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Abstract 

Results from the DANISH Study (Danish Study to Assess the Efficacy of ICDs in Patients with Non-

ischemic Systolic Heat Failure on Mortality) suggest that, for many patients with dilated 

cardiomyopathy (DCM), implantable cardioverter defibrillators (ICD) do not increase longevity. 

Accurate identification of patients who are more likely to die of an arrhythmia and less likely to die 

from other causes is required to ensure improvement in outcomes and wise use of resources. Until 

now, left ventricular ejection fraction (LVEF) has been used as a key criterion for selecting patients 

with DCM for an ICD for primary prevention purposes. However, registry data suggest that many 

patients with DCM and an out-of-hospital cardiac arrest do not have a markedly reduced LVEF. 

Additionally, many patients with reduced LVEF die from non-sudden causes of death.  Methods to 

predict a higher or lower risk of sudden death include the detection of myocardial fibrosis (a 

substrate for ventricular arrhythmia), microvolt T-wave alternans (MTWA; a marker of 

electrophysiological vulnerability) and genetic testing. Mid-wall fibrosis is identified by late 

gadolinium enhancement cardiovascular magnetic resonance imaging in around 30% of patients and 

provides incremental value in addition to LVEF for the prediction of SCD events. MTWA represents 

another promising predictor, supported by large meta-analyses that have highlighted the negative 

predictive value of this test. However, neither of these strategies has been routinely adopted for risk 

stratification in clinical practice. More convincing data from randomized trials are required to inform 

the management of patients with these features. Understanding of the genetics of DCM and how 

specific mutations affect arrhythmic risk is also rapidly increasing. The finding of a mutation in 

LMNA, the cause of around 6% of idiopathic DCM, commonly underpins more aggressive 

management due to the malignant nature of the associated phenotype. With the expansion of 

genetic sequencing, the identification of further high-risk mutations appears likely, leading to better 

informed clinical decision-making as well as providing insight into disease mechanisms. Over the 

next 5-10 years we expect these techniques to be integrated into the existing algorithm to form a 
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more sensitive, specific and cost-effective approach to the selection of DCM patients for ICD 

implantation. 
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Background 1 

Dilated cardiomyopathy (DCM) is a disease of the myocardium characterised by a reduction in left 2 

ventricular systolic function and left ventricular dilatation that cannot exclusively be explained by 3 

abnormal loading or ischemic injury1. It is one of the most common cardiomyopathies, with a 4 

predicted incidence of 1 in 400 in the US2. Three-year treated mortality rates remain high at 12-20%, 5 

with death typically resulting from heart failure (HF) or ventricular arrhythmia manifesting as sudden 6 

cardiac death (SCD)3-7. DCM accounts for a substantial proportion of SCD, especially amongst people 7 

of working age, with an annual incidence of 2-3%4, 8-10. SCD is unheralded in 40-50% of cases and 8 

occurs out-of-hospital in the majority of patients10, 11. Implantable cardioverter defibrillators (ICDs) 9 

have the ability to promptly recognize and treat ventricular arrhythmias and thus form the 10 

cornerstone of SCD prevention.  Patients with DCM compared with those with ischemic heart 11 

disease (IHD), are typically younger with less co-morbidity and therefore have a lower mortality risk 12 

from other causes. They, therefore appear ideal candidates to benefit from ICD therapy.   13 

Current guidelines recommend the use of ICDs for the primary prevention of SCD in patients with 14 

DCM, New York Heart Association (NYHA) class II-III HF and a left ventricular ejection fraction (LVEF) 15 

<35%12, 13. However, 4 individual randomized trials in patients with DCM and a LVEF <35% have failed 16 

to show a significant reduction in all-cause mortality with ICD therapy, while only 1 demonstrated a 17 

a mortality benefit3, 4, 7. A more precise risk stratification algorithm is therefore a major unmet need. 18 

In this review, we summarize the current evidence for primary prevention ICD implantation in 19 

patients with DCM and illustrate the need for improved risk stratification3, 4, 7, 14. We discuss 20 

strategies and techniques that we expect to be used to improve risk stratification over the next 5-10 21 

years by providing more comprehensive disease phenotyping. We review techniques that may 22 

improve risk stratification, building from simple clinical variables to more complex imaging 23 

techniques and genetic analysis. 24 

 25 

 26 
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Primary Prevention ICD Trials in DCM – The Need to Improve the Sensitivity and Specificity of the 1 

Current Approach 2 

Five trials have investigated the effect of ICD implantation in patients with DCM without a history of 3 

cardiac arrest or hemodynamically unstable ventricular arrhythmia (Table 1)3-7. The Cardiomyopathy 4 

Trial (CAT) and the Amiodarone vs Implantable Cardioverter-Defibrillator (AMIOVIRT) trial were 5 

terminated prematurely due to a low mortality rate and lack of statistical power5, 6. The Sudden 6 

Cardiac Death in Heart Failure Trial (SCD-HeFT) investigated the effect of primary prevention ICD 7 

implantation in patients with ischemic cardiomyopathy or DCM with NYHA class II-III HF and an LVEF 8 

<35%3. ICD therapy was associated with a reduction in overall mortality across both etiologies (HR 9 

0.77; 97.5% CI: 0.62-0.96; p=0.007).  10 

The Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation (DEFINITE) study evaluated 11 

the effects of ICD therapy in patients with DCM, HF, a LVEF ≤35% and non-sustained VT or frequent 12 

ventricular ectopy4. All-cause mortality was not significantly reduced with ICD therapy (HR 0.65; 13 

95%CI 0.40-1.1; p=0.08) but a reduction in SCD was observed (HR 0.20; 95%CI 0.06-0.71; p=0.006). 14 

Current guidelines on the use of ICDs for the primary prevention of SCD in DCM are based on a 15 

meta-analysis of these trials, which demonstrated a reduction in all-cause mortality with ICD therapy 16 

(HR 0.74, p=0.02)12, 14, 15. 17 

Subsequently, the Danish Study to Assess the Efficacy of ICDs in Patients with Non-Ischemic Systolic 18 

Heat Failure on Mortality (DANISH) investigated ICD therapy versus optimal medical therapy (OMT) 19 

in patients with non-ischemic cardiomyopathy (76% idiopathic, 4% valvular, 11% hypertensive, 9% 20 

other), HF, LVEF <35% and N-terminal pro-B-type natriuretic peptide (NT-pro-BNP) >200pg/ml7. All-21 

cause mortality was not lower in patients with ICDs (HR 0.87; 95% CI: 0.68-1.12; p=0.28); however 22 

SCD was reduced (HR 0.50; 95% CI: 0.31-0.82; p=0.005). Overall mortality was less than 5% per year 23 

and in the control group, only 1/3 of the deaths were attributed to SCD. Notably, the percentage of 24 

patients treated with contemporary OMT was higher than previous trials; 97% were prescribed 25 
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angiotensin converting enzyme inhibitors or angiotensin receptor blockers and 92% beta-blockers. In 1 

addition, 58% of patients in both arms received CRT, including 93% of those with LBBB and a QRS 2 

>150ms. CRT alone may reduce SCD risk by improving left ventricular function and preventing 3 

bradycardia-triggered lethal arrhythmias. An updated meta-analysis, including data from DANISH, 4 

has demonstrated a 23% reduction in all-cause mortality with ICD therapy compared with OMT 5 

alone (HR 0.77; 95% CI 0.64-0.91)16.  6 

Additional interpretation of the trials demonstrates the poor specificity of LVEF-based guidelines. In 7 

each of the trials, there was a low incidence of appropriate ICD therapies: 5.1% over 1 year in SCD-8 

