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Abstract

Predicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species

distribution models (SDMs) use the current relationship between environmental variation and species’ abundances to

predict the effect of future environmental change on their distributions. However, two common assumptions of

SDMs are likely to be violated in many cases: (i) that the relationship of environment with abundance or fitness is

constant throughout a species’ range and will remain so in future and (ii) that abiotic factors (e.g. temperature,

humidity) determine species’ distributions. We test these assumptions by relating field abundance of the rainforest

fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We

then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites

along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future

adaptation to environmental change. Overall, field abundance was highest at cooler, high-altitude sites, and declined

towards warmer, low-altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower-altitude

sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition,

the relationship between environmental variation and abundance varied significantly among gradients, indicating

divergence in ecological niche across the species’ range. However, there was no evidence for local adaptation within

gradients, despite greater productivity of high-altitude than low-altitude populations when families were reared

under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evi-

dence for fitness trade-offs that would favour local adaptation. These findings highlight the importance of (i) measur-

ing genetic variation in key traits under ecologically relevant conditions, and (ii) considering the effect of biotic

interactions when predicting species’ responses to environmental change.
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Introduction

Understanding the factors that determine species’ dis-

tributions and local abundances is a central goal of ecol-

ogy, and is essential for predicting how populations,

species and ecological communities will respond to

environmental change (Ehrl�en & Morris, 2015). Species’

distribution models (also known as ecological niche or

bioclimatic envelope models) are used to relate species’

abundances to environmental variables, and to predict

shifts in their distributions based on future climatic

conditions (Pearson & Dawson, 2003; Thomas et al.,

2004; Guisan & Thuiller, 2005; Elith & Leathwick, 2009).

Such models typically assume that the association

between the environment and a species’ abundance (i.e.

its niche) does not vary across the species’ geographical

range and will remain stable in the future (but see Kear-

ney et al., 2009). However, spatial variation in environ-

mental tolerances is observed across many species’

ranges, demonstrating local niche differentiation (Banta

et al., 2012; Kelly et al., 2012). In addition, genetic varia-

tion within populations may generate rapid evolution-

ary responses to environmental change in situ, allowing

population persistence beyond current ecological limits

(Bridle & Vines, 2007; Hoffmann & Sgr�o, 2011; Hoff-

mann et al., 2015).
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Ignoring variation in a species’ ecological niche

within populations, or between populations across its

geographical range, will have two contrasting conse-

quences: (i) we may overestimate the geographical dis-

tribution of a species if tolerances are assumed to be

constant throughout the species’ range (i.e. that all pop-

ulations can tolerate all currently occupied conditions:

Hampe, 2004; Kelly et al., 2012); and (ii) we may under-

estimate the potential for species to persist through

evolutionary change, where extinction would be pre-

dicted based on current distributions (Davis et al., 2005;

Kearney et al., 2009; Hoffmann & Sgr�o, 2011). Under-

standing the potential for rapid adaptation generated

by standing genetic variation in fitness, both among

and within populations, is therefore crucial when pre-

dicting the impacts of environmental change on popu-

lation persistence, and the future geographical

distributions of species (Hampe, 2004; Holt, 2009;

Atkins & Travis, 2010; Chevin et al., 2010; Lavergne

et al., 2010).

Tests for local adaptation and genetic variation in

environmental tolerances to predict responses to envi-

ronmental change are rare for animals, where attention

has focused on the evolution of traits in single popula-

tions (e.g. Kruuk et al., 2008; Charmantier & Gienapp,

2014). These data are more widely available in plants

and have been used to project future responses to envi-

ronmental change. For example, Banta et al. (2012)

modelled the niche breadth of Arabidopsis thaliana geno-

types that varied in flowering time and found a more

than fourfold difference between genotypes in the size

of their potential distributions. Similarly, studies of

local adaptation in forest trees reveal genetic diver-

gence in phenology and other ecological traits that are

associated with their broad geographical distributions

(e.g. Kremer et al., 2012; Alberto et al., 2013). In the few

cases where genetic variation in ecological traits has

been estimated across multiple populations in animals,

this has typically been done under controlled condi-

tions in the laboratory, rather than under field condi-

tions, which will vary far more in time and space,

meaning that selection may act on many more traits

simultaneously, or at different points in time. Because

environmental conditions affect the heritability of many

traits (Hoffmann & Meril€a, 1999; Charmantier & Gar-

ant, 2005; Kruuk et al., 2008), laboratory assays of

genetic variance in traits or fitness may not predict evo-

lutionary trajectories in natural populations (Pember-

ton, 2010). These issues mean there is an urgent need

for data on genetic variation in fitness across a range of

naturally varying environments, to determine how the

relationship between the environment and fitness var-

ies due to local adaptation, or in relation to genetic vari-

ation within populations.

Drosophila birchii is endemic to the tropical rainforests

of north-eastern Australia and Papua New Guinea

(Schiffer & Mcevey, 2006). Laboratory assays of envi-

ronmental tolerance traits in this species have revealed

genetic divergence along both latitudinal (Hoffmann

et al., 2003; Griffiths et al., 2005; Van Heerwaarden

et al., 2009) and some altitudinal (Bridle et al., 2009) gra-

dients, consistent with local adaptation to temperature

and humidity variation. In addition, laboratory assays

have revealed lower levels of genetic variation in eco-

logically important traits associated with tolerance of

climatic stresses within populations close to the species’

range margin, which may constrain adaptation (e.g.

Hoffmann et al., 2003; Kellermann et al., 2006). These

results suggest that ecological tolerances vary substan-

tially throughout the range of D. birchii and that the

potential for adaptation to environmental change also

varies among populations. However, genetic variation

in fitness under field conditions has not previously

been measured; therefore, it is not known how predic-

tions of evolutionary potential based on genetic varia-

tion in traits measured in the laboratory relate to fitness

variation in the more variable field environment, where

biotic interactions are common and complex, and are

themselves mediated by variation in abiotic factors.

