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ABSTRACT

This paper examines the concept of solar mirrors in a Earth orbit to provide solar farms with additional solar power

during the hours of darkness. The design of the orbit is key for the purposes of the mission: the mirror needs continuous

access to the Sun and the solar farm simultaneously. Therefore, orbits with high-eccentricity will be considered to

increase the visibility time. Also, since the most convenient locations for solar power farms are about the equator,

a suitable orbit should have a low inclination. This issue can be addressed through the concept of anti-heliotropic

orbits that exploits mainly solar radiation pressure perturbations to generate highly-eccentric equatorial orbits able to

maintain the orientation with respect to the Sun. The considered configuration consists in two space mirrors in a flower

constellation rotating with the Earth to deliver a repeat ground track.

INTRODUCTION

This paper discusses the use of orbiting mirrors to improve the efficiency of large-scale terrestrial solar power farms.

Placing mirrors in space, in a convenient orbit around the Earth, would make it possible to reflect sunlight downwards.

The reflected sunlight needs to point towards a specific location on the ground where a series of large collectors will

benefit from this surplus energy for terrestrial use. It is estimated that the use of space mirrors for terrestrial solar

power generation could potentially reduce the cost of solar electric power to less than 6 cents per kWh1 .

Initial ideas on the prospect of beaming sunlight from space towards the Earth were proposed in 1978 by Ehricke in

Reference 2. The project, Power Soletta, entailed a constellations of 3 mirror-satellites in an Earth orbit at 4200 km

altitude. However, because of the choice of the orbit, in order to reproduce normal daylight solar intensity (brightness

equal to 1 solar constant) each mirrors would have an area of 4617 km2. Given a solar flux of 1362W/m2, a thin-film

mirror with a area density of 10 g/m2 delivers a huge power density of 130 kW/m2.

The choice of reflector’s orbit is critical to determine the time of the day when the additional energy is provided and

the duration of the contact with the solar farm. For example, interesting strategies would be to reflect sunlight in the

evening and early morning hours3 or, in general, during the night or at least during peak hours (evening). The ideal

solution would be to have a space mirror that sees the Sun and the solar farm for the greatest duration.
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Therefore, initial concepts consider polar Sun-synchronous orbits so that the mirror would never be in eclipse.

However, in this case, the maximum time in view of the ground site is as low as 9 minutes, or, at most, 20 minutes

if the solar mirror is able to steer, changing its attitude, in order to track the solar farm while it is visible. For this

reason, more complex designs are considered, for example, a constellations of 18 satellites is designed in Reference 3.

Since it is not possible to have continuous access to a single location, these satellites would serve 40 evenly distributed

terrestrial solar farms.

Clear locations are more suitable for this strategy so that it is possible to avoid frequent cloud coverage. For

this reason, the equatorial regions are the most appealing and, even if Sun-synchronous polar orbits would allow

continuous reflection of sunlight, it is rather straightforward to note that polar orbits would not be the most immediate

choice. Another family of orbits, heliotropic orbits, can also be considered for this purpose. Heliotropic orbits are

eccentric orbits that, balancing J2 and solar radiation pressure (SRP) perturbations, generate quasi-frozen orbits able

to track the Sun (or frozen orbits in the case of perfectly equatorial orbits). These orbits present an interesting option

for space solar power, where their analytical description and derivation can be found in Reference 4. In this paper,

taking into account the concept of heliotropic orbits, highly-eccentric equatorial orbits able to track the Sun will be

considered to increase the time in view of the space mirror and to deal with SRP and J2 perturbations. Moreover, the

steering law for the solar mirror to track the solar farm on the ground, while it is visible, will generates oscillations

in the SRP perturbation. For this reason, the family of frozen orbits investigated in this paper will slightly differ from

those found in Reference 4.

The goal of this specific work is to provide a daily surplus solar energy for at least 3 locations situated near the

equator. Therefore, the key issue is to generate an orbit with repeat ground track.

This subject has been extensively investigated in the past and most orbital constellations have been developed around

this concept. For example, in 1981, The San Marco Project conceptualized the “Sistema Quadrifoglio” as an equatorial

constellation of four satellites in Reference 5. In this concept, each satellite spends about 6 hours near the orbit apogee

and two hours in transition between successive apogees. Due to the phasing of satellites in the orbits, 3 of the satellites

are always near apogee and the other is in transition to replace the spacecraft with the largest mean anomaly. The three

spacecraft near apogee (about 120◦ apart) have line of sight visibility of each other and each can observe well over 1/3

of the Earth’s surface. This new way to design satellite constellations has stimulated interesting subsets such as the

“shape-preserving” constellation. The “Sistema Quadrifoglio” generated the basis of Flower Constellations, which can

be set so that each satellite of the constellation has identical repeat ground tracks. In this paper a flower constellation

of two mirror-satellites (technically an “incomplete” flower constellation) has been designed to accomplish the goal of

providing surplus solar energy to 3 large solar farms in Central Africa, America and Oceania.