HeFT, 17.9% over 3 years in DEFINITE and 11.5% over 5.6 years in DANISH3, 4, 7. This finding is partially 9 

explained by an improved prognosis for many with OMT.  Left ventricular reverse remodelling occurs 10 

in up to 37% of patients treated with OMT, supporting the importance of postponing risk 11 

stratification until after a period of OMT17. In DEFINITE, of those with a follow-up LVEF, 12 

approximately half had an improvement in LVEF >5% associated with substantially reduced 13 

mortality18. Another explanation for the low incidence of appropriate therapies is a high residual 14 

incidence of death from competing causes; as the risk of non-sudden death increases, the chances of 15 

gaining benefit from ICD therapy diminishes.  16 

Conversely, it is clear that the sensitivity of LVEF for predicting SCD is poor.  Registries of out-of-17 

hospital cardiac arrests have demonstrated that the majority of such patients do not have severely 18 

reduced LVEF10, 11. In the Oregon and Maastricht registries, in those cases with pre-mortem 19 

echocardiography, only 20-30% had a low enough LVEF to meet criteria for an ICD10, 11. DCM-specific 20 

registries have confirmed that, although the overall risk of SCD may be higher in patients with 21 

severely reduced LVEF, the number with mild or moderate reductions in LVEF is greater and their 22 

risk remains significant19.  Moreover, this group of patients are likely to have lower risks of death 23 

from competing causes and less likely to be limited by symptoms. The number of quality-adjusted 24 

life years gained from successful ICD therapy may therefore be greater.  25 
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The risk of complications and the costs of ICD implantation are also important considerations. 1 

Although less common compared with 10 years ago, the incidence of inappropriate shocks is 2 

associated with morbidity and reduced quality of life 4, 7, 20, 21.  Early procedure-related complications 3 

occur in 4% of cases, while device-related infection complicates 4.9%7, 21. As well as worsening 4 

outcomes, complications add costs to the considerable expenditure associated with ICDs. It has been 5 

estimated that if devices were implanted as recommended, an extra 850,000 patients in the US 6 

would be offered ICD implantation, in addition to the 80,000 patients who currently receive them 7 

annually, at a total cost of $30 billion22. These issues highlight the wider importance of optimizing 8 

the selection of patients. 9 

In conclusion, current research demonstrates the inadequacy of a risk stratification algorithm based 10 

on LVEF and illustrates the importance of developing a more sensitive, specific and cost-effective 11 

approach. We discuss Other clinical and biomarker variables may have a role in predicting the risk of 12 

non-sudden death and in the identification of those unlikely to benefit from ICD implantation.  13 

 14 

Stage of Disease, Co-morbidities and Competing Risks from Non-Sudden Causes of Death 15 

It has long been recognized that patients with advanced HF are unlikely to benefit from ICD therapy 16 

due to high rates of death from nonarrhythmic causes. This is reflected in guidelines that do not 17 

recommend ICD implantation for patients with NYHA Class IV symptoms, unless cardiac transplant is 18 

planned, or for those with a life expectancy < 1 year12, 13. The risk of death from non-sudden causes 19 

is especially relevant in older patients and in those with more co-morbidities.  In planned sub-group 20 

analysis of the DANISH trial, patients aged >68 years of age had a trend towards increased mortality 21 

with ICD implantation (HR 1.19; 95% CI 0.81-1.73; p=0.38), in contrast to patients <59 years of age 22 

who had a lower mortality with an ICD (HR 0.51; 95% CI 0.29-0.92; p=0.02)7. Additionally, a meta-23 

analysis of trials of primary prevention ICDs in ischemic and non-ischemic HF demonstrated the 24 

absence of survival benefit in patients with an estimated glomerular filtration rate of <60 25 
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ml/minute/1.73m2 23.  This highlights the role that age and measures of kidney function may have in 1 

identifying patients who are unlikely to gain benefit from ICD implantation.  2 

Risk scores such as the Seattle Heart Failure Model have been developed to predict prognosis in 3 

patients with HF, incorporating variables such as NYHA class and prescription of medical therapies 4 

with age and kidney function24. The Seattle model has been shown to be significantly more accurate 5 

in the stratification of the risk of non-sudden death compared with SCD in populations with ischemic 6 

and non-ischemic HF25. For example, patients with a score of 3 and 4, compared with those with a 7 

score of 0, have a relative risk of HF death of 38.4 and 87.6, and a relative risk of SCD of only 6.5 and 8 

6.5, respectively. This highlights that although the risk of SCD rises with worsening HF, the rise in the 9 

risk of HF death is even greater, reducing chances of gaining quality-adjusted life years from ICD 10 

therapy. While similar models have been developed for the prediction of SCD in HF populations and 11 

the wider general population, these are limited by an inability to reliably discriminate between the 12 

risk of SCD and non-sudden death and therefore have limited clinical utility26-28. 13 

There is growing interest in the use of circulating biomarkers of myocardial stress and fibrosis such 14 

as natriuretic peptides, troponin, galectin-3 and soluble ST2 to predict prognosis. However, these 15 

biomarkers generally reflect the severity of cardiac dysfunction rather the specific risk of SCD. They 16 

may be used to identify patients who are unlikely to benefit from ICD therapy due to a high-risk of 17 

death due to progression of HF. In pre-specified sub-group analysis of DANISH, patients with a NT-18 

pro-BNP>1177pg/ml randomized to ICD therapy had similar all-cause mortality to those in the 19 

control arm (HR 0.99; 95% CI: 0.73-1.36; p=0.96), while mortality was lower in those assigned to an 20 

ICD when NT-pro-BNP was <1177pg/ml (HR 0.59; 95% CI: 0.38-0.91; p=0.02). Similarly, Ahmad and 21 

colleagues demonstrated a stronger association between NT-pro-BNP, galectin-3 and soluble ST2 22 

and HF death compared with SCD in patients with ischemic and non-ischemic HF29. In summary, 23 

biomarkers, in combination with clinical variables and prognostic scores, offer the most potential for 24 

the identification of patients with an excessively high-risk of death from competing causes, who are 25 
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thus unlikely to benefit from ICD therapy. What thresholds at which the risk of death from 1 

competing causes outweighs SCD risk and the benefit from ICD implantation becomes unlikely is not 2 

clear. 3 

 4 

Prediction of SCD Risk 5 

It is important to recognize the possible limitations of studies investigating SCD including the 6 

definition of end-points and confirmation of the exact cause of SCD. SCD is typically defined as 7 

‘unexpected death either within 1 hour of the onset of cardiac symptoms in the absence of 8 

progressive cardiac deterioration; during sleep; or within 24 hours of last being seen alive’30. Such 9 

events have a variety of causes, some of which will not be prevented by ICD therapy, such as 10 

aneurysmal rupture or intracerebral haemorrhage. Given the decline in the number of autopsies 11 

performed, the underlying cause of SCD is frequently not confirmed.  Aborted SCD commonly 12 

includes an appropriate ICD shock for ventricular arrhythmia. A proportion of these arrhythmias may 13 

terminate spontaneously and therefore not pose significant risk. Therefore, although variables may 14 

identify patients at high-risk of SCD or aborted SCD, in the absence of randomized studies, there 15 

remains doubt about whether ICD implantation will improve outcomes. 16 

 17 

 18 

Markers of Electrical Instability and SCD Risk 19 

Many studies have evaluated the ability of electrical measurements to predict the risk of SCD in 20 

