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In recent years, various techniques have been adopted to study brain functions in vivo. In
this context, the combination of transcranial magnetic stimulation with electroencephalography
(TMS-EEG) represents a powerful tool for investigating brain states and their dynamics. TMS-EEG
allows the measurement of cortical reactivity, effective connectivity and dynamic properties of a
given cortical area or network (Komssi and Kähkönen, 2006; Miniussi and Thut, 2010; Rogasch and
Fitzgerald, 2013; Bortoletto et al., 2015). Specifically, the combination of TMS and EEG to study
oscillatory cortical activity has proven to be a valuable technique to characterize the oscillatory
activity of an area (Rosanova et al., 2009), to discriminate between normal and clinical cortical
oscillatory patterns (Ferrarelli et al., 2008; Canali et al., 2015; Pellicciari et al., 2016, 2017), to
investigate changes caused by experimental manipulative approaches (Veniero et al., 2013; Casula
et al., 2016) and to evaluate the causal role of specific oscillatory network activity during task
execution (Picazio et al., 2014).

Regarding the methods used to examine the brain dynamics triggered by a TMS pulse, many
studies have adopted a time-frequency representation (TFR) approach. At a general level, TFR
entails the spectral decomposition of the EEG signal resulting in a matrix expressing oscillatory
power as a function of time and frequency (e.g., wavelet transforms, Hilbert transform, short-term
Fourier analysis). In order to extract the frequency and amplitude of cortical oscillations over
time (i.e., the value used for the TFR), two approaches are generally used: the first one is focused
on evoked oscillatory response (EOR), while the second one accounts for the so-called induced
oscillatory response (IOR). The latter is actually better characterized by the definition of total
oscillatory response (TOR) (Roach and Mathalon, 2008; Herrmann et al., 2014). In a specific
manner, EOR represents the averaged activity across trials, both time- and phase-locked (i.e.,
evoked) to the event onset, and this equates to the spectral decomposition of event-related
potentials (Mouraux and Iannetti, 2008). Meanwhile, TOR implies that the time-frequency
decomposition is performed for each single trial and then averaged. This approach captures
phase-locked EOR but also non-phase-locked IOR activity in response to the stimulus onset.
Consequently, to isolate the IOR, the TFR of phase-locked components EOR have to be removed
from the total activity (TOR; Herrmann et al., 2014).

Considering that TMS-EEG is a rapidly growing tool to study oscillatory cortical activity, the
aim of this work is to discuss what are the elements that we should consider relatively to TFR
approaches, i.e., EOR and TOR triggered by a single TMS pulse. The idea is to promote a more
justified use of these analyses and an accurate definition of the methodology used as well as the
theoretical hypothesis underlying such use.

Regarding the EOR approach, the underlying rationale is that, by first averaging epochs in the
time-frequency domain, the signal-to-noise ratio of EEG responses that are strictly related to the
stimulus, i.e., time- and phase-locked to the TMS pulse, are increased. The results will show EEG
changes that are considered to reflect systematic brain response. Therefore, the oscillatory activity
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occurring at a consistent latency and phase will survive the
averaging process and will be seen in the TFR. Oscillations
occurring after the stimulation with a varying time and/or phase
jitter will be canceled out toward zero (Sauseng and Klimesch,
2008; Herrmann et al., 2014), assuming that non-phase locked
signals represent uncorrelated noise in respect to the event of
interest, i.e., the single TMS pulse. According to this framework
and in analogy with sensory stimuli (Klimesch et al., 2007),
when the TMS-EEG approach is used to evaluate the oscillatory
activity evoked by single TMS pulse, the TMS affects brain
activity through a transient phase alignment of the ongoing
oscillations (phase-reset; Thut et al., 2011; Kawasaki et al., 2014),
synchronizing neurons to fire at a specific frequency range,
depending on the stimulated area (Van Der Werf and Paus,
2006; Rosanova et al., 2009; Herring et al., 2015). Therefore,
TMS-triggered oscillations evaluated using an EOR approach
should reflect physiological activity that is transiently revealed
by the TMS pulse. However, one important point would be
to understand whether a single TMS pulse is imposing an
artificial activity or is instead acting by enhancing “naturally
occurring” oscillations. Thut et al. (2011) indirectly addressed
this issue and demonstrated that TMS-EORs depend on pre-
stimulus activity, whereas more recently, Herring et al. (2015)
showed that TMS oscillatory activity is generated by the same
neurophysiological generator as spontaneous oscillations. Taken
together, this evidence supports the idea that TMS-EOR is
a valuable measure for studying the causal role of neuronal
oscillations characterizing a given area.