In the first section, the design of the orbit is described in detail. In particular, in the first subsection, the most

suitable flower constellation is considered and the required semi-major axis is estimated. In the second subsection,
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the process used to evaluate the correct value for the eccentricity is reported. The “anti-heliotropic” condition is

achieved exploiting SRP and J2 perturbations taking into account also the eclipse time. In the following subsections

two steering laws are considered for the space mirror: the first entails the mirror always pointing at the centre of the

Earth, whereas according to the second steering law the exact position of the solar farm is tracked while the mirrors

are visible. Finally the last section investigates the power generated by each solar farm and, moreover, a detailed

description of the loss factors is reported.

DESIGN OF THE ORBIT

Flower Constellation

The Flower Constellation (FC) takes its name from its shape as seen in the Earth rotating reference frame (ECEF).

The parameters that describes a FC are the number of petals (Np), the number of sidereal days to repeat the ground

track (Nd), the number of satellites (Ns) and four other parameters that determine the phasing of the constellation: the

node identification (Fn), the phasing step (Fh), and finally the RAAN (Ω) and the mean anomaly (M ) of the constel-

lation.6 The other orbital parameters (argument of perigee (ω), inclination (i), semi-major axis (a) and eccentricity

(e)) should be the same for all mirrors. However, for the purposes of this work, the anti-heliotropic condition needs to

be maintained for each mirror of the constellation and, for this reason, the orbits are slightly different from each other.

The FCs are characterized by an axis of symmetry that can be arbitrarily oriented. When the FC’s axis of symmetry

is aligned with the Earth’s spin axis, the mirror shows identical repeated ground tracks7 . The condition to satisfy in

order to achieve a repeat ground track is given by:

Tr = NpT = NdTG (1)

where Tr is the period of repetition, TG is the Greenwich nodal period and T is the anomalistic period, i.e. the time

necessary to complete one petal of the flower constellation. In order to obtain a repeated orbit T has to satisfy the

relationship in Eq. (1) and, thereafter, the semi-major axis can be evaluated from this. The design process of a specific

FC starts with the choice of the parameters to describe the constellation, the generation of a complete FC and then

the selective elimination of those satellites (mirrors in this case) unnecessary for the final purpose of the mission.

The objective is to provide each day additional solar energy for 3 solar farms near the equator. Therefore, as for the

“Sistema Quadrifoglio”5 , the parameters of the suitable FC are set as follow: Np = 3, Nd = 1 and Ns = 4. Then,

through Eq. (1), the anomalistic period has to be approximately 8 hours and a semi-major axis of 20270.4 km follows.

The considered areas are situated in Central Africa, the Pacific coast and Oceania. In order to track these three areas,
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the phasing rules of the constellation are chosen so that RAAN and mean anomaly are given by:

Ω = [0 180 360 540]◦ M = [0 1260 2520 3780]◦ (2)

The last parameter required to complete the design of the constellation is the eccentricity. The mirrors are high area-

to-mass ratio objects and so the effects of SRP (and J2 perturbations) would make the mirrors largely deviate from a

Keplerian trajectory. In the next section the effect of these perturbations on the orbits is quantified and, in particular,

the perturbations are exploited to estimate a suitable eccentricity and therefore achieve a Sun-following condition.

RAAN and mean anomaly determine the position of the orbit with respect to the Sun while the eccentricity only

regulates the shape of the orbit. For this reason, it is already possible to make some distinctions between the four orbits

of the mirrors: considering the position of the Sun with respect to the mirrors of the flower constellation, there are

two of them, termed “day” mirrors, whose apogee is always in sunlight and other two orbiting near the apogee while

they are in the dark, termed “night” mirrors. Figure 1 shows the complete flower constellation in the inertial reference

frame (ECI) when a nominal eccentricity value of 0.5 is chosen. In particular, the day-mirrors follow the black orbits

and the night-mirrors follow the grey orbits. For the purposes of this paper, the night-mirrors are of most interest,

therefore the day-mirrors are removed from the constellation and only the other two orbits will be further investigated.