DCM31. These have included 1) electrocardiogram (ECG) findings such as QRS duration, QRS 21 

fragmentation, microvolt T wave alternans (MTWA), left bundle branch block and late potentials on 22 

signal averaging; 2) markers of autonomic tone including baroreflex sensitivity, heart rate variability, 23 

heart rate turbulence; and 3) ventricular ectopy and non-sustained VT on monitoring or following 24 

programmed stimulation. The results of these, often small studies have been inconsistent and their 25 

combined utility is limited by the use of different end-points31.  26 
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A large meta-analysis combined 45 studies, including 6,088 patients with non-ischemic DCM, in an 1 

attempt to summarize existing data31. When available, arrhythmic end-points including SCD, 2 

ventricular arrhythmia or appropriate ICD discharge were used; all-cause mortality was used as an 3 

alternative when these were not available. Although inter-study reproducibility was poor for the 4 

majority of variables, the authors concluded that the most promising for the prediction of adverse 5 

events were QRS complex fragmentation (OR 6.73; 95% CI 3.85-11.76; p<0.001) and the presence of 6 

MTWA (OR 4.66; 95% CI 2.55-8.53; p<0.001). The odds ratios for the majority of the remaining 7 

parameters were between 1.5 and 3.0, suggesting lower predictive value (Table 4).  8 

While the small number of studies limits the ability to interpret the predictive ability of QRS 9 

fragmentation, a large number of studies support the potential of MTWA and a  meta-analysis of 10 

patients with non-ischemic DCM has corroborated the findings of Goldberger and colleagues32.  A 11 

study in a mixed ischemic and non-ischemic population has suggested that the presence of MTWA 12 

may be a stronger predictor of arrhythmia when present in patients taking beta-blockers (patients 13 

on beta-blockers: HR 5.39; 95% CI 2.68-10.84 p<0.001; entire population: HR 1.95; 95% CI 1.29-2.96; 14 

p=0.002)33. Others have emphasized the negative predictive value of a negative MTWA test34; 15 

however, it should be noted that even a coin toss has a high negative predictive value when the 16 

event rate is low35. Authors have proposed the use of MTWA testing to select patients with a LVEF 17 

<35% who are unlikely to benefit from ICD implantation, but this has not been validated36.   18 

 19 

Echocardiography  20 

Echocardiography is the first-line imaging investigation in the work-up of patients with DCM.  Use of 21 

echocardiography measurements to predict arrhythmic events is therefore an attractive concept. 22 

The ability of global longitudinal strain and mechanical dispersion, a measure of mechanical 23 

dyssynchrony, to predict sustained ventricular arrhythmia or SCD was investigated in 94 patients 24 

with non-ischemic DCM over 22-months by Haugaa and colleagues37. They found that both measures 25 
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independently predicted the major arrhythmic end-point (per 1% increase in strain – HR 1.26, 95% CI 1 

1.03-1.54, p=0.02; per 10ms increase in mechanical dispersion – HR 1.20, 95% CI 1.03-1.40; p=0.02). 2 

They also demonstrated that both variables had larger areas under the curve on receiver operator 3 

curve analyses for the prediction of the primary outcome compared with LVEF (area under the curve 4 

– strain: 0.82; mechanical dispersion: 0.80; LVEF: 0.72). Another study investigated 124 patients with 5 

non-ischemic DCM prior to primary prevention ICD implantation38. Longitudinal strain was 6 

independently associated with the primary end-point of appropriate ICD therapy, albeit to a modest 7 

degree (per % increase – HR 1.12; 95% CI 1.01-1.20; p=0.032). Importantly, however it appears 8 

unlikely that functional techniques, such as strain measurement, will provide adequate 9 

discrimination between the risk of SCD and death from HF.  10 

 11 

The Role of Myocardial Fibrosis in SCD Risk Stratification  12 

One of the characteristic pathological features of DCM is the formation of myocardial fibrosis, a 13 

consequence of an increase in collagen formation in the extracellular matrix and myocyte cell 14 

death39. Histological studies have demonstrated 2 forms of fibrosis, replacement and interstitial 15 

fibrosis39. Replacement fibrosis describes discrete areas of myocardial scarring that develop as a 16 

result of myocyte cell death while interstitial fibrosis is the result of expansion of the interstitium 17 

with accumulation of collagen in the absence of cell death (Figure 2)22. Fibrosis is the result of 18 

activation of the renin-angiotension-aldosterone system and the beta-adrenergic axis, which occur 19 

as part of the HF syndrome40. Other environmental insults, implicated in the etiology of DCM, such 20 

as chemotherapy and viral myocarditis, play a role through the activation of inflammatory networks 21 

and production of reactive oxygen species40. The end result is the activation of myofibroblasts, the 22 

production of collagen and myocyte cell death39, 40.  23 

Fibrosis is thought to provide a substrate for ventricular arrhythmia. An electrical mapping study in 24 

patients with DCM demonstrated that only those with replacement fibrosis, identified by late 25 
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gadolinium-enhanced cardiovascular magnetic resonance imaging (LGE-CMR), had inducible VT or a 1 

history of sustained VT41. Moreover, in patients with inducible VT, the major component was 2 

mapped to the area of replacement fibrosis.  Mapping studies have also linked the presence of 3 

fibrosis with fractionated electrograms, slowed conduction and conduction block that have been 4 

associated with VT and VF42, 43. The gray-zone between areas of fibrosis and surviving myocardium is 5 

thought to act as the nidus for re-entry wavefronts in patients with IHD and similar mechanisms may 6 

account for 80% of VT in DCM44.  7 

 8 

Cardiovascular Magnetic Resonance, Replacement Mid-wall Fibrosis and Outcome Prediction 9 

LGE-CMR imaging has demonstrated that replacement fibrosis occurs in around 30% of patients with 10 

DCM. This frequently occurs in a linear mid-wall distribution and has been validated with histology 11 

(Figure 2)45, 46. Multiple studies have demonstrated an association between mid-wall fibrosis (MWF) 12 

on LGE-CMR imaging and SCD events in patients with DCM (Table 2)45-53.  13 

The largest study followed 472 patients with non-ischemic DCM of all severities for a median of 5.3 14 

years45. Similar to other studies, 30.0% of patients had MWF48, 49. Overall, 29.6% of patients with 15 

MWF reached the arrhythmia composite of SCD or aborted SCD (defined as an appropriate ICD shock 16 

or a non-fatal episode of VF or spontaneous VT causing hemodynamic compromise and requiring 17 

cardioversion), compared with 7.0% of those without (HR 5.24; 95% CI 3.15-8.72; p<0.001). 18 

Additionally, 26.8% of patients with MWF died compared with 10.6% of patients without (HR 2.96; 19 

95% CI 1.87-4.69; p<0.01). After adjustment for other prognostic factors, the presence and extent of 20 

MWF predicted the arrhythmia composite (presence of MWF – HR 4.61; 95% CI 2.75-7.74; p<0.001; 21 

per 1% increase – HR 1.15; 9% CI 1.10-1.20;p<0.001) and all-cause mortality (presence of MWF – HR 22 

2.43; 95% CI 1.50-3.92; p<0.001; per 1% increase in extent – HR 1.11; 9% CI 1.06-1.16;p<0.001). 23 

