequency of
(1 Hz), which is comparable with the beating frequency of
iPSC-CM. The shorter (50 ms) pulses (1 Hz) revealed some
additional use-dependent channel inhibition by Dofe42
and 45 (Figure 6C, D). Thus, 1 Hz pulsing can enhance
Cav1.2 inhibition due to additional block of open and/or
inactivated channels. However, both derivatives inhibited

Cav1.2 predominantly in the resting state (Figure 6). A com-
parison of INa inhibition at �140 and �80 mV close to the
resting potential of iPSC-CM, where more than 60% of
Nav1.5 channels are in an inactivated state (Hoekstra et al.,
2012; Wang et al., 2015), revealed that Dofe42, Dofe44 and
Dofe45 preferentially inhibit inactivated Nav1.5. This study
is mainly focused on primary targets of these derivatives like
INa and ICaL, and it is very unlikely that these derivatives
would have an effect on secondary targets such as IKs, Na/K
pump, NCX and/or SR Ca2+ release.

As shown in Figures 5 and 8, our in silico studies on the AP
model (Paci et al. 2012) at a resting potential of �80 mV
reproduced the link between hERG inhibition (IC50) and pro-
longation of the AP (D150). Furthermore, accounting for inhi-
bition of hERG, Cav1.2 and Nav1.5 by Dofe45 reproduced the
principal features of AP changes observed on hiPSC-CM
(compare Figures 3C and 8C). The acceleration of early repo-
larization (phase 1) and inhibition of the AP overshoot are
obviously caused by simultaneous inhibition of sodium
channels while the prolongation of the AP was predomi-
nantly balanced by simultaneous block of Cav1.2. Hence, as
illustrated in Figure 8D, selective hERG inhibition by
300 nM Dofe45 would induce a more pronounced AP prolon-
gation. The inability of Dofe42 and Dofe44 to prolong the AP
is hard to explain exclusively by inhibition of Cav1.2 and
Nav1.5 as these channels appear to be blocked only at high
concentrations. But the conditions of the ion channel assay
are not the same as those of the iPSC-CMs. The oscillatory
voltage changes and the temperature will almost certainly al-
ter the level of activation/inactivation of the currents. Both
Nav1.5 and Cav1.2 show voltage- and time-dependant effects
of drugs, and inhibition of inactivated Nav1.5 by Dofe42 and
Dofe44 was stronger at �80 mV relative to �140 mV
(Figure 7). Furthermore, Cav1.2 showed use-dependent block
of by Dofe42 (Figure 6C, D). Therefore, the precise effect of
drugs on both of these channels in the context of an AP in
IPSC-CMs is difficult to assess. Also, while Cav1.2 and
Nav1.5 are the most likely candidates for alternative drug ac-
tions, these derivatives may also modulate other ion chan-
nels that contribute to the AP shape.

The implications of this work are that potency of hERG
current inhibition correlates linearly with an index of APD
in hiPSC-CMs. This simple relationship, confirmed in silico,
allows data gained in one standard assay to predict the effect
on another, that is, the IC50 of a drug in an ion channel hERG
screen predicts the dose required to increased APD90 in iPSC-
CMs or vice versa. Furthermore, compounds that do not corre-
late will have additional effects including concomitant block
of Cav1.2 and/or Nav1.5 channels. Finally, the study shows
that while in silico simulations can confirm the principle of
the effects of Cav1.2 and Nav1.5 inhibition on APD90, more
comprehensive voltage clamp data are required to accurately
predict the consequences of Cav1.2 and Nav1.5 block on AP
shape and duration in silico.

Limitations
In the myocardium and hiPSC-CM hERG, Cav1.2 and
Nav1.5 channels function under different conditions than
in patch clamp experiments on mammalian cells. In order
to relate patch clamp data to the hiPSC-CM assay, it would
be desirable to study these ionic currents at the beating
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frequency of hiPSC-CM (~1 Hz) at 37°C. But most patch
clamp ion channel assays place constraints on the design
of the pulse protocol. As illustrated in Figure 6C, D, contin-
uous 1 Hz pulsing with even short (50 ms) test pulses results
in peak current decay of calcium currents caused by channel
inactivation. Application of longer test pulses (e.g. 300 ms,
corresponding to the length of the ventricular cardiac AP)
at 1 Hz leads to inactivation by 30 and 40%, during a train
of 20 pulses. Further optimization of experimental (temper-
ature, test pulse length and shape, holding potential, pacing
frequency, etc.) and theoretical conditions (analysis of par-
ticipation of additional ionic currents in AP shaping) is re-
quired to achieve a higher level of congruence between
the different assay data.
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Figure S1 Dofetilide (100 μM) does not inhibit Cav1.2 or
Nav1.5.
Figure S2 Estimation of dose required to prolong the action
potential by 150% (D150).
Figure S3 Relationship between potencies of dofetilide de-
rivatives to inhibit hERG (IC50) and their MW (MW).
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for AP simulations of human embryonic stem cell-derived
myocytes described in Paci et al. () and corresponding values
used for adult ventricular cardiomyocyte models.
Table S2 Potencies of dofetilide derivatives to inhibit hERG
potassium channels estimated in patch clamp experiments
and Ki values from binding studies (from Shagufta et al.
2009) in relation to MW.
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