Nevertheless, although a single TMS pulse synchronizes
pre-existing and ongoing oscillations rather than eliciting and
inducing new neural responses (Van Der Werf and Paus, 2006;
Thut et al., 2011), effects on frequencies, other than the evoked
ones, cannot be excluded. Moreover, it remains to be clarified
whether TMS mainly enhances the “natural” frequency of the
target area, allowing the cortical response to a TMS pulse
to be considered a “stereotyped” oscillation (Veniero et al.,
2011), or whether this activity is also significantly related to
the subject’s state. The latter case should be defined as a
natural-state-dependent frequency triggered by TMS pulse. To
disentangle whether and to what extent the cortical oscillatory
activity related to TMS pulse can be considered specific to
the stimulated cortex (Rosanova et al., 2009) or whether it is
more appropriately scribed to a given state, we should compare
different TFR approaches (EOR vs. TOR). Such comparison
should be performed in different subject’s state (i.e., in rest or
during a task, in wakefulness or sleep) considering with attention
the contribute of baseline activity. The baseline issue, i.e., the EEG
activity before each single TMS pulse, will not be discussed here,
even if it is a very relevant methodological and theoretical topic
(e.g., Morcom and Fletcher, 2007).

The TOR approach could be able to capture a more complex
cortical oscillatory response to TMS, comprising both EOR and
IOR. In this context, to obtain the TFR, time-frequency analysis
locked to the TMS pulse is performed on each single trial and
then averaged. Therefore, TOR captures not only the time- and
phase-locked response to TMS pulse (i.e., EOR) but also the
brain activity defined as non-stationary, including time-locked

responses with jittered latency across trials (Tallon-Baudry and
Bertrand, 1999; Mutanen et al., 2013) and not necessarily
phase-locked to the TMS pulse (i.e., IOR). At a more general
level, the TOR procedure enhances the signal-to-noise ratio
of both phase-locked and non-phase-locked event-related EEG
responses, thereby allowing the description of possible event-
related transient modulations of oscillatory activity (Mouraux
and Iannetti, 2008). Note that to obtain the IOR, the EOR must
be removed from the single-trial-based estimate, subtracting it
from TOR (Roach and Mathalon, 2008; Herrmann et al., 2014).
However, in many studies, the TOR is erroneously referred to
as the induced response, and it is not clearly stated whether any
subtraction has been performed (see Figure 1). For example, in
a study by Bergmann et al. (2012), TMS-triggered oscillations
were used to evaluate the state-dependent shift in neocortical
excitability during different phases of a neuronal oscillation.
In this work, it would have been interesting to discriminate
the specific contribute of EOR and IOR, whereas the authors
reported only the TOR, but refer to it as IOR. Nevertheless, of
particular interest in this work is the idea of subtracting the no-
TMS trials from averages derived from TMS trials to identify the
brain activity generated by the TMS pulse (after removing any
oscillatory activity associated with the endogenous activity).