There was also an association between the presence of MWF and HF events (HR 1.62; 95% CI 1.00-24 

2.61; p=0.049), although this was notably weaker than that with SCD events. The addition of MWF to 25 
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LVEF significantly improved risk re-classification for SCD/aborted SCD, with 29% of patients being 1 

correctly re-classified after the addition of MWF to a model including LVEF. 2 

Another study followed 162 non-ischemic DCM patients who underwent LGE-CMR imaging prior to 3 

planned ICD implantation for a median of 29 months47. This selected cohort had a higher incidence 4 

of MWF, occurring in 50.0%. Following adjustment, the presence and extent of MWF were the 5 

strongest predictors of the primary end-point, which was a composite of cardiovascular death and 6 

ventricular arrhythmia terminated by ATP or ICD shock (presence of MWF: HR 6.21; 95% CI 1.73-7 

22.2; p<0.0004; per % increase – HR 1.16; 95% CI 1.07-1.21; p<0.0001). The presence and extent of 8 

MWF also predicted the secondary arrhythmic outcome including ICD intervention (appropriate 9 

shock and ATP) and SCD (presence of MWF: HR 14.0; 95% CI 4.39-45.65; p<0.0001; per % increase – 10 

HR 1.17; 95%CI 1.12-1.22; p<0.0001). The study demonstrated that LGE quantification using the full-11 

width at half maximum method and the >2 standard deviation approach was prognostic. LGE 12 

occupying >6.1% of the myocardium by the >2 standard deviation method or >4.4% by the full width 13 

at half maximum method provided the highest sensitivity and specificity for predicting the primary 14 

end-point, with area under the curve values of 0.92 and 0.93, respectively. Data, however, are yet to 15 

be produced for the prediction of hard SCD events alone. Variability in methods of quantification 16 

highlights the need for a single standardized approach. Moreover, the subjectivity inherent in many 17 

techniques suggests that caution should be exercised in applying specific cut-off values. A binary 18 

approach based on the presence or absence of MWF is currently the most robust method, with 19 

MWF defined as an area of LGE clearly visible in two phase-encoding directions and two orthogonal 20 

planes, extending beyond the ventricular insertion sites. 21 

Three large meta-analyses, including 1488, 1443, 2948 patients with non-ischemic DCM, confirmed 22 

the above findings48, 49, 53. In the pooled analysis of Kuruvilla et al., patients with MWF had 23 

significantly higher rates of SCD and aborted SCD (OR 5.32; 95% CI 3.45-8.20; p<0.00001) and greater 24 

all-cause mortality (OR 3.27; 95% CI 1.94-5.51; p<0.00001)48. Similarly, Diesetori and colleagues 25 



Halliday et al; DCM risk stratification; V2 

Page 14 of 48 

 

demonstrated that the presence of MWF predicted an arrhythmic composite end-point including 1 

SCD, successful resuscitation from VF, sustained VT and appropriate ICD therapy (ATP and 2 

appropriate shocks) (OR 6.27; 95% 4.15-9.47; p<0.000001)49. More recently, Di Marco, et al. 3 

reported an association between the presence of LGE and the composite end-point of sustained 4 

ventricular arrhythmia, appropriate ICD therapy and SCD (OR 4.3; 95% CI 3.3-5.8; p<0.001)53. 5 

Interestingly, this association was observed in studies with a mean LVEF >35% (OR 5.2; 95% CI 3.4-6 

7.9; p<0.001) and those with a mean LVEF <35% (OR 4.2; 95% CI 2.4-7.2; p<0.001).  7 

A recent study performed exclusively in patients with non-ischemic DCM and a LVEF >40% suggests 8 

that LGE-CMR imaging identifies patients with less severe left ventricular impairment at high-risk of 9 

SCD. Those with MWF had significantly higher rates of SCD and aborted SCD (defined as an 10 

appropriate ICD shock, a non-fatal episode of VF or VT causing hemodynamic compromise and 11 

requiring cardioversion) compared with those without (HR 9.2; 95% CI 3.9-21.8; p<0.0001) and this 12 

remained similar after adjusting for other prognostic variables (HR 9.3; 95% CI 3.9-22.3; p<0.0001)54 . 13 

The absolute event rate in patients with MWF was similar to that in patients with a LVEF <35% from 14 

similar previous studies45. Importantly, the risk of death from competing causes in patients with 15 

MWF and mild or moderate reductions in LVEF was low. However, further studies are needed to 16 

establish whether patients with LVEF >35% and high-risk features benefit from ICD therapy55. 17 

Although promising, there are currently no data from randomized studies confirming that patients 18 

with MWF benefit from ICD implantation, and it remains unclear whether the addition of LGE to 19 

LVEF will sufficiently improve risk stratification or whether additional variables will be required56. 20 

Pending randomized studies, the presence or absence of MWF on LGE-CMR imaging may be used to 21 

aid decision-making with regards to ICD implantation in borderline cases. Further work is required to 22 

investigate the linearity of the relationship between the extent of MWF and SCD events, and 23 

whether there are reproducible amounts of MWF that reliably predict hard adverse arrhythmic 24 

events with the most accuracy.  25 
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 1 

The Role of Interstitial Fibrosis and the Potential of T1-mapping 2 

Interstitial fibrosis is an almost universal finding in DCM39.  Although less comprehensive than the 3 

work on replacement fibrosis, there is some evidence to suggest that interstitial fibrosis is involved 4 

in the maintenance of re-entry circuits and in the generation of focal tachycardias57. Non-invasive 5 

measurement of interstitial fibrosis therefore offers potential for risk stratification40.  T1-mapping is 6 

a CMR technique that involves the direct quantification of T1 relaxation times in each myocardial 7 

voxel through the acquisition of images throughout the recovery of longitudinal magnetization. An 8 

image is subsequently constructed in which each voxel’s signal intensity corresponds to the T1 time 9 

(Figure 3). This is performed before and after the administration of gadolinium, a contrast agent that 10 

accumulates in the extracellular space and shortens T1 relaxation.  Using pre- and post-contrast T1 11 

values of the myocardium and blood pool and a hematocrit measurement, the myocardial 12 

extracellular volume (ECV) can be calculated by estimating the amount of contrast in the 13 

extracellular compartment relative to the blood pool in steady state58. ECV expansion occurs in a 14 

variety of diseases as a result of edema, protein deposition or interstitial fibrosis59.  Native (pre-15 

contrast) T1 times and ECV fraction correlate with the amount of interstitial fibrosis in a range of 16 

diseases including DCM58, 60. Aus dem Siepen and colleagues demonstrated good correlation 17 

between ECV and the collagen volume fraction on myocardial biopsy in patients with varying 18 

severities of non-ischemic DCM (r=0.85)64. Another study demonstrated strong correlation between 19 

ECV on pre-transplant CMR and collagen volume fraction on 96 post-transplant tissue samples taken 20 

from 16 segments of 6 patients’ explanted hearts (r=0.75) 61. Additionally, the authors demonstrated 21 

significantly higher ECV values in myocardial segments free of LGE in patients pre-transplant 22 

compared to ECV values in healthy controls (41.4 +/- 5.0% vs 25.5% +/- 2.6%; p<0.001)61. This 23 

suggests that it may be possible to measure interstitial fibrosis non-invasively. Early work has 24 

investigated the predictive value of T1-mapping in risk prediction62, 63.  25 
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The largest study in 637 patients with non-ischemic DCM demonstrated a significant association 1 

between all-cause mortality and native T1 values (per 10ms - HR 1.10; 95% CI 1.05-1.13; p<0.001) 2 

and the extent of LGE (per % – HR 1.09; 95% CI 1.02-1.16; p=0.009) 63. Chen and colleagues 3 

investigated 130 patients with both non-ischemic and ischemic HF referred for primary prevention 4 