In this study, we examine the relationship between

local abundance of D. birchii and environmental varia-

tion along four altitudinal gradients. These altitudinal

gradients represent local ecological limits of this spe-

cies and show temperature and humidity variation

across distances of 4–16 km of a similar magnitude to

that observed across hundreds of kilometres of latitu-

dinal range (see Table S1). In addition, we trans-

planted families of laboratory-reared D. birchii in

cages along two altitudinal gradients and tracked

their fitness under naturally varying environmental

regimes, in order to (i) determine the effect of envi-

ronmental change (simulated by movement along an

environmental gradient) on fitness of D. birchii, (ii)

test for local adaptation across these gradients and

(iii) estimate genetic variation in fitness, both overall,

and in response to movement along the gradient (i.e.

genetic variation in the ‘reaction norms’ of fitness). By

transplanting virgin flies, we ensured that courtship,

mating, reproduction and the development and sur-

vival of offspring occurred entirely under field condi-

tions and therefore captured all of these important

components of fitness variation. Flies in cages experi-

enced abiotic conditions similar to those outside

cages, but were not exposed to biotic interactions.

Therefore, by comparing the change in fitness of

D. birchii in cages along environmental gradients with

the change in its field abundance, we were also able

to test the degree to which abiotic environmental
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conditions alone determine species’ distributions. Fur-

thermore, by transplanting flies from multiple popula-

tions and families, we were able to evaluate the role

of among-population divergence in mediating this

relationship and the potential for rapid changes in

ecological tolerances in the future through adaptation.

Finally, by comparing laboratory estimates of genetic

variation in fitness with those made in the field, we

provide one of the first tests of how trait genetic vari-

ation estimated in the laboratory predicts the poten-

tial for evolutionary responses to environmental

change under more ecologically realistic conditions.

Materials and methods

Predicting the local abundance of D. birchii from
environmental variables

Estimating D. birchii abundance along altitudinal gradi-

ents. Adult D. birchii were collected between February and

May in 2010–2012 from a total of 94 sites, comprising 10–30

sites along each of four altitudinal gradients (Paluma, Kir-

rama, Mt Edith and Mt Lewis) in northern Queensland, Aus-

tralia. Gradients were between 16°300S and 19°000S latitude (a

distance of ~300 km) and spanned altitudes from 23 to 1233 m

above sea level (a.s.l.), over distances of 3.7–16.3 km (Fig. 1;

Table S1). At each site, 5–20 buckets of mashed banana

(>1 day old) were placed at least 5 m apart for 5–10 days.

Flies were sampled from each bucket twice daily using a

sweep net; captured flies were then sorted under CO2 anaes-

thesia to identify D. birchii, and to isolate D. birchii females for

isofemale line generation.

Estimates of local abundance were the mean number of

D. birchii males captured per site per day, as used by Bridle

et al. (2009). We used the number of males captured (rather

than total number of flies) because female D. birchii cannot be

distinguished from closely related species in the serrata species

complex, D. serrata and D. bunnanda, whereas males can be

identified by examining their genital bristles (Schiffer & Mce-

vey, 2006). Females can only be identified by examining their

male offspring; therefore, using females in abundance counts

would bias estimates towards those females that successfully

reproduced. We estimated abundance at 48 sites along two

gradients sampled in 2010 (Kirrama and Mt Lewis) and 46

sites along three gradients in 2011 (Paluma, Mt Edith and Mt

Lewis) (Fig. 1; Table S1). There was no significant variation in

the magnitude or distribution of abundance between the two

years of sampling at Mt Lewis (the only gradient sampled in

both years; see Table S1); therefore, abundance data at sites

along this gradient were combined across years.

Measuring environmental predictors of D. birchii abun-

dance. Tinytag data loggers were attached to trees 1.5–1.8 m

above the ground at 10–30 sites along each altitudinal gradient

to take hourly measurements of temperature (°C) and % rela-

tive humidity (RH) between February 2010 and June 2012.

This included the sampling period, as well as the duration of

the cage transplant experiments. In addition, the abundance of

the other serrata complex species, D. bunnanda and D. serrata,

was estimated at each site based on numbers of males cap-

tured in traps. This variable was included to provide a mea-

sure of the frequency of interspecific interactions at different

points along gradients. These species are closely related to

D. birchii, use similar resources and have partially overlapping

geographical distributions, although their local abundances

show different patterns with respect to environmental condi-

tions (Schiffer & Mcevey, 2006). Drosophila serrata has a much

broader latitudinal range than D. birchii and is considered a

habitat generalist. Drosophila bunnanda, like D. birchii, is a rain-

forest specialist and has a more restricted distribution, with a

southern border more than 500 km north of that of D. birchii.

Neither of these species was present at Mt Edith, but they

were found at some sites at Paluma, Kirrama and Mt Lewis.

At the sites sampled, D. bunnanda was much more common

than D. serrata (determined by genotyping field-caught males

at the diagnostic locus Eip 75B), and numbers of D. serrata cap-

tured were too low to be used as an independent predictor of

D. birchii abundance. We therefore combined estimates of the

abundances of D. bunnanda and D. serrata as a single measure.

Temperature and humidity data from Tinytag data loggers

and estimates of the abundance of other species of the serrata

species complex were used to produce six environmental pre-

dictors of D. birchii abundance: (i) abundance of non-D. birchii

serrata complex species (NONBIRCH), (ii) mean daily mini-

mum temperature (MDTmin), (iii) mean daily temperature

(MDT), (iv) mean daily maximum temperature (MDTmax), (v)

mean daily temperature range (MDTdiff) and (vi) mean daily

relative humidity (MDH).

Linear regression revealed that most of the six environmen-

tal variables were strongly correlated with both latitude and

altitude (Table S2). The environmental variables were also all

highly correlated with one another (Table S3). To avoid

collinearity of factors in models predicting abundance, we

identified a set of uncorrelated variables by conducting a prin-

cipal components analysis (PCA) using the prcomp function in

R v3.1.2 (R Core Team, 2014), with all variables standardized

to a mean of 0 and standard deviation of 1. Temperature and

humidity data collected over the full two-year measurement

period were used in the PCA. These values were highly corre-

lated with those seen over the sampling periods and over the

course of the caged transplant experiments. The first two prin-

cipal components (PCs) together accounted for 89% of the

total variation in the environmental variables (Table S4) and

were included as factors in linear models predicting D. birchii

abundance. The first principal component (PC1) captured the

majority (76.8%) of variation in the environmental variables,

with relatively even loadings of all six variables, whereas PC2

was dominated by the abundance of other serrata complex

species (Table S4). The positions of sites at each gradient with

respect to PC1 and PC2 are shown in Fig. 1.