If we simplistically consider that the synchronous activation
of a large number of neurons by means of a magnetic pulse
will likely cause an immediate phase reset, therefore, the EOR
might represent an ideal measure. In this context, if we are
interested in excitability changes, the EOR can detect them,
highlighting the difference in terms of oscillatory power in the
immediate response to TMS. However, using the EOR approach
might not be justifiable if we bear in mind that the brain is a
nonlinear system generating non-stationary signals that might
not necessarily be time-locked with the event (Mutanen et al.,
2013). Moreover, we must consider that even a single TMS pulse
can generate a complex cascade of events characterized by a
certain level of variability, in terms of phase and latency. A
clear example of this point comes from a study by Moliadze
et al. (2003) in which they demonstrated that depending on
the stimulation intensity, a single magnetic pulse generates
alternating episodes of facilitation and suppression as indexed
by the number of neuronal spikes. Interestingly, the duration of
the facilitation and in particular of the suppression, which last
up to a few seconds under some conditions, seem compatible
with the idea that in addition to responses immediately generated
by a phase reset, TMS might also trigger additional subsequent
endogenous oscillations mediated by metabotropic receptors or
by second-messenger systems, which would not be time-locked
with TMS.We speculate that these late and non-stationary effects
might be related and might predict TMS after-effects (Veniero
et al., 2015). In this framework, TOR or IOR may be the
best approaches for highlighting additional oscillatory responses
triggered by TMS.

Therefore, regardless of whether evoked or total oscillatory
activity is analyzed, it is worth noting that one should consider
the contribution of several factors that could affect TMS-
triggered oscillatory activity. We know that different neuronal
states determine the reactivity of the cortex to TMS (Silvanto
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FIGURE 1 | Evoked (EOR), induced (IOR) and total oscillatory response (TOR) triggered by TMS pulse. Left panel: EOR is the time-frequency representation

(TFR) of the average across all single cortical responses to TMS pulse (TEP). Right panel: TOR is the average of the TFR of each single response to TMS pulse, and

includes EOR and IOR. To isolate pure IOR, the EOR must be removed from the TOR.

et al., 2007; Paulus and Rothwell, 2016), therefore it is likely that
the relevance of one analysis method or the other (EOR vs. TOR)
depends on the context. For example, it has been suggested that
in the resting state (e.g., no sensory input), the TMS pulse mainly
acts as a phase reset, causing a precise frequency oscillation
(Moliadze et al., 2003), whereas stimulating the same area
during a specific activity might produce a more complex pattern
due to specific interactions between TMS and the brain state.
Therefore, the cortical response in terms of oscillatory activity
can change depending on the subject state (rest vs. activity), and
the EOR and TOR approaches, with their different theoretical
frameworks, can represent the two situations in different
lights.

Additionally, several single TMS pulses could represent
per se a manipulative event, able to induce neuronal activity
changes (Allen et al., 2007; Funke and Benali, 2010) by
means of additive and cumulative mechanisms, and thereby
influencing the background activity of the stimulated region
(Stamoulis et al., 2011; Fedele et al., 2016; Pellicciari et al.,

2016). Consequently, when applying several TMS pulses, a
complex additive interaction between the exogenous event and
endogenous neuronal cortical excitability is triggered (Kawasaki
et al., 2014). Therefore, it is important to understand whether and
how single TMS pulse per se affects the neuronal oscillations, and
additionally in which terms: “phase-reset” of ongoing oscillations
or “added-energy.” Then if TMS adds energy to the system,
it should be evaluated if this energy is expressed in terms of
oscillatory power increase of a specific frequency or is a temporal
modulation of cortical oscillations in others frequency bands
(Formaggio et al., 2016). In other words, it is critical to establish
whether a TMS protocol applied to probe the brain state is
actually changing the brain response by itself. This would allow
better evaluation of the impact of a manipulative approach (e.g.,
repetitive TMS) itself vs. the testing approach (e.g., single TMS
pulse).

The full potential of TMS-EEG for studying the oscillatory
cortical activity depends strongly on the understanding of
possible neural effects of single TMS pulses on baseline cortical
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activity and on the best method to adequately measure the
cortical oscillatory responses triggered by TMS. Given that
the complex interaction between TMS pulse and baseline
oscillatory activity is probably detected in different manners
by EOR and TOR approaches, we should decide and precisely
describe, based on the experimental hypothesis, why to use
one approach or the other for the analysis of TMS triggered
oscillations.
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