In particular, the incomplete flower constellation entails the two mirrors with Ω = [0◦ 540◦] and M = [0◦ 3780◦].

Figure 1. Complete flower constellation with eccentricity 0.5 in the inertial reference frame (ECI).

Anti-heliotropic Orbits

Large space mirrors are high area-to-mass ratio objects so that SRP (and oblateness perturbation) are no longer

negligible4 . These perturbations can be exploited to generate new families of highly perturbed non-Keplerian orbits.4, 8
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Specifically, in Reference 4, a simplified planar model of the dynamics is investigated through the Hamiltonian of

the system and novel families of equilibrium in-plane orbits are identified: heliotropic and anti-heliotropic orbits,

where, choosing suitable combinations of semi-major axis and eccentricity, a Sun-synchronous condition is achieved

passively and the other in-plane orbital elements are constant. The former are Sun-pointing apogee orbits and entail

that the mirror would be in sunlight while near the apogee. The second family of orbits generated from this analysis

are Sun-pointing perigee orbits. In this case, the mirror would spend most of the time over the dark side of the Earth.

Since the goal is to provide additional solar energy during the night or early morning and evening hours, the second

family of orbits are of most interest. With respect to the analysis of the planar model investigated in Reference 4,

in this paper, the eclipse effect and the SRP perturbation due to the steering of the mirror to track the solar farm are

considered during the investigation of the orbital elements through the Lagrange equations.

The orbits considered have zero inclination and the ecliptic obliquity is neglected so that it is necessary to investigate

only the in-plane motion. Moreover, as in Reference 9, the normal to the surface of the mirror is assumed within

the ecliptic plane so that SRP perturbs only the in-plane motion. In these conditions, as in Reference 9 only three

osculating orbital elements are required in order to describe the resulting trajectory, which can be expressed through

the Lagrange Equations:
da
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=
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whereR and T are the radial and transverse components of the perturbations which the mirror is subject to. Differently

from Reference 4, in this work also the J2 perturbation experienced by the mirror is considered and can be written as

follow10 :

aJ2 =
3

2

µ

r4
R2
e J2 R (6)

where Re is the Earth’s radius and J2 is the oblateness parameter (1.083 × 10−3). Since the mirror needs to steer in

order to track the solar farm while in visibility, its relative orientation with respect to the Sun is one-day periodic, but

it changes along the orbit. As consequence, the SRP perturbation varies according to the steering law.

Moreover, from the theory of the umbra cone11 , the true anomalies identifying the beginning and end of the eclipse

can be determined through geometrical considerations. Considering the umbral geometry described in Figure 2, it

is possible to compute the vector δ, i.e. the vector originating at the umbral cone axis, pointing to the spacecraft at

the projected spacecraft location, at the time t. The true anomalies identifying the eclipse are those that satisfy the

following condition: |δ(f)| = ξ(f), where ξ is the distance between the umbral cone axis and the umbra terminator
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point at the projected spacecraft location and is given by:

ξ = (χu − |rs|) tan(αu) (7)

In Eq. (7), χu is the distance between the umbral cone apex and the centre of the Earth and, as can be seen in Figure

2, rs is the projection of the position vector of the mirror in ECI (rECI) on the unit solar vector (̂s). Thus, the true

anomalies identifying the eclipse along an orbit with semi-parameter p and eccentricity e are obtained through the

following equation:

fecl1,2 = ±arcos
(
−2p− χu tan(αu)
p− e χutan(αu)

)
(8)

where subscripts 1, 2 stand for the beginning and the end of the eclipse, respectively. In order to take the eclipse

duration into account, the piecewise integrals of the three orbital parameters in Eqs. (3-5) averaged over one orbital

period are considered.

In the next sections, two steering laws are investigated: an Earth-pointing steering law and a solar-farm-tracking

steering law. The Earth-pointing steering law can be obtained analytically, whereas a numerical investigation is per-

formed to obtain the second steering law. The steering law of the mirror is used to estimate the SRP perturbation along

the orbit and the consequential variation of the orbital parameters through Eqs. (3-5).

Figure 2. Geometry of the umbral cone caused by the Earth on the orbit of the mirror.