A linear model was fitted using the full set of abundance

data across all gradients, with mean D. birchii abundance at

each site as the response variable, and the following terms

included as predictors: gradient (categorical variable with four
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levels corresponding to the four altitudinal gradients), linear

and polynomial (quadratic) terms for PC1 and PC2 (continu-

ous variables) and interactions of gradient with each of the lin-

ear and quadratic PC terms. Abundance data were weighted

by the number of sampling days at each site in the linear

model. We fitted an additional set of models for each gradient

separately, to explore environmental predictors found to differ

among gradients in their relationship with D. birchii abun-

dance in the full model. Linear models were fitted using the

lm function in R v3.1.2 (R Core Team, 2014).

Testing for genetic variation in responses to
environmental change: cage transplant experiment

In March–May 2012, 35 isofemale lines from two sites at the

top and bottom of both the Mt Edith and Paluma gradients

were collected and reared through two generations to large

numbers under laboratory conditions. They were then sub-

jected to a line cross design within collecting sites (see below

and Fig. S1), and virgin males and females from the lines gen-

erated were transplanted into 591 cages at multiple sites along

the altitudinal gradient from which they were originally sam-

pled (Fig. S2). Total productivity was assessed for each cage,

allowing tests for local adaptation and estimates of genetic

variation in fitness at each gradient under naturally varying

environmental conditions. Because virgin flies were placed in

cages in situ at field sites, all courtship, mating, egg laying and

larval and pupal development occurred under naturally vary-

ing conditions. Despite being of similar length, the steepness

and altitudinal ranges of the gradients differ. Paluma is much

steeper than Mt Edith, covering twice the altitudinal range,

and a much broader range of temperatures, humidity and

abundance of serrata complex species (Table S1), as captured
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Fig. 1 (a) Locations of the altitudinal gradients where Drosophila birchii was sampled, with the length of each gradient given in paren-
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along each of the four altitudinal gradients with respect to the first two principal components (PC1 and PC2) from a principal compo-
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by the first two PCs (Fig. 1). The design of the experiment is

illustrated in Fig. S2; details of the experimental procedures

are given below.

Establishment of isofemale lines. Individual field-mated

females collected from two high- and two low-altitude sites at

Paluma and Mt Edith were placed in 40-mL glass vials with

10 mL standard Drosophila media (agar, raw sugar, inactive

yeast, propionic acid and methyl-4-hydroxybenzoate), supple-

mented with live yeast, and left to oviposit for four days to ini-

tiate isofemale lines. These mothers were transferred to a fresh

food vial every four days until they no longer produced off-

spring. Offspring of the same mother were then mixed across

vials to found the next generation. The genital bristles of the

male offspring of each female were examined to distinguish

D. birchii from the morphologically similar sympatric species

D. bunnanda and D. serrata. Five D. birchii isofemale lines were

established for each site (four sites per gradient; 20 lines in

total per gradient), and each isofemale line was maintained

across two to four vials in a constant temperature (CT) room

at 25 °C on a 12-h:12-h hour light:dark cycle.

Breeding flies for cage transplant experiment. Isofemale lines

collected from field sites were maintained in the laboratory for

two generations after collection from the field in order to stan-

dardize maternal environment effects. Following this, we

established crosses between lines from the same site to ensure

rapid generation of large numbers for field transplants

(Fig. S1). We paired virgin females from each line with virgin

males from each of the other lines from the same site (i.e.

excluding within-line crosses), with three replicates per line-

cross combination. The crossing scheme used to generate flies

for cage transplants is summarized in Fig. S1.

Each pair was left to mate and lay for five days. Offspring

emerging from these crosses were counted and sexed on eclo-

sion (� 12 h) each day until emergence was complete, and flies

held separately by sex (up to 10 flies per vial) for up to 10 days

before being transplanted to field cages. We then pooled off-

spring from the same maternal isofemale line, keeping the

sexes separate to ensure all flies were unmated prior to estab-

lishing cages. Flies transplanted into cages therefore ranged in

age from 3 to 10 days, but mixing together flies from the same

maternal isofemale line meant that their distribution across

cages and sites was random with respect to age. We used this

approach to avoid excluding lines with low fecundity from

being tested in the field. Transplanting ‘maternal isofemale

lines’ (hereafter referred to as ‘lines’) rather than generating

mass bred lines for each site allowed us to maintain represen-

tation in our experiment of as many maternal lines as possible,

as well as (crucially) enabling partitioning of among-line

(genetic) variation in fitness under field conditions.

Establishment of field transplant cages. The cages used for

field assays of line fitness were 600-mL clear plastic bottles

with two 135 mm 9 95 mm windows cut out, covered with 2-

mm fly wire mesh and 30-denier nylon stocking material,

which allowed movement of air through the cages. Each cage

was encased in 20-mm wire mesh to prevent attack by birds

and mammals. This cage construction allowed the survival

and productivity of flies to be monitored, while exposing them

to temperature and humidity that were as close to naturally

varying conditions as possible. We dispensed 90 mL of media

(as described above) directly into the bottom of each cage. This

volume of food was nine times that used to rear offspring of

the same number of flies at low density in the laboratory (see

methods of line maintenance above), to prevent food becom-

ing a limiting resource during this experiment and to mini-

mize density-dependent competition among larvae. Cages

were suspended from tree branches between 1.5 and 1.8 m

above the ground. We placed iButton temperature loggers

(Maxim integrated Products, San Jose, CA, USA) inside five of

the cages at each site to record temperature hourly, to test

whether temperatures within cages were consistent with those

measured outside by the Tinytag data loggers and to assay

temperature variation among cages within sites. The iButtons

revealed low variability in temperature within, relative to

between sites (90% of variation in mean temperature was

between compared to within sites), and Tinytag and cage tem-

perature measurements were highly correlated (R2 = 0.88,

P < 0.001). Figure S3 shows a comparison between iButton

measurements inside cages and Tinytag measurements out-

side cages for mean daily temperature (MDT), mean daily

minimum temperature (MDTmin) and mean daily maximum

temperature (MDTmax). Linear models comparing the two

measures revealed no significant difference between measures

inside and outside of cages for MDT or MDTmax, although

measurements of MDTmin were, overall, slightly lower inside

cages than outside at field sites (Fig. S3). It is likely that the

positioning of cages (hung from tree branches), compared

with that of data loggers (attached to tree trunks), meant that

cages were slightly more exposed, resulting in lower mini-

mum temperatures inside cages. There was no significant dif-

ference between the two measures for the change in MDT,

MDTmin or MDTmax in relation to altitude along gradients

(Fig. S3). The iButtons did not measure relative humidity

(RH); therefore, it was not possible to compare RH inside and

outside cages. While it is likely that RH in cages was increased

relative to the outside air, mean daily RH was high at all sites

(RH >74%, and usually RH >88%; Table S1); therefore, we con-

sider that RH is unlikely to be a limiting factor for survival

and reproduction of D. birchii.