ICD implantation62. Elevated native T1-values (per 10ms – HR 1.10; 95% CI 1.04-1.16; p=0.001), the 5 

extent of MWF (per % – HR 1.10; 95% CI 1.04-1.15; p<0.001) and a secondary prevention indication 6 

(HR 1.70; 95% CI 1.01-1.91; p=0.048) predicted the composite of appropriate ICD therapy (shock or 7 

ATP) and sustained ventricular arrhythmia. ECV, however, did not predict the end-point (HR 1.01; 8 

95% CI 0.94-1.11). These studies illustrate a potential role for T1-mapping in risk stratification.  9 

However, further studies are required to clarify whether one measure is superior to the other. The 10 

crucial question is whether T1-mapping provides additional value to LGE, which already forms part 11 

of a routine scan. 12 

An alternative approach is the use of biomarkers of collagen turnover as a surrogate for myocardial 13 

fibrosis64. Correlation between serum procollagen type I carboxy-terminal peptide (PICP) and fibrosis 14 

on myocardial biopsy has been reported in hypertensive patients and an association between 15 

galectin-3 and MWF on LGE-CMR in non-ischemic DCM patients has been demonstrated65, 66. Current 16 

studies investigating collagen biomarkers are limited by small numbers of patients and outcome 17 

events and therefore no conclusions can be drawn about their potential role in SCD risk 18 

assessment67. More research is required.  19 

 20 

Cardiac MIBG imaging 21 

Autonomic dysfunction has long been associated with ventricular arrhythmogenesis68. Variable 22 

sympathetic activation of the myocardium results in heterogeneities in conduction velocities and 23 

refractory periods, creating a pro-arrhythmic environment69. Although not part of routine practice, it 24 

is possible to detect cardiac autonomic dysfunction using 123-metaiodobenzylguanidine (MIBG) 25 
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scintigraphy. Parameters indicating autonomic dysfunction include elevated tracer washout rates, 1 

abnormal ratio of uptake between the heart and mediastinum and large myocardial tracer defects.  2 

Several studies have supported the ability of these parameters to predict SCD and adverse 3 

arrhythmic events in patients with DCM and broader HF populations (Table 3) 70-75. Merlet and 4 

colleagues performed a study evaluating exclusively patients with non-ischemic DCM70. In 5 

multivariable analysis, they found that radionuclide-determined LVEF (p=0.02) and low 6 

heart:mediastinum (H:M) ratio (p<0.0001) predicted all-cause mortality while low H:M ratio 7 

predicted SCD (p=0.0015). The AdreView Myocardial Imaging for Risk Evaluation in Heart Failure 8 

(ADMIRE-HF) study demonstrated that in patients with ischemic and non-ischemic HF, a H:M ratio 9 

≥1.6 was associated with a lower risk of adverse arrhythmic events (defined as spontaneous 10 

sustained VT, resuscitated cardiac arrest or appropriate ICD therapy including ATP; 3.5% vs 10.4%; 11 

p<0.01) and a lower incidence of the primary composite end-point that included arrhythmic events, 12 

NYHA progression and cardiovascular death (HR 0.36; 95% CI 0.17-0.75; p=0.006)72. Survival 13 

modelling of patients without an ICD at enrollment demonstrated that H:M ratio added incremental 14 

prognostic value and improved net re-classification, however it did not identify those who had 15 

improved survival with ICD implantation69, 76. A sub-study of ADMIRE-HF assessed the value of 16 

summed rest score on single photon emission computed tomography, a marker of myocardial scar, 17 

in risk stratifying 317 patients with non-ischemic HF71. Overall, there were 22 arrhythmic events, 18 

defined as appropriate ICD therapy (ATP or shock), resuscitated cardiac arrest and sustained VT, over 19 

a median of 17 months. On univariable analysis, H:M ratio <1.6 and a summed rest score >8 were 20 

associated with the end-point. Multivariable analysis performed in patients with a H:M ratio<1.6 21 

demonstrated that a summed rest score of >8 was the only independent predictor of the end-point. 22 

These studies support the hypothesis linking autonomic dysfunction to increased rates of SCD. 23 

Further larger studies confirming the findings in patients with DCM and the measurements with the 24 

best sensitivity and specificity for the prediction of SCD are required.   25 
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 7 

Unravelling the Complex Genetic Frameworks of DCM and Sudden Death 8 

The Genetic Basis of DCM 9 

Over the last 20 years, as a result of advances in sequencing, literature on the genetics of DCM has 10 

increased exponentially. Familial DCM is defined as idiopathic DCM in at least 2 closely related 11 

relatives and is thought to account for 25-50% of idiopathic DCM1.  In familial DCM, a genetic cause 12 

is identified in 30-40% of cases with over 100 single genes linked to the disease (Figure 3)78, 79.  The 13 

majority of mutations occur in autosomal genes, with a small number of X-linked and mitochondrial 14 

mutations identified. Most are unique to the family in which they were discovered and are termed 15 

‘private mutations’2.  Inheritance has long been considered Mendelian and therefore thought 16 

secondary to a single potent genetic mutation, with segregation in affected family members, 17 

crossing generations. However, cases with reduced penetrance, variable expressivity and multiple 18 

mutations are not infrequent.  Reduced and age-dependent penetrance and variable expressivity 19 

illustrate the importance of environmental modifiers, such as viral triggers or excess alcohol 20 

consumption, which may unmask the phenotype (Figure 3)2. A study has demonstrated a similar 21 

incidence of genetic variants in women with peripartum cardiomyopathy compared to patients with 22 

idiopathic DCM, suggesting a shared genetic etiology across the spectrum of DCM, unmasked by 23 

different insults80. 24 

The diverse range of genes thought to cause DCM, encoding for a wide range of proteins with 25 

different functions, not only adds to the challenges of variant interpretation but also creates them in 26 
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the search for new mutations3. The most common mutations occur in genes encoding sarcomeric 1 

proteins and also in genes related to the nuclear envelope, the cytoskeleton and Z-band proteins.  2 

With the growth in sequencing, the identification of rare variants that contribute to the disease 3 

phenotype and carry adverse arrhythmic risk is becoming foreseeable.  Considering that DCM is 4 

often diagnosed late and occasionally at post-mortem, genetic screening enabling early diagnosis 5 

and risk stratification is attractive. We discuss our understanding of the risk associated with specific 6 

mutations and work aimed at identifying genetic modifiers of risk.  7 

 8 

DCM Genetics and SCD Risk 9 

Despite advances, there are currently only specific instances when genetic results influence risk 10 

stratification. The most common circumstance is the identification of a pathogenic mutation in the 11 