Earth-Centre Pointing Steering Law

The first steering law investigated is an Earth-centre pointing strategy, i.e. the mirror points always towards the

centre of the Earth. Considering Reference 9, where a Moon-centre pointing law is developed, and the geometry

shown in Figure 3, the angle γ can be written as a function of the true anomaly f as follows:

γ =
α

2
=
π − f
2

(9)

6



where α is the angle between the incoming and reflected rays measured at the mirror (Figure 3). Thus, the acceleration

perturbation due to solar radiation pressure can be written as9 :

aSRP (f) = PSRP Cr
Asun
m

sin2
(
f

2

)[
sin

(
f

2

)
R+ cos

(
f

2

)
T

]
(10)

where PSRP is the solar pressure at 1 AU equal to 4.56 × 10−6 N/m2 4 , Cr is the reflectivity coefficient given by

1 + r where r is the reflectivity of the material set to 0.9 (generally aluminium)12 and Asun is the area of the mirror

exposed to the Sun. Considering Eq. (6) and Eq. (10) in Eqs. (3-5), the piecewise integrals can be written as:

∆aECL =

∫ fecl1

0

da

df
df +

∫ fecl2

fecl1

daJ2
df

df +

∫ 2π

fecl2

da

df
df (11)

∆eECL =

∫ fecl1

0

de

df
df +

∫ fecl2

fecl1

deJ2
df

df +

∫ 2π

fecl2

de

df
df (12)

∆ωECL =

∫ fecl1

0

dω

df
df +

∫ fecl2

fecl1

dωJ2
df

df +

∫ 2π

fecl2

dω

df
df (13)

where daJ2 , deJ2 and dωJ2 are the perturbations of a, e and ω due only to the Earth’s oblateness because there is not

SRP perturbation while the mirror is in eclipse. Every mirror completes 3 orbits everyday and experiments the eclipse

only once per day. Therefore, the perturbations are one-day periodic and Eqs. (11-13) are valid only for the orbit

during which the eclipse occurs. In order to estimate the variation of the orbital parameters for the other two orbits

the piecewise formulation is not necessary because SRP and J2 perturbs the orbit continuously. Therefore, the overall

variation of the orbital parameters averaged over one day (TG is the Greenwich nodal period) can be written as:

∆aday =
1

TG

[
∆aECL +

∫ 4π

0

da

df
df

]
(14)

∆eday =
1

TG

[
∆eECL +

∫ 4π

0

de

df
df

]
(15)

∆ωday =
1

TG

[
∆ωECL +

∫ 4π

0

dω

df
df

]
(16)

Thus, substituting Eqs. (11-13) in Eqs. (14-16), the daily variation of semi-major axis, eccentricity and argument

of perigee can be estimated for the orbits of the space mirrors. As expected, ∆aday and ∆eday are equal to zero,

therefore, the one-day averaged J2 and SRP perturbations do not affect the semi-major axis and the eccentricity of

the orbit even when the eclipse is considered. A similar problem was already investigated without J2 perturbation in

Reference 9, the same result was expected because of the periodicity of the J2 perturbation along the orbit.
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Figure 3. Geometry showing the relative position of the mirror and the Earth for the first steering law.

Moreover, ∆ωday is developed as well from Eq. (16) and, as expected, the summations is different from zero. SRP

and J2 perturbations generate the precession of the perigee. This effect can be exploited to estimate the eccentricity of

the orbit so that a Sun-following condition is achieved. The condition considered to obtain the eccentricity of the orbit

is given by this expression: ∆ωday = λ̇s. This condition is required to precess the orbit’s apse line at the same rate as

the Sun (λ̇s = 0.9856◦/day)13 . Through this procedure and given the area-to-mass ratio of the mirror the eccentricity

of the orbit can be estimated. In Figure 4 the eccentricity is estimated for several values of the area-to-mass ratio of the

mirror for two different values of the semi-major axis: 20270.4 km, associated with the considered flower constellation

(FC) (Np = 3, Nd = 1) and 26561.7 km associated with a FC of 12 h (Np = 2, Nd = 1) period that would have been

the second choice. However, the second FC has been excluded because it would have been able to provide sunlight

only for two solar farms, also, the chosen FC provides more flexibility. As can be noted, not all the combinations

are possible, also the eccentricity has an upper limit (emax) of 1 − Re+1000
a in order to avoid perigee heights below

1000 km. Since a high time of visibility near the apogee and, therefore, a large eccentricity is crucial for the purposes

of the mission, only values of the eccentricity above 0.4 (emin) are considered. This information is used to select the

feasible range of area-to-mass ratio values for the mirrors:
(
100 ≤ A

m ≤ 160
)
m2/kg. In order to have these values of

area-to-mass ratio the space mirror needs to be four times lighter than the L'Garde Sunjammer developed by NASA.