Lines were transplanted only to sites along their gradient of

origin, not between gradients. At each gradient, cage locations

included the two high- and two low-altitude sites from which

the lines were collected, as well as sites at intermediate alti-

tudes (Fig. S2). At Mt Edith, 15 lines (nine from low-altitude

and six from high-altitude sites) were transplanted along the

gradient. At Paluma, 20 lines (10 from each end of the gradi-

ent) were transplanted. However, due to variation in fecun-

dity of lines in the laboratory, there were insufficient flies to

transplant all lines to all sites at each gradient. At Mt Edith,

between 9 and 15 lines were transplanted at each site, and this

always included both high- and low-altitude lines (Fig. S2). At

Paluma, low-altitude lines had much lower fecundity in the

laboratory than high-altitude lines (see below and Fig. S4).

Therefore, to maximize power to detect local adaptation,
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Paluma lines from both high- and low-altitude populations

were transplanted to cages at the two high- and two low-alti-

tude sites from which lines were sourced (18–19 lines per site;

Fig. S2), but only high-altitude lines were transplanted to

intermediate sites (6–8 lines per site; Fig. S2). We established

325 cages at nine sites at Mt Edith (mean = 36.1 cages per site),

and 266 cages at ten sites at Paluma (mean = 26.6 cages per

site) (Fig. S2). Five virgin male and female flies from the same

line were placed in a given cage. At each site, there were two

to four cages per line. Exact numbers of lines and cages trans-

planted to each site along each gradient are shown in the table

within Fig. S2.

Estimates of fitness of flies in cages. We monitored each cage

daily for five days after establishment and recorded the num-

ber of surviving adult flies each day. On the fifth day, we

removed all surviving flies to ensure they were not included

in offspring counts used to measure productivity. We then left

cages in situ for another 25 days (30 days total) to allow off-

spring to pupate and hatch, even at the coolest sites. After

30 days, all cages were taken to the laboratory, where they

were held for five days at 25 °C to ensure that all offspring

had emerged from that generation. The first offspring did not

emerge until after 20 days at any site, while the majority of off-

spring had emerged at all sites by day 30; therefore, the emerg-

ing offspring were all from a single generation. Total

productivity (number of offspring emerging) was used as a

measure of fitness for each cage. This includes the effects of

parental survival; however, mean survival was high (Mt

Edith = 75.2%; Paluma = 80.8%) and did not vary significantly

along either gradient, or among lines; therefore, the majority

of productivity variation was driven by variation in reproduc-

tive success. The short lifespan and relatively low population

density of D. birchii mean that mating opportunities are likely

to be a major factor limiting the lifetime fitness of D. birchii.

This, combined with the high and uniform survival of flies in

cages along altitudinal gradients, means that early fertility is

likely to be a very important component of fitness variation in

this species. Therefore, while further data would be required

to evaluate fitness variation at later life-history stages, we

argue that within the logistical constraints of such a large

experiment, focusing on this measure of fitness is justified.

Analysis of fitness variation in field cages. We fitted general-

ized linear mixed models (GLMMs) analysing variation in

fitness (productivity) in cages along each gradient to (i) test

for local adaptation and (ii) estimate genetic variation in fit-

ness, and in the effect of movement along a gradient on fit-

ness (‘reaction norms’ in fitness of lines), in order to

estimate the potential for adaptive responses to environmen-

tal change.

To test for local adaptation, we used the ‘sympatric–al-

lopatric’ (SA) contrast proposed by Blanquart et al. (2013).

This method compares the fitness of sympatric populations

(populations transplanted back to their site of origin) with

that of allopatric populations (populations transplanted to a

different site from their site of origin), while controlling for

variation due to habitat (i.e. environmental variation among

transplant sites) and source population (i.e. due to genetic

differences in fitness among source populations) (Blanquart

et al., 2013). This comparison has greater power to detect

local adaptation than other more restrictive definitions of

local adaptation (e.g. the ‘home vs. away’ and ‘local vs. for-

eign’ comparisons described by Kawecki & Ebert (2004))

(Blanquart et al., 2013). Power to detect local adaptation

using this method increases as a function of the number of

sympatric–allopatric comparisons, which for a given number

of transplants is maximized by transplanting all source pop-

ulations back into the source sites. We additionally tested

for variation in fitness reaction norms along gradients, which

required transplanting lines to a larger number of sites

(including sites that had not been used as source popula-

tions). Nevertheless, by ensuring that D. birchii from all lines

within a gradient were transplanted to gradient ends (where

flies were sourced), we still had high power to detect local

adaptation within the constraints imposed by these dual

aims of our experiment.

GLMMs included as fixed effects: (i) environmental vari-

ables [a subset of PC1, PC2, (PC1)2 and (PC2)2. Terms were

sequentially removed and models compared to determine

whether each improved model fit; see Results], to account for

habitat variation among transplant sites; (ii) ‘source popula-

tion’, a categorical variable with four levels corresponding to

the populations from which D. birchii were sourced within a

gradient; and (iii) a ‘local adaptation’ term indicating whether

a cage was ‘sympatric’ or ‘allopatric’, as defined above. Evi-

dence for local adaptation is indicated by significantly higher

fitness of sympatric cages than allopatric cages, after control-

ling for habitat and population effects.

We included random intercept and slope terms for the

effect of line (nested within source population) to estimate (i)

genetic variation in fitness (averaged across the whole gradi-

ent) and (ii) variation among lines in fitness responses to envi-

ronmental change (‘fitness reaction norms’), respectively.

Random slope terms tested for variation in the fitness

responses of lines with respect to the same environmental

variables as were included as fixed effects in the model [i.e. a

subset of PC1, PC2, (PC1)2 and (PC2)2; see above and results].

Productivity data were overdispersed relative to the Pois-

son distribution generally used for modelling count data, and

had an excess of zeroes due to overrepresentation of cages

from which no offspring emerged. We therefore modelled

productivity as a negative binomial distribution (Lind�en &

M~antyniemi, 2011), specifying zero inflation, and used a log

link function. GLMMs were fitted using the R package GLM-

MADMB 0.8.0 (Fournier et al., 2012; Skaug et al., 2013). Separate

models were fitted for each gradient.