LMNA gene, which encodes both the Lamin A and C proteins, part of the nuclear envelope. More 12 

than 200 LMNA mutations have been associated with the development of DCM with variable 13 

involvement of skeletal muscle79. The cardiac phenotype is associated with premature conduction 14 

system disease and atrial and ventricular arrhythmia. The largest study on lamin cardiomyopathy to 15 

date followed 94 patients with LMNA mutations over a median of 57 months82. Sixty patients had 16 

phenotypic evidence of disease at enrollment and all those who reached 60 years of age developed 17 

the phenotype. Mortality in patients with a positive phenotype was 40% at 5 years, while 45% 18 

suffered SCD or aborted SCD. This confirmed LMNA cardiomyopathy to be a malignant and 19 

penetrant condition with worse outcomes compared with other forms of DCM.  This has been 20 

replicated in other studies and supports the view that ICDs should be implanted earlier than current 21 

guidelines recommend in these patients and in all those requiring pacemaker implantation82, 83. 22 

Truncating mutations of the TTN gene, which encodes the giant titin protein, are thought to be the 23 

most common causative mutations, occurring in 25% cases of FDCM, 18% of sporadic cases and <1% 24 

of controls84. Two molecules of titin span the length of the sarcomere and act to generate and 25 
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regulate contractile force 85. Titin has an important role in modulating responses to insults and loads 1 

and truncating mutations appear to result in susceptibility to developing contractile impairment86. 2 

Herman and colleagues studied 312 patients with DCM and demonstrated similar rates of adverse 3 

outcomes, in patients with truncating mutations in TTN compared to those without87. More recently, 4 

Jansweijer, et al. demonstrated that DCM patients with truncating variants in TTN had a milder 5 

phenotype of disease at baseline and higher rates of reverse remodelling compared with patients 6 

with LMNA mutations and those without a variant identified88. This suggests that DCM related to 7 

TTN may be a more treatable form. Larger studies investigating SCD end-points are required. 8 

Studies in patients with other specific mutations have been smaller. A study in 436 men with DCM 9 

identified dystrophin variants in 3489. Over 60 months, patients with dystrophin mutations had high 10 

rates of HF events with 23% undergoing transplantation and 26% dying from HF. Conversely, 11 

however, they demonstrated low incidences of major arrhythmic events with no patients suffering 12 

SCD or life-threatening ventricular arrhythmia. Although small, this study suggests that patients with 13 

dystrophin variants should be streamlined to advanced HF therapies rather than ICD implantation.  14 

Merlo and colleagues studied 179 families with DCM and compared patients with rare sarcomeric 15 

gene variants to genotype negative patients90. Overall, 52 patients had rare variants in TTN, MYH6, 16 

MYH7, TNNT2 and MYBC and although these patients had a higher LVEF at baseline, after 50 years of 17 

age, rates of adverse outcomes including ventricular arrhythmia, death and cardiac transplantation 18 

were higher.  Other studies have suggested that mutations in TNNT2, may predispose to ventricular 19 

arrhythmias independent of structural changes and this may be mediated through alterations in 20 

myocyte calcium sensitivity91, 92. A study has demonstrated reduced arrhythmic susceptibility in mice 21 

with TNNT2 mutations treated with a calcium de-sensitizer92.   22 

A founder mutation in the PLN gene, which encodes phospholamban, a protein with an important 23 

role in calcium homeostasis, has been associated with profound arrhythmic tendencies in patients 24 

with DCM and also those without structural phenotypes93. Van Rijsingen and colleagues studied 403 25 
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carriers of a specific mutation in the PLN gene, 21% of whom met diagnostic criteria for DCM93. Over 1 

42 months, 19% had malignant ventricular arrhythmia defined as SCD, resuscitated cardiac arrest or 2 

appropriate ICD intervention. In patients with an LVEF <45%, the incidence of ventricular arrhythmia 3 

rose to 39%.  These studies suggest that mutations in genes controlling calcium handling, also known 4 

to cause DCM, may influence arrhythmic risk independent of structural changes. This provides 5 

opportunity for the development of therapeutics targeting specific mechanisms of 6 

arrhythmogenesis. 7 

Recently, truncating mutations in FLNC, a gene which encodes filamin, a protein that attaches 8 

membrane proteins to the cystokeleton, have been associated with an arrhythmogenic phenotype, 9 

similar to that observed with desmin mutations94. In 2,877 patients with inherited cardiovascular 10 

disease, truncating mutations in FLNC were identified in 28 probands and 54 relatives94. Overall, 97% 11 

of carriers over the age of 40 years had phenotypic evidence of the disease characterised by LV 12 

dilatation, reduced LVEF and myocardial fibrosis. Twelve carriers suffered SCD during the study, 13 

conducted over 3.5 years, and there was a history of SCD in 28 relatives of carriers without genetic 14 

data. Altogether, 21 of 28 evaluated families had a history of SCD. This suggests that truncating 15 

mutations in FLNC are associated with a high incidence of SCD. 16 

In conclusion, large longitudinal studies investigating specific SCD-focused end-points in patients 17 

with DCM and specific rare variants are required to better inform decision-making. Currently, it 18 

appears that, in addition to carriers of LMNA mutations, carriers of a specific PLN or truncating FLNC 19 

mutations should be stratified at higher risk of SCD.   20 

 21 

Genome Wide Association Studies - DCM and SCD Risk 22 

Given the variable penetrance and expressivity seen in DCM, the importance of genetic (and 23 

environmental) modifiers has widely been accepted. Genetic susceptibility to SCD has also been 24 

recognized with the incidence of VF in patients having an acute myocardial infarction strongly 25 
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associated with a family history of SCD, independently of other traditional IHD disease parameters77. 1 

Based on these observations, genome wide association studies (GWAS) have attempted to identify 2 

novel susceptibility loci that modify an individual’s risk of developing DCM and suffering SCD.  These 3 

types of studies mostly identify single nucleotide polymorphisms (SNPs) in non-coding DNA that are 4 

thought to affect gene expression.  5 

A small number of loci associated with the development of DCM have been reported95. These 6 

include a SNP within the major histocompatibility complex on chromosome 6, which has also been 7 

linked to inflammatory diseases such as psoriasis95. The authors use this to support the hypothesis 8 

that a genetically-driven inflammatory mechanism underlies the disease in some patients.   9 

GWAS performed in large populations of SCD patients have identified several potential loci that are 10 

associated with an individual’s risk, albeit to a modest extent96-98. Perhaps the most promising are 11 

those associated with the BAZ2B and CXADR genes, the latter of which has been linked with the 12 

development of DCM and myocarditis96, 98. Other groups have identified SNPs that modify electrical 13 

parameters, such as QRS and QT intervals, known as endophenotypes, which are known to influence 14 

arrhythmic risk99. Genetic variants known to modify endophenotypes have been linked with 15 

increased arrhythmic risk in other diseases and may have similar effects in DCM99.   16 

In summary, the scope of genetics to identify common variants that may modify SCD risk is great. 17 

However, advanced work in coronary disease has emphasized the small incremental value of each 18 

variant in isolation, and the possible need for the effects of even hundreds of variants to be 19 

combined into a model to provide a clinically useful estimation of risk in a heterogeneous disease100.   20 

 21 

Conclusion 22 

Existing guidelines lack sensitivity and specificity for the selection of patients with DCM for primary 23 

prevention ICD implantation. These require refinement to produce a more personalized and precise 24 

approach, with the aim of improving outcomes and cost-efficiency. Incorporating methods that 25 
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identify patients at particularly high-risk of death from competing causes, who are unlikely to benefit 1 

from ICD therapy, will form an important part of this process. There is growing evidence that 2 

characteristics, other than LVEF, may be used to identify those at increased risk of SCD. Considering 3 

the multifactorial basis of ventricular arrhythmogenesis in DCM, it appears likely that an algorithm 4 

including multiple tests, which detect different pathophysiological processes involved in arrhythmia 5 

generation, may be required. LGE-CMR imaging is a routinely employed technique in the 6 

investigation of DCM, while MTWA analysis is an inexpensive additional test that is relatively simple 7 

to perform. Nuclear imaging to detect autonomic dysfunction is promising, however its use within 8 

clinical practice must increase. Although a great deal of work is needed to integrate genetic risk 9 

prediction into clinical practice, we believe the identification of high-risk rare variants, in addition to 10 