Sunjammer has a solar sail loading14 of 26.6 g/m2 (σs), otherwise a mass density of (6.25− 10) g/m2 is required to

achieve the range of eccentricities of interest and, therefore, the Sun-following condition. It is expected that in future

performance of space mirrors and solar sails will be improved, for example by substituting Kapton substrates with

advanced materials. This variation would make the manufacturing of ultralight space mirrors feasible by decreasing

their weight of 10-12 times. When this steering law is considered, every orbit of the flower constellation has the same

eccentricity.
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Figure 4. Combination of eccentricity and area-to-mass ratio values that satisfy the Sun-following condition for the

first steering law.

Second Steering Law: Tracking of the Solar Plants

With respect to the Earth-centre pointing strategy, the second steering law is very specific for the objective of this

paper. Every time the mirror is near the apogee and in visibility for one of the solar farms, it will steer to track it.

Contrarily to the first steering law described in the previous section, in this case a different law as well as an eccentricity

is estimated for each mirror in order to achieve the Sun-following condition for all of them. It is important to highlight

that the control laws of the mirrors need to maintain symmetry along the orbit so that the averaged variation of semi-

major axis and eccentricity due to the perturbations (Eqs. (14-15)) is kept equal to zero as in the previous case. In

order to achieve a reasonable symmetry, the position of the solar farm needs to be exactly under the apogee of the

orbit. The selected locations for the three solar power farms are summarized in Table (1). It is necessary that the solar

farms are equidistant from each others in order to assure that the surplus solar energy is received during the night, for

this reason two of the locations considered are necessarily in the sea. Despite this result can be considered an issue,

it is actually convenient that this technology is developed far from urban areas in order to minimize the effects on the

population. Moreover, if a specific area that is not exactly on the equator needs to be targeted, inclined orbits should

be considered and the 3D dynamics needs to be investigated. Inclined orbits provides larger flexibility for the strategy

design.

Table 1. Location of the chosen solar power farms.

Pacific Coast Central Africa Oceania

longitude 92W 30 E 149 E

latitude 0 0 0

Time GMT − 3h GMT + 1h GMT + 8h

The values of RAAN and mean anomaly employed are those found previously for the night-mirrors (n◦1 and n◦4),
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also, the initial argument of perigee of the orbits (ω) is set to 270◦. Finally, an area-to-mass ratio equal to 150m2/kg

(σs = 6.67 g/m2) is considered. During the search of the eccentricity, the geometry in Figure 5 is used to estimate the

nadir angle (η) measured at the mirror from the sub-satellite point to the target, i.e. the solar farm15 . The minimum

elevation angle (see Figure 5) that is considered for the mirror is εmin = 24◦: this value is chosen so that the hypotheses

made are valid, such as the value for the atmospheric transmittance. Taking into account the angular Earth’s rotation

(velocity of rotation ωe), the geographical coordinates of the solar farms are written as (lon+ ωet, lat).

Figure 5. Geometry of the the mirror with respect to the solar farm for the second steering law.

Since the position of the sub-satellite point (SSP) and the target are known, it is possible to estimate the value of the

Earth central angle (λ) and the Earth angular radius (ρ) (see Reference 15 and Figure 5). After that, the nadir angle is

defined as follow:

tan(η) =
sin(ρ)sin(λ)

1− sin(ρ)cos(λ)
(17)

Once the angle η is known, similarly to the case before, the angle describing the orientation of the mirror (γ) can be

written as a function of the true anomaly f and η:

γ =
α′

2
=
π − f + η

2
=
π − f ′

2
(18)

Equation (10) can still be used to compute the solar radiation pressure perturbation in this case by substituting f with

f + η. The mirror steers to track the solar farms while it is in visibility, i.e. for elevation angles larger than εmin. In

order to keep a fair symmetry for the overall SRP perturbation, each mirror tracks all the three solar farms once per

day, in this way the resulting eccentricities are quite similar. Moreover, passage it occurs during the day.
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Figure 6. Daily variation of the acceleration due to solar radiation pressure provided when the first (continuous

line) and the second (dashed line) steering laws are applied.

Figure 7. Daily variation of the incidence angles for the two steering laws.