Genetic variation in productivity in the laboratory. We

assessed variation among lines and source populations from

Paluma and Mt Edith in their productivity in the laboratory

for comparison with genetic variation estimated from field

cages. Productivity was measured as the number of offspring

emerging from crosses established to generate flies for the

caged transplant experiment; therefore, it included the same

set of lines as in analyses of fitness variation in field cages. We
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again fitted GLMMs using GLMMADMB, with the same distribu-

tion as in analyses of fitness variation in cages. We included

source population as a fixed predictor and maternal isofemale

line (nested within source population) as a random factor. To

assess whether lines with high productivity under laboratory

conditions also performed well in the field, we compared the

rank order of lines for productivity in the laboratory and in

the field using a Spearman’s rank correlation test, imple-

mented using the cor.test function in R v3.1.2 (R Core Team,

2014). Separate models were fitted for each gradient in both

sets of analyses.

Predicting local abundance of D. birchii from variation in
fitness in cages

We fitted linear models to test how well fitness in cages pre-

dicted local abundance of D. birchii at the gradients where

caged transplants were undertaken (Paluma and Mt Edith).

We used mean productivity in field cages as a measure of fit-

ness at each site. Fitness and abundance data were both stan-

dardized to a mean of 0 and standard deviation of 1 so that

they were on the same scale. We fitted linear models with the

lm function in R v3.1.2 (R Core Team, 2014), using

standardized productivity as the predictor variable and stan-

dardized abundance of D. birchii as the response variable.

Separate models were fitted for each gradient.

Results

Predicting local abundance of D. birchii from
environmental variables

At all gradients except Mt Lewis, the first principal

component (PC1) from the PCA of environmental

variables was a significant predictor of D. birchii abun-

dance (Table 1; Fig. 1c). However, the strength and

shape of the relationship between PC1 and abundance

varied substantially between gradients (Table 1;

Fig. 1c). Abundance of D. birchii increased with PC1

at Mt Edith (indicating increased abundance at higher

temperatures/lower altitudes) and decreased with

PC1 at Paluma (Table 1; Fig. 1c). At Mt Edith and Kir-

rama, model fit was improved by the addition of a

quadratic term for PC1 (Table 1). Given that the four

gradients span different altitude and temperature

Table 1 Predicting Drosophila birchii abundance along four altitudinal gradients based on environmental variation. Environmental

variation is represented by the first two principal components (PC1 and PC2) of the ordination analysis (see text and Fig. 1b). For

the overall analysis, gradient and interactions of gradient with linear and quadratic terms for each predictor were included. Factors

showing a significant interaction with gradient (PC1 and PC12) were then included in models for each gradient individually. Model

statistics indicating the fit of each model are also shown. Significant terms (P < 0.05) in each model are in italics

Predictor df SS F P Model statistics

Gradient 3 20.57 9.99 1.39 9 10�5 Adj. R2 = 0.404

PC1 1 2.10 3.06 0.09 F19,72 = 4.25

PC12 1 0.85 1.23 0.27 P = 3.86 9 10�6

PC2 1 0.73 1.06 0.31

PC22 1 0.25 0.36 0.55

Gradient 9 PC1 3 17.78 8.64 5.70 9 10�5

Gradient 9 PC12 3 8.82 4.29 0.01

Gradient 9 PC2 3 3.14 1.53 0.22

Gradient 9 PC22 3 1.19 0.58 0.63

Residual 72 49.42

Gradient Parameter Estimate (SE) t P Model statistics

Estimates of parameters for each gradient

Mt Lewis Intercept 0.264 (0.046) 5.722 5.28 9 10�7 Adj. R2 = 0

PC1 �0.015 (0.021) �0.721 0.474 F2,52 = 0.892

PC12 �0.003 (0.007) �0.430 0.669 P = 0.416

Mt Edith Intercept 6.094 (1.144) 5.328 0.002 Adj. R2 = 0.920

PC1 4.052 (1.057) 3.833 0.009 F2,6 = 46.82

PC12 0.683 (0.234) 2.923 0.027 P = 0.0002

Kirrama Intercept 0.650 (0.108) 6.043 2.25 9 10�5 Adj. R2 = 0.213

PC1 �0.247 (0.109) �2.254 0.040 F2,15 = 3.295

PC12 �0.254 (0.102) �2.490 0.025 P = 0.065

Paluma Intercept 0.373 (0.046) 8.185 7.88 9 10�5 Adj. R2 = 0.681

PC1 �0.071 (0.016) �4.517 0.003 F2,7 = 10.58

PC12 0.009 (0.006) 1.513 0.174 P = 0.008

© 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 23, 1847–1860

ADAPTIVE VARIATION ALONG ECOLOGICAL GRADIENTS 1853



ranges (Table S1), these different patterns reflect, in

part, variation in the range of values of PC1 present

within each gradient (Fig. 1b). However, differences

are still evident when gradients are compared over

equivalent values of PC1 (Fig. 1c). PC2 did not

improve the fit of the model of D. birchii abundance

overall (Table 1), or of models of D. birchii abundance

within each gradient.

Testing for genetic variation in responses to
environmental change: caged transplant experiment

Testing for local adaptation along altitudinal gradi-

ents. There was no evidence for local adaptation

within gradients; ‘sympatric’ cages did not outper-

form ‘allopatric’ cages after controlling for habitat and

population effects at either gradient (Table 2; Fig. 2).

At Mt Edith, the SA contrast was only marginally

nonsignificant (P = 0.052; Table 2), but fitness of allo-

patric cages exceeded that of sympatric cages (Fig. 2),

which is opposite to expectations if the difference is

due to local adaptation. At Paluma, there was no sig-

nificant difference between the fitness of sympatric

and allopatric cages, and the trend was also opposite

to that predicted with local adaptation (P = 0.774;

Table 2; Fig. 2).

There were highly significant effects of environmen-

tal variation on fitness in cages. Along both altitudinal

gradients, there was a significant, nonlinear increase in

cage productivity with increasing PC1 (increasing tem-

perature) (Fig. 3). Source population effects approached

significance at Mt Edith (P = 0.068; Table 2), which was

attributable to low fitness of flies from one of the source

populations (Fig. S5), and was nonsignificant at Paluma

(P = 0.302; Table 2; Fig. S5).