LMNA, will play an increasing role.   11 

Assimilating our current understanding, we have proposed an algorithm, based on current evidence 12 

(Figure 4A) to consider for risk stratification of patients with DCM, and a further template that may 13 

be used in the future (Figure 4B).  Where randomized trials investigating the effects of ICD 14 

implantation are unavailable, such as in patients identified to have a high-risk of SCD with a LVEF 15 

>35%, we have taken a pragmatic approach recommending evaluation on a case-by-case basis in a 16 

multidisciplinary setting. Multi-center, prospective registries incorporating CMR imaging, genetic, 17 

biomarker and electrophysiological data in unselected DCM cohorts should be the next step in the 18 

pursuit of improved risk stratification, with the aim of creating a multivariable risk score with 19 

improved discrimination. Predicted annual risks of SCD and non-sudden death at which patients are 20 

most likely to gain cost-effective benefit from ICD therapy may be confirmed taking into account 21 

pre-existing clinical trial data. This should be followed by randomized trials investigating the effects 22 

of interventions, including ICD implantation, in patients deemed to be at high-risk of SCD and 23 

without an excessive risk of death from competing causes.   24 
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Table 1. Randomised trials investigating the benefit of ICD implantation for the primary prevention 

of sudden cardiac death in patients with dilated cardiomyopathy. 

Study N Inclusion criteria Intervention Follow-up 
(median) 

All-cause mortality SCD 

DANISH7 1116 LVEF<35% 
NYHA 2-3 (4 if CRT)  
NT-pro-BNP>200pg/ml 

ICD vs OMT 68 months I: 21.6%, C: 23.4% 
HR 0.87; 95% CI 0.68-1.12  
p=0.28 

I: 4.3%, C: 8.2% 
HR 0.50; 95% CI 0.31-0.82 
p=0.005 

SCDHeFT 
(DCM 
cohort)3 

1211 LVEF<35% 
NYHA 2-3 

ICD vs  
OMT vs amio 

46 months I: 21.4%, C: 27.9% ( 5 yrs) 
HR 0.73; 95% CI 0.50-1.07 
p=0.06 

 

DEFINITE4 458 LVEF<36% 
NYHA 1-3 
NSVT or PVCs 

ICD vs OMT 29 months I: 12.2%, C: 17.4% 
HR 0.65; 95% CI 0.40-1.06 
p=0.08 

I: 1.3%, C:6.1% 
HR 0.20; 95% CI 0.06-0.71 
P=0.006 

AMIOVIRT6 103 LVEF≤35% 
NYHA 1-3 
NSVT 

ICD vs amio 
 

24 months Terminated early  

CAT5 104 LVEF<30% 
NYHA 2-3 

ICD vs OMT 23 months Terminated early  

(amio: amiodarone, C: optimal medical therapy arm, CI confidence interval, CRT – cardiac 

resynchronisation therapy, HR – hazard ratio,  I: implantable cardioverter defibrillator therapy arm, 

ICD – implantable cardioverter defibrillator, LVEF – left ventricular ejection fraction, NYHA – New 

York Heart Association, NT-pro-BNP – N-terminal-pro-peptide brain natriuretic peptide, NSVT – non-

sustained ventricular tachycardia, PVCs – premature ventricular complexes, OMT – optimal medical 

therapy; SCD – sudden cardiac death) 
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Table 2. Studies investigating the impact of mid-wall fibrosis on major arrhythmic outcomes in 

DCM. 

Authors N 
(MWF) 

Inclusion 
criteria 

Arrhythmic  
end-point 

Follow-up 
(median) 

Occurrence of end-point as per 
presence of MWF 

Assomull et al 
(2006)46  

101 
(35) 

Consecutive 
patients referred 
for CMR 

SCD* and sustained 
VT 

22 Total events: 7 
Event rate: MWF: 14.3%; no MWF 3.3% 
HR 5.2 (95% CI 1.0-26.9; p=0.03) 

Leyva et al 
(2012) 52 

97 
(25) 

Patients referred 
for CRT 

SCD* 35 Total events: 3 
Event rate: MWF: 15.0%; no MWF 0% 
HR 31.0 (95% CI 1.5-627.8; p=0.013) 

Gulati et al 
(2013) 45 

472 
(142) 

Consecutive 
patients referred 
for CMR 

SCD* and aborted 

SCDⱡ   
(excluding ATP) 

64 Total events 65 
Event rate: MWF: 29.6%; no MWF 7.0% 
HR  5.24 (95% CI 3.15-8.72; p<0.001) 

Neilan et al 
(2013) 47 

162 
(81) 

Consecutive 
patients referred 
for CMR 

SCD* and aborted 

SCDⱡ   
(including ATP) 

29 Total events: 37 
Event rate: MWF: 41.9%; no MWF 3.7% 
HR 14.0 (95%CI 4.39:45.65; p<0.0001) 

Perazzolo-
Marra et al 
(2014) 51 

137 
(76) 

Consecutive 
patients  

SCD* and aborted 

SCDⱡ   
(including ATP) 

36 Total events: 22 
Event rate: MWF: 22.3%; no MWF 8.2% 
HR 4.17 (95% CI 1.56-11.2; p=0.005) 

Masci et al 
(2014) 50 

228 
(61) 

Patients with 
DCM without a 
history of HF 

Aborted SCDⱡ   
(including ATP) 

23 Total events: 8 
Event rate: MWF: 9.8%; no MWF 1.2% 
HR 8.31 (95%CI 1.66:41.55; p=0.01) 

(*witnessed cardiac arrest, death within 1 hour after onset of symptoms or unexpected, unwitnessed 

death in a patient known to have been well 24 hours previously; ⱡ sustained VT, resuscitated cardiac 

arrest, appropriate ICD intervention; ATP – antitachycardia pacing, CI - confidence interval, DCM – 

dilated cardiomyopathy, HF- heart failure, HR – hazard ratio, PVCs – premature ventricular 

complexes, OMT – optimal medical therapy; SCD – sudden cardiac death, VT –ventricular 

tachycardia) 
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Table 3. Studies investigating the use of 123-metaiodobenzylguanidine scintigraphy for the 

prediction of adverse arrhythmic events in patients with heart failure. 