Under these conditions, as for the previous case the Lagrange equations are used to compute the variation of the

orbital parameters. Again, the summation in Eqs. (14-15) is computed. The variation of the semi-major axis and the

eccentricity are negligible since their values oscillate periodically over one day. Computing Eq. (16), it can be proved

that a precession of the perigee occurs. Therefore, as before, the condition ∆ωday = λ̇s is employed to estimate

the eccentricities for the orbits of the night-mirrors. The obtained values are given by e1 = 0.58 and e2 = 0.50,

respectively. Moreover, the acceleration along the directions R and T (see Figure 5) due to the solar radiation pressure

for the two steering laws is reported in Figure 6. As expected, the curves are rather similar and sometimes there is

not any difference. Finally in Figure 7 the angles α (continuous line) and α′ (dashed line) are reported. Again, as
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expected, the curves are comparable, to track the solar farms only small variations with respect to the Earth-centre

pointing steering law are required.

Anti-heliotropic Flower Constellation for Space Reflectors

The second steering law described in the previous section allowed for the estimation of the eccentricity of the orbits

exploiting J2 and SRP perturbations and satisfying the Sun-following condition. In particular the night-mirrors, i.e.

those mirrors having the apogee always in the opposite direction with respect to the Sun, are considered so that the

anti-heliotropic condition is achieved. This can be demonstrated if the apparent motion of the Sun’s path around the

Earth, due to the Earth’s rotation on its axis, is considered.

The orbits of the night mirrors assemble the flower constellation which can be visualized in the rotating frame in

Figure 8 and in the inertial frame in Figure 9. The ground track and the coverage15 of the constellation can be found

in Figure 10, where it can be seen that the mirrors orbit over the three places of interest when they are at the apogee

of every orbit. It is important to underline that the solar power farms have to be exactly below the apogee of the orbit

to have symmetric SRP perturbation during the tracking of the solar farm so that the variations of the semi-major axis

and the eccentricity oscillates around the Keplerian value.

Figure 8. Flower Constellation of the night-mirrors in the rotating Earth-centred reference frame (ECEF).
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Figure 9. Flower Constellation of the night-mirrors in the inertial Earth-centred reference frame (ECI).

Figure 10. Ground Track and coverage (for ε > 24◦) of the two mirrors (black line for the first mirror with

RAAN = 0◦, M = 0◦ and grey line for the second mirror with RAAN = 360◦, M = 360◦).

Considering a minimum elevation angle of 24◦ (see geometry in Figure 5), the time of visibility of each mirror over

the solar farm is roughly between 6 and 7 hours. This can be seen in Figure 11 and 12, where the reference time

is Greenwich Mean Time (GMT) and the time difference for each location is considered to determine the local time

when the surplus energy is provided (see Table (1)). Therefore, considering the local time in the three locations, the

strategy can be summarized as follow: the first mirror (RAAN = 0◦, M = 0◦) tracks the first solar farm in central

Africa between 1.40 AM and 8.30 AM, the second solar farm (Pacific Coast) from 5.30 AM to 12.20 PM and the third

solar farm in Oceania between 00.30 AM and 6.45 AM; whereas, the second mirror (RAAN = 360◦, M = 360◦)

tracks the first solar farm between 7.50 PM and 2.20 AM, the second one between 11.40 PM and 6.10 AM and the
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third solar farm from 6.40 PM to 1.12 AM. The eclipse time for the two mirrors is around 2−2.5 h and it occurs while

the first mirror is orbiting over the first solar farm and when the second mirror is above the second solar farm.

Figure 11. Daily elevation angle of the first mirror over the three locations considered for the power farms.

Figure 12. Daily elevation angle of the second mirror over the three locations considered for the power farms.

It is interesting to highlight that in some cases the coverage occurs during the day (see mirror 1 over the Pacific

coast), although the Sun would provide solar power anyway, the process would be improved because the mirrors

would act as concentrators of solar energy. More details about the employed strategy are reported in Table (2) which

shows that the total coverage time is 11 h for the solar farm in Central Africa, 10 h 55′ for the Pacific coast and

13 h 13′ for the third solar farm in Oceania. The third solar farm has a larger coverage because no eclipse occurs while

the mirrors orbit above it.
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Table 2. Adopted strategy for the coverage of the solar farms during the night, evening or early morning.

# Mirror Solar Plant Time-Range Coverage Eclipse Total Time Coverage

1 Central Africa 1.40 AM − 8.30 AM 2h 21′ 4h 28′

1 Pacific Coast 5.30 AM − 12.20 PM 0 6h 43′

1 Oceania 00.30 AM − 6.45 AM 0 6h 16′

2 Central Africa 7.50 PM − 2.20 AM 0 6h 33′

2 Pacific Coast 11.40 PM − 6.10 AM 2h 05′ 4h 12′

2 Oceania 6.40 PM − 1.12 AM 0 6h 30′

Control Attitude and Shape of the Reflector

As in Reference 12, a control moment gyro (CMG) is considered for the attitude control of the mirrors. The CMG

would provide the higher torque necessary to stabilize the mirrors during the initial maneuvers and for the attitude

control necessary to track the solar farms on the ground. Also, a low thrust propulsion system should be considered

as well mainly in order to periodically control the attitude while the CMG is saturated and for station keeping. It

is important to highlight that because of the high orbit considered, the effect of the atmospheric drag is completely

absent. This method is taken into account in Reference 12 to control the attitude of mirrors with a diameter of 1 km.