Variation in fitness and reaction norms of fitness among

lines. There was significant variation among lines in

their productivity in cages at Mt Edith (P = 0.014), but

not at Paluma (P = 0.658) (Table 2). At Mt Edith, the

mean productivity of the ‘fittest’ line (24.5 offspring per

cage) was more than seven times that of the least fit line

(3.4 offspring per cage), whereas at Paluma the fittest

line (37.5 offspring per cage) had mean productivity

twice that of the least fit (19 offspring per cage). How-

ever, we did not detect significant variation among lines

in the slopes of their responses (i.e. their ‘reaction norms’

of fitness) to the change in environment experienced as a

result of being transplanted along gradients, as captured

by variation in the slopes of their fitness with respect to

PC1 (Table 2). Random slope variation with respect to

the other PC terms was also not significant for either gra-

dient. These results suggest that there is significant

genetic variation in mean fitness across these environ-

mental conditions at Mt Edith, but at both gradients all

lines respond similarly to the change in environment;

Table 2 Tests for local adaptation and genetic variation in fitness from caged transplant experiments along the Mt Edith and

Paluma altitudinal gradients, using generalized linear mixed models (GLMMs). The fixed effects included: linear and quadratic

terms for PC1, which were significant predictors of Drosophila birchii abundance at these gradients, ‘source population’, and a ‘local

adaptation’ term which compared cages transplanted back to the site where flies originated (‘sympatric’) with those transplanted to

a different site (‘allopatric’). Random intercept and slope (with respect to PC1) terms for the effect of isofemale line nested in source

population (‘Line’ in table) were also included. Significant effects are denoted in italics. The significance of fixed effects was evalu-

ated using a chi-square test and of random effects using a likelihood-ratio test comparing models with and without each term

included. Variance components were estimated after removing nonsignificant fixed effects from the model

Gradient

Fixed effects Random effects

Predictor df v2 P Variance component Variance P

Mt Edith PC1 1 3.92 0.048 Line

PC12 1 7.11 0.008 Intercept 0.043 0.014

Source population 3 7.12 0.068 Slope (PC1) 0.013 0.488

Local adaptation

Sympatric vs. Allopatric 1 3.78 0.052

Residual 314

Paluma PC1 1 130.15 <2.2 9 10�16 Line

PC12 1 45.67 1.40 9 10�11 Intercept 0.020 0.658

Source population 3 3.65 0.302 Slope (PC1) 2.19 9 10�9 1

Local adaptation

Sympatric vs. Allopatric 1 0.08 0.774

Residual 253
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that is, lines with high relative fitness at one end of the

gradient tend to have high fitness at all sites.

Genetic variation in productivity in the laboratory. Consis-

tent with results from the field experiment, we found

significant among-line variation in laboratory produc-

tivity at Mt Edith, but not at Paluma (Table S5). Esti-

mates of among-line variance in the laboratory were

higher than in the field for both gradients (Table S5;

cf Table 2), although the crossing scheme may have

reduced genetic and maternal effect differences

between the lines in field cages. In contrast to the

field experiment, variation among source populations

for laboratory productivity was highly significant at

both gradients (Table S5), with high-altitude source

populations showing higher productivity than low-

altitude populations in both cases (Fig. S4). A Spear-

man’s rank correlation test revealed that while the

rank order of lines for productivity in the laboratory

and in the field was positively correlated at both gra-

dients, the correlation was not distinguishable from

zero at either gradient (Mt Edith: q = 0.271, P = 0.327;

Paluma: q = 0.173, P = 0.492), suggesting the relative

fitness of lines under constant conditions is not a

good predictor of their relative fitness in the more

variable field environment.

Predicting local abundance of D. birchii from fitness in
cages

Productivity of D. birchii in field cages changed in the

same direction as local abundance of D. birchii along
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Fig. 2 No evidence for local adaptation in caged transplants. Plots show the results of tests for local adaptation in caged transplants at

Mt Edith and Paluma using sympatric–allopatric (SA) contrasts. The mean productivity (no. of offspring emerging) of cages of flies

transplanted back into their site of origin (sympatric), and those transplanted to all of the other sites along the same gradient (allopatric)

are shown. Error bars are standard errors across the four source populations when transplanted sympatrically or allopatrically. The dif-

ference in productivity between sympatric and allopatric populations was marginally nonsignificant at Mt Edith (P = 0.052) and non-

significant at Paluma (P = 0.774) (see Table 2).
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Fig. 3 Fitness in cages increases with mean temperature along altitudinal gradients. Plots show mean productivity of Drosophila birchii

in cages placed at each site along altitudinal gradients at Mt Edith and Paluma. Mean site productivity (averaged across the cages at

each site) is plotted as a function of PC1, the first principal component of a PCA of variation for a set of environmental variables (see

Methods and Fig. 1b), which is strongly, positively associated with temperature. Fitted curves are from linear models of productivity

on PC1 for each gradient (see Table 2). Error bars indicate standard errors based on isofemale lines at each site. Note that the Paluma

gradient encompasses a much wider range of values of PC1 than Mt Edith. Points have been offset slightly along the x-axis at Mt Edith

to reduce overlap.
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the Mt Edith gradient, and this relationship was mar-

ginally nonsignificant [Slope (SE) = 1.313 (0.57);

P = 0.054]. However, this relationship was significantly

negative along the Paluma gradient [Slope

(SE) = �0.253 (0.08); P = 0.012] (Table S6; Fig. 4). As

outlined above, productivity in cages increased with

increasing PC1 (i.e. towards warmer, lower-altitude

sites) at both gradients (Fig. 3). Paluma covered a wider

range of PC1 values than Mt Edith; specifically, Paluma

included much higher values, reflecting higher temper-

atures. Therefore, the difference between the gradients

in the relationship between fitness in cages and abun-

dance implies that while cage productivity is a good

predictor of local abundance of D. birchii at cooler,

high-altitude sites, it fails to predict changes in abun-

dance towards the warm margin of this species’ range.

Discussion

Predicting the effect of rapid environmental change

on species’ distributions, and therefore the persistence

of ecological communities, is an urgent priority. How-

ever, such predictions typically rely on models that

assume a constant relationship between abiotic envi-

ronmental variation and species’ persistence or abun-

dance, thus ignoring the potential for evolutionary

change in environmental tolerances, and the influence

of biotic interactions. Our approach, which combines

surveys of field abundance, cage transplant experi-

ments and both laboratory and field estimates of

genetic variation in fitness in the rainforest fruit fly

Drosophila birchii, provides a comprehensive test of

these assumptions, along ecological gradients that

characterize distributional limits of this species at dif-

ferent spatial scales.