Study N 
(DCM) 

Inclusion 
criteria 

Follow-
up 
(median) 

End-point Variable Results 

Merlet et al 
(1999)70  

112 
(112) 

LVEF<40% 
NYHA 2-4 

27 months SCD₸ H/M ratio 
(continuous 
variable) 

Low H/M predicted SCD; 
p=0.0015 
(HR/CIs not quoted) 

Sood et al 
(2013) 71 

317 
(317) 

LVEF<35% 
NYHA 2-3 

17 months Arrhythmic 
event* 

SRS>8 in pts 
with H/M<1.6 

HR 3.3 
95% CI 1.1:9.8 
P=0.032 

ADMIRE-HF 
(2010)72  

961 
(327) 

LVEF<35% 
NYHA 2-3 

17 months Arrhythmic 
event* 

H/M≥1.60 HR 0.37  
95% CI: 0.16:0.85 
P=0.020 

Boogers et al 
(2010)73  

116 
(30) 

Referred for 
ICD 

23 months Appropriate ICD 
therapyⱡ 

Late defect 
score >26 

HR 12.81 
95% CI: 3.01-54.50 
P<0.01 

Tamaki et al 
(2009)74  

106 
(51) 

LVEF<40% 
NYHA 1-3 

65 months SCD₸ Abnormal WR HR 4.79 
95% CI 1.55-14.76 
P=0.0064 

Kioka et al 
(2007)75  

97 
(46) 

LVEF<40% 
NYHA 1-3 

65 months SCD₸ Abnormal WR HR 6.13 
95% CI 1.53-24.5 
P<0.05 

(*sustained VT, resuscitated cardiac arrest, appropriate ICD shock or ATP, ⱡ appropriate ICD shock or 

ATP; ₸ witnessed cardiac arrest, death within 1 hour after onset of symptoms or unexpected, 

unwitnessed death in a patient known to have been well 24 hours previously; CI confidence interval, 

H/M – heart:mediastinal ratio; HR – hazard ratio,  ICD – implantable cardioverter defibrillator, LVEF – 

left ventricular ejection fraction, NYHA – New York Heart Association, SCD – sudden cardiac death; 

WR – washout rate) 
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Table 4. Electrophysiological parameters and their ability to predict adverse arrhythmic events 

Category Parameter Studies Events n (%) Odds ratios  
(95% CI) 

PPV  
(%) 

NPV 
(%) 

P value 

Autonomic Baroreflex  
sensitivity 

2 48/359 (13.4) 1.98 (0.60-6.59) 16.3 89.9 0.23 

 Heart rate 
turbulence 

3 66/434 (15.2) 2.57 (0.64-10.36) 22.1 88.1 0.16 

 Heart rate 
variability 

4 83/630 (13.2) 1.72 (0.80-3.73) 16.9 89.7 0.13 

Surface 
electrical  

QRS duration 
& LBBB 

10 262/1797 (14.6) 1.51 (1.13-2.01) 18.5 87.6 0.01 

 Fragmented 
QRS 

2 65/652 (10.0) 6.73 (3.85-11.76) 24.0 94.8 <0.001 

 Positive 
SAECG 

10 152/1119 (13.6) 2.11 (1.18-3.78) 18.9 89.5 0.017 

 T-wave 
alternans 

12 177/1631 (10.9) 4.66 (2.55-8.53) 14.8 97.0 <0.001 

 QRS-T angle 1 97/455 (21.3) 2.01 (1.22-3.31) 25.4 85.5 0.006 

Arrhythmia Positive EPS 15 146/936 (15.6) 2.49 (1.40-4.40) 29.2 86.9 0.004 

 Non-
sustained VT 

18 403/2746 (14.7) 2.92 (2.17-3.93) 20.7 90.3 <0.001 

Figures adapted from31 (ECG – electrocardiogram, EPS – electrophysiological study, LBBB – left 

bundle branch block, NPV – negative predictive value, PPV positive predictive value, VT – ventricular 

tachycardia). 
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Figure Legends 

Figure 1. Flow chart of the techniques discussed in the article, the disease mechanisms and 

determinant of outcome they detect or investigate and the mode of death they help risk stratify.  

Figure 2. (A) Late gadolinium enhancement cardiovascular magnetic resonance image of a mid-

ventricular short-axis slice in  a healthy control; (B) Native T1 map of a mid-ventricular short-axis slice 

in a healthy control with a mean myocardial native T1 of 1240ms; (C) Late gadolinium enhancement 

images of a mid-ventricular short axis slice in a patient with dilated cardiomyopathy demonstrating 

linear mid-wall enhancement; (D) Native T1 map of a mid-ventricular short-axis slice in a patient with 

dilated cardiomyopathy with a mean myocardial native T1 of 1375ms; Scans performed on Siemens 

Skyra 3T (Erlangen, Germany);  (E) Microscopic examination demonstrating the presence of 

replacement fibrosis (blue arrow) and peri-cellular interstitial fibrosis (yellow arrow).  

Figure 3. Figure demonstrating the acquired and genetic insults implicated in the aetiology of dilated 

cardiomyopathy followed by the common genetic mutations associated with DCM (incidence of 

mutations in cases of idiopathic DCM followed by the protein encoded by the gene2) and data on 

disease outcomes. 

 Figure 4.  A: Proposed risk stratification strategy based on current evidence on risk of sudden cardiac 

death in patients with dilated cardiomyopathy. B: Template for future risk stratification algorithm, 

based on current and future work, aimed at improving current methods. Ref – Bardy et al3. (CMR – 

cardiovascular magnetic resonance, DCM – dilated cardiomyopathy, LGE – late gadolinium 

enhancement, LVEF – left ventricular ejection fraction; MTWA - microvolt T wave alternans, OMT – 

optimal medical therapy, SCD – sudden cardiac death)  
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Figure 2 
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Figure 3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Genetic Variants in Dilated Cardiomyopathy  

 
Sarcomeric 
TTN (25%, Titin) Similar rate of adverse outcomes to genotype negative pts; higher rate of LVRR87, 88 

MYH6 (4%, α-myosin heavy chain) 
Higher rate of ventricular arrhythmia, death and transplant after the age of 50 years in 
small study; link between TNNT2 and arrhythmia through altered Ca sensitivity90, 91 

MYH 7 (4%, β-myosin heavy chain)  
TNNT 2 (3%, Troponin T) 
MYPN (3-4%, Myopalladin) No outcome data available 
TNNC1 (<1%, Troponin C) No outcome data available 
TNNI3 (<1%,  Troponin I) No outcome data available 

Nuclear Envelope 
LMNA (6%, Lamin A/C) Malignant phenotype; high rate of ventricular arrhythmia even  in early disease82, 83 

Cystoskeleton 
DMD (N/A, Dystrophin)* Low-risk of arrhythmic events; high-rate of progression to advanced HF89 
DES (<1%, Desmin) Arrhythmogenic phenotype with fibrofatty ventricular change; truncating FLNC 

mutations associated with high rate of SCD94 Filamin (NA, FLNC) 

Spliceosomal 
RBM20 (2%, RNA-binding protein 20) No outcome data available 
Ion Channels 
SCN5A (2-3%, Sodium channel protein type 5 subunit) No outcome data available 
Mitochondrial 
TAZ (NA, Tafazzin)* No outcome data available 
Sarcoplasmic reticulum 
PLN (<1%, Phospholamban) Malignant phenotype; high rate of ventricular arrhythmia and SCD events93 

Genetic susceptibility 
(Table below) 

Alcohol 
Pregnancy 

 

Chemotherapy 
Anthracyclines & 
Monoclonal Abs 

Inflammatory 

 

Infection 
Myocarditis & HIV 

 

Endocrine 
Thyroid & Phaeo 

Idiopathic 
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B DCM on OMT for 3 months 

ECG, MTWA, LGE-CMR, serum biomarkers, 
genetic screening (DCM mutatons and SCD 

risk-modifiers) 

Baseline investigations 

Calculation of annual SCD risk 

<3% 3 >3% 3 

Consider ICD taking into 
account risk of non-sudden 

death 
 

Continue follow-up & re-
calculate risk annually 