Predicting responses to environmental change from the
relationship between D. birchii abundance and
environmental variation

Our field surveys revealed that local abundance of

D. birchii is strongly predicted by environmental varia-

tion at three of the four altitudinal gradients studied,

which each exhibits variation in mean temperature

characteristic of hundreds of kilometres of latitudinal

distance (Table S1). Overall, there was a decline in the

abundance of D. birchii towards warm, low-altitude

sites (Fig. 1), which suggests that the rising tempera-

tures forecast as a result of climate change will reduce

the area of suitable habitat for this species. However,

the relationship between environment and local

D. birchii abundance differed between gradients

(Table 1), suggesting local variation in the response of

this species to environmental change, at least across the

period measured here. Predictions of D. birchii abun-

dance based on its association with environmental vari-

ables at a broad geographical scale may therefore

perform poorly at a local scale. This variation in the

relationship of D. birchii abundance with environmen-

tal conditions could be caused by other factors affecting

abundance that vary among gradients that were not

captured by our measures of environmental variation,

and/or local adaptation within or among gradients,

enabling population growth over different ranges of

environments at different gradients. We consider each

of these possibilities below.
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Fig. 4 Cage fitness predicts local abundance at cool, high-altitude sites but not at warm, low-altitude sites. Plots show the relationship

between fitness estimated from the caged transplant experiment (cage productivity) and the local abundance of Drosophila birchii esti-

mated from field sampling at Mt Edith and Paluma. Fitness and abundance data were both standardized to mean = 0 and standard

deviation = 1. Error bars on abundance (y-axis) are standard errors across sampling days and on productivity (x-axis) are standard

errors among lines. Fitted lines are shown from regressions of standardized mean D. birchii abundance on standardized mean produc-

tivity (see Table S4).
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Cage transplants along altitudinal gradients: does the
abiotic environment predict the fitness of D. birchii?

Fitness, as measured by productivity in cages, showed

consistent increases with temperature along both gradi-

ents. This was in contrast to the reduction in abundance

at warmer (low-altitude) sites in our surveys of field

abundance. This surprising result suggests that there

are factors excluded from our cages that restrict

D. birchii’s distribution at its warm ecological limit. The

cage transplant experiment exposed flies to changes in

the naturally varying abiotic (i.e. temperature and

humidity) environment, but there are likely to be signif-

icant changes in the biotic environment (e.g. competi-

tors, predators, parasites, pathogens) over this scale

that were absent from cages, and which may constrain

D. birchii’s abundance towards its warmer margin. This

is consistent with the hypothesis, initially proposed by

Darwin (1859), and subsequently supported by numer-

ous authors (e.g. Macarthur, 1972; Ettinger et al., 2011),

that abiotic factors are the principal limit to species’ dis-

tributions at high latitudes and altitudes, while the

importance of biotic interactions increases towards

warmer margins at lower latitudes and altitudes. The

lowest latitude, and on average warmest, gradient

included in our abundance survey, Mt Lewis, was the

only gradient where abiotic environmental variation

(captured by PC1) did not predict D. birchii abundance

(Table 1), again suggesting a potential role for biotic

factors. Further work is underway to identify important

biotic interactions. However, we note that PC2, which

is largely driven by the abundance of non-birchii serrata

complex species (Fig. 1b), did not predict D. birchii

abundance at any gradient (Table 1), suggesting that

competition with these closely related species is not the

key factor limiting the distribution of this species.

Understanding how biotic and abiotic factors interact

to shape species’ distributions is crucial for predicting

the responses of ecological communities to environ-

mental change (Ara�ujo & Luoto, 2007; Grassein et al.,

2014; Alexander et al., 2015; Godsoe et al., 2015). Pre-

dicting the effect of changes in either the abiotic or bio-

tic environment on species distributions is complicated

by the fact that these different components of environ-

mental variation are typically highly correlated in nat-

ure. Most species’ distribution models either ignore

biotic variables, or implicitly assume that these correla-

tions will remain constant in future (Ara�ujo & Luoto,

2007). However, abiotic and biotic factors may become

uncoupled if interacting species within an ecological

community differ in their responses to environmental

change, resulting in novel species’ assemblages (e.g.

Alexander et al., 2015). Future studies should explicitly

test for the effects of biotic interactions within and

among species on fitness, in combination with abiotic

factors, to better understand local variation in evolu-

tionary responses to environmental change, and there-

fore the persistence of species and local communities in

response to ongoing climate change.

Local adaptation and genetic variation in fitness and
reaction norms in response to movement along altitudinal
gradients, and comparison with laboratory estimates

We did not detect evidence of local adaptation within

either gradient during our caged transplant experi-

ments. Although there was significant genetic variation

in overall fitness at Mt Edith, all lines transplanted at

both gradients responded similarly to the imposed

change in their environment. In other words, reaction

norms for fitness of different lines do not intersect or

vary in steepness, indicating that fitness under condi-

tions at one end of the gradient does not ‘trade off’

against fitness at the opposite end. The lack of local

adaptation within gradients is surprising, because

divergent selection between gradient ends is expected

to be strong in this system, given the substantial and

consistent difference in their abiotic environments

(temperature and humidity), and the significant conse-

quences of this for fitness of D. birchii, as shown by

our cage transplant experiments. Possible explanations

for a lack of local adaptation along gradients include

gene flow, which has been shown to be high in this

species over larger geographic distances than were

considered here (Schiffer et al., 2007; Van Heerwaarden

et al., 2009), and may swamp local adaptation, particu-

larly given the steep changes in abundance observed

even between adjacent sites, which are likely to lead to

asymmetrical gene flow (Bridle & Vines, 2007; Bridle

et al., 2009). Alternatively, populations occupying mar-

ginal habitat towards the species’ range edge may lack

sufficient genetic variation to track local optima by

adaptation, potentially due to small population size, or

trade-offs between different components of fitness

(Blows & Hoffmann, 2005). Differences in the relative

importance of abiotic and biotic factors at each end of

the altitudinal range of D. birchii may also explain why

we did not detect either genetic variation in fitness

reaction norms or local adaptation in our cage trans-

plant experiment. If biotic interactions (rather than

temperature or humidity) constrain the distribution of

D. birchii at its warm margin, fitness trade-offs may

become apparent only when measured in the presence

of such interactions. Finally, we note that fitness along

the gradient was only measured on one occasion,

whereas selection pressures can change across years

(Kingsolver et al., 2001) and should ideally be charac-

terized repeatedly.
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Nevertheless, previous studies in D. birchii have

revealed latitudinal clines (over similar temperature

ranges) suggestive of local adaptation in development

time (Griffiths et al., 2005), resistance to desiccation

(Hoffmann et al., 2003; Kellermann et al., 2006) and

starvation (Griffiths et al., 2005; Van Heerwaarden

et al., 2009), as well as altitudinal clines in chill coma

tolerance (Bridle et al., 2009). However, all of these

studies examined trait variation under constant condi-

tions in the laboratory. While it is likely that the pat-

terns of trait variation they observed were the result of

selection, the fitness consequences of this variation may

become evident only under certain sets of conditions,

as environmental conditions are known to affect esti-

mates of trait heritabilities (Hoffmann & Meril€a, 1999;

Charmantier & Garant, 2005; Pemberton, 2010). We also

found significant genetic divergence in productivity

among D. birchii populations in the laboratory, but not

in the field. Importantly, the mean productivity of

D. birchii in field cages was substantially lower than

productivity in the laboratory, confirming a common

assumption that laboratory conditions are benign rela-

tive to the conditions experienced by wild populations.

A consequence of this may be that genetic differences

among populations are not realized under less favour-

able field conditions due to masking by environmental

variation. This highlights the importance of assaying

fitness under naturally varying conditions when infer-

ring adaptive potential in wild populations. Further-

more, the timing and location of such studies should

encompass conditions that are a priori thought to be

most limiting for the focal species, to ensure that key

drivers of selection are included.

Implications for predicting biological responses to
environmental change

Three important findings emerge from our study that

enable evaluation of the accuracy of predicted changes

in the distribution of D. birchii in response to environ-

mental change using traditional species’ distribution

models. (i) The relationship between environmental

variation and abundance differs between gradients,

demonstrating the importance of geographic scale in

predictive models. (ii) The effect of abiotic environmen-

tal variation on fitness of D. birchii in cages does not

mirror the change in field abundance, suggesting an

important role for biotic interactions in limiting the dis-

tribution of this species. (iii) There is no local adapta-

tion nor genetic variation in fitness reaction norms of

D. birchii within gradients, although this contradicts

predictions based on laboratory estimates of genetic

variation in fitness. These observations are likely to

have general significance beyond the model system

examined here, and can offer insights on how to

improve methods for predicting biological responses to

environmental change.

Incorporating spatial geographic scale into species’

distribution models is quite straightforward, as long as

abundance or occurrence data are available at a suffi-

ciently fine scale. Ideally, sampling should be under-

taken across both local and global ecological limits, to

account for potential variation in the factors limiting

species’ distributions at these different scales (e.g.

across altitudinal and latitudinal gradients; Halbritter

et al., 2013). As has been appreciated by others, biotic

interactions should be incorporated into SDMs by

including data on the presence or abundance of co-

occurring species as predictive factors (Ara�ujo & Luoto,

2007; Wisz et al., 2013). Our results demonstrate that

the importance of biotic interactions in limiting species’

distributions is likely to vary across abiotic gradients,

which reiterates the importance of sampling at appro-

priate geographic scales. Furthermore, given that key

biotic interactions are themselves susceptible to the

effects of changes in the abiotic environment, regular

resampling should be undertaken to identify changes

in the correlation between abiotic and biotic compo-

nents, and their consequences for species’ distributions.

The lack of genetic variation in fitness reaction norms

suggests that populations of D. birchii along gradients

are likely to respond similarly to a changing thermal

environment, and have low potential for local adapta-

tion. This contrasts with measurements under labora-

tory conditions (both in the present study and in

previous work e.g. Bridle et al., 2009), which reveal sig-

nificant genetic variation in ecologically important

traits both within and among populations sampled

from different parts of the species’ altitudinal range.

These data highlight the importance of assessing

genetic variation in fitness under ecologically relevant

conditions when predicting the potential for evolution-

ary responses to environmental change. This challenge

is more difficult to overcome, as field estimates of

genetic variation within and among populations are

clearly not feasible for all taxa. Nevertheless, the cur-

rent study highlights how these assessments can be

undertaken using model organisms such as Drosophila.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Location and environmental variation of altitudinal gradients where D. birchii was collected between 2010–12, including
altitudinal range, total length (the straight-line distance between the top and bottom of each gradient in km), number of sites sam-
pled, ranges of environmental variables (Mean daily temperature (MDT); Mean daily minimum temperature (MDTmin); Mean daily
maximum temperature (MDTmax); Mean daily temperature difference (MDTdiff); Mean daily humidity (MDH)), D. birchii density,
density of other species from the serrata species complex (non-birchii density), and productivity in cages (only assessed in 2012).
Table S2. Linear regressions of each environmental variable measured during 2010–2012 on (a) altitude for each gradient, and (b)
altitude, latitude and their interaction across the entire sampled range.
Table S3. Correlations between environmental variables included as predictors of D. birchii field abundance (below diagonal) and
p-values indicating significance of correlations (above diagonal).
Table S4. Loadings of each environmental variable measured along the four gradients on the first two principal components (PCs)
from a principal component analysis.
Table S5. Variation in productivity among isofemale lines (nested in source population) from Mt Edith and Paluma when reared in
the laboratory.
Table S6. Results of linear models to test how well mean fitness in cages (cage productivity) predicts local abundance in the field.
Figure S1. Laboratory crossing scheme to generate lines used in cage transplants from each of the four source populations from
each gradient.
Figure S2. Schematic illustrating design of caged transplant experiment.
Figure S3. Comparison of temperatures measured inside field cages using iButtons (filled symbols) and outside cages at field sites
using Tinytag Data Loggers (open symbols) along the two gradients where field transplant experiments were undertaken: Mt Edith
(left) and Paluma (right).
Figure S4. Mean productivity of each of the four source populations from Mt Edith (left) and Paluma (right) in laboratory crosses.
Figure S5. Mean productivity (estimated as the mean number of offspring per female) of each of the four source populations from
Mt Edith (left) and Paluma (right) in cages transplanted to sites along altitudinal gradients.
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