A larger space mirror can be considered a modular structure made of several 1 km-mirrors.

Another interesting option is the use of electrochromic layers to effectively control the attitude of the mirror. The

reflectivity of the surface would be locally different generating a torque that can be exploited to passively control the

attitude of a large mirror. The electrochromic layers should be on the edge of the mirror in order to not affect the

collection of solar power. Electrochromic coatings have been successfully employed on the IKAROS solar sail for

attitude control in 2010 16 .

Finally, another important issue to deal with is the shape of the mirror. In Reference 9, it can be seen that advantages

are provided when a parabolic mirror is employed. The area of the illuminated spot on the ground is very large (order

of magnitude 108 km2 with a flat mirror) and, in general, the area covered by the solar farm is smaller than the

overall available area. Thus, the energy reflected outside the area of the solar farm is lost. A parabolic mirror would

concentrate the reflected sunlight over a smaller area therefore reducing the loss of energy. Because of the large

distance between the mirror and the solar farm, a very moderate curvature of the mirror would be required to provide

greatly improved performances.

To obtain a parabolic mirror, a good option is found in Reference 17, where the surface of a thin slack circular

film is employed to investigate the possibility of a shape-controlled space mirror. Although it is shown that the

nominal deflection shapes due to the effect of SRP are non-parabolic, through an inverse method, the reflectivity

distribution necessary to create a true parabolic deflection profile is derived analytically. The required distribution
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for the reflectivity could be provided through the suitable modification of the film surface. However, the change in

reflectivity would cause a loss in the collected solar energy that should be considered in the computation of the overall

energy provided.

In order to maximize the effect of a parabolic mirror, it is necessary to adjust the focal distance along the orbit so

that the solar radiation is always concentrated on the solar farm. Therefore, an adjustable parabolic surface should be

considered. It follows from the previous discussion about the reflectivity pattern in Reference 17 that if the distribution

of reflectivity over the surface of the mirror is adjustable the focal distance can be modified. This concept could be

achieved in principle through the use of electrochromic materials.

COMPUTATION OF THE ENERGY PRODUCED

In the previous section the constellation designed was described in detail. Two mirrors in eccentric orbits provide

three locations on the ground with additional solar energy during the night or the evening hours (peak times). In

this section the solar power generated from the solar farms is calculated also taking into account the loss effect of

the eclipse. Considering the reflection of light from the mirror over the Earth’s surface, the image of the Sun that is

reproduced over the surface at a distance y (see Figure 5) from the mirror (slant range) according to Reference 9 can

be written as:

Ai(t) =
π

4sin(ε(t))
(D2

m + y2β2) (19)

where Dr is the diameter of the mirror, ε is the elevation of the mirror above the horizon with respect to the location of

the solar power farm, and β is the solid angle subtended by the Sun. β is obtained geometrically computing the ratio

of the Sun’s diameter over the Sun-Earth distance and is given by 0.0093 18 . However, as in Reference 9, it can be

shown that if a parabolic mirror is considered better performances are achieved. The Sun’s image projected over the

Earth’s surface by a parabolic mirror can be written as:

Ap(t) =
π

4sin(ε(t))
y2β2 (20)

in this case y is also the focal distance. As said in the previous section, the parabolic mirror is assumed to be made

of electrochromic materials that modify the reflectivity distribution over the surface of the mirror and change the focal

distance as required. Thus, accounting for all significant losses as in Reference 12, the total power Pm delivered by

the mirror can be written as follow:

Pm = µρτψI0
Am
Ai,p

cos
(α
2

)
(21)

where µ is the flatness coefficient of the reflecting surface, ρ is the reflectivity coefficient, τ is the atmospheric trasmis-

sivity, ψ is the cloud cover coefficient and α
2 is the angle of incidence that describes the geometry between Sun and
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mirror (see Figure 5). Also, I0 is the solar constant given by 1.37 GW/km2 3 . The power received at the ground

depends on the dimensions of the solar farm. If the solar farm is as big as the illuminated spot (Eq. (20) for a parabolic

mirror), the maximum power achievable would be received. Therefore, the power received at the ground is given by

the product of the power reflected by the mirror and the area of the solar farm (ASF ). If the losses due to the PV array

modules (εPV ) and the ground coverage ratio (εGCR) are considered, the total power provided is given by:

Ptot = Pm εPV εGCR ASF (22)

All loss factors are described in detail in the next section. Finally, the total energy produced (GWh) by each solar

farm is given by:

Etot =

∫ 1 day

0
Ptot dt

1 hour
(23)

Loss Factors

As seen in the previous section, losses combine to reduce intensity and they have to be considered to estimate the

energy collected by the solar farm. Some losses are due to the quality of the mirror and the efficiency of the solar farm

and others are associated with natural conditions. The mirror flatness (µ) indicates the presence of wrinkles on the sur-

face of the mirror. In particular, deep wrinkles with steep slopes disperse sunlight off the considered illuminated spot,

otherwise, although shallower wrinkles disperse only some light off the target, the overall light impinging upon the

illuminated spot may be dispersed unevenly. For this reason as well as for manufacturing purposes, the use of smaller

mirrors to build a large reflecting surface is advised in order to average out dispersions from wrinkles. The root-mean-

square (RMS) edge gradient of the surface of the membrane is estimated to be approximately σ = 0.0002 rad 12 .

According to Reference 12, the linear dispersion of the image (dim) resulting from imperfections of the membrane

can be computed through Eq. (24).

dim = 2σy (24)

where y is the slant range. Considering Eq. (24), the illuminated spot on the ground with the additional spill-over area

caused by the dispersion is given by:

Atot = π

(
Ds + dim

2

)2

(25)

Thus the flatness coefficient, indicating the loss in intensity due to surface wrinkles, can be written as:

µ =
Atot
Ai

(26)

Assuming, for example, a mirror of diameter 8 km (roughly Am = 50 km2), the area of the illuminated spot over the

solar farm in central Africa, for example, is given by 5164 km2, the average spill-over area due to the dispersion is

17



1.34 km; therefore the illuminated area is 5336 km2 including the spill-over area. In these conditions, the value of µ

considered in this study is 88%.

Figure 13. Loss factor due to the surface wrinkles of the mirrors.

The mirror reflectance coefficient (ρ) indicates the percentage of sunlight that is specularly reflected, therefore

excluding scattered and absorbed light. This coefficient strictly depends on the material deposited on the substrate of

the mirror to provide reflectivity. If the mirror is realized in space, it would be possible to consider Sodium for the

reflective layer that would provide a reflectivity coefficient of 0.99 12 . However, Sodium is unstable in the atmosphere

and for this reasons other materials like silver or aluminium are examined for this task with reflectivity coefficients

of 0.98 and 0.92, respectively. The material commonly considered for this purpose is Aluminium, mainly because is

inexpensive, lightweight and durable.

With regard to the solar farm, currently, the efficiency of a solar cell (εPV ) made of silicon is approximately 20%;

however, when multi-junction solar cells based on more expensive materials such as gallium arsenide or indium se-

lenide, the overall efficiency can be as high as 31 − 32%. This number can be further increased up to 35% (46% in

lab conditions) when concentrating optics are employed through Concentrator Photovoltaics (CPV): these systems use

lenses and curved mirrors to focus sunlight onto small highly-efficient multi-junction solar cells. In this study εPV is

set to 40%.

Finally, the coverage ratio efficiency (εGCR) indicates how much of the overall area of solar farm is actually covered

with solar panels (area of the PV modules divided by the overall area of the solar farm). Generally, solar panels are

tilted depending on the latitude in order to maximize the amount of energy received. As the tilt angle increases, GDR

must decrease to prevent reductions in energy capture due to shading. Again, the equatorial regions are the most

advantageous locations because a larger tilting angle is required for solar farms at high latitudes and a minimum tilt
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angle is used for the equator. Therefore, εGCR is set to 80% in this analysis.

Included in the losses caused by natural conditions are the atmospheric transmittance (τ ) and cloud coverage (ψ).

The transmittance factor of the reflected light travelling through the atmosphere between the mirror and the solar farm

on the ground is given, according to Reference 19, as:

τ = 0.1283 + 0.7559e−0.3878 sec(
π
2−ε) (27)

where ε is the elevation angle measured at the solar farm location (see Figure 5). Computing Eq. (27) for both

mirrors when they are visible from the solar farm on the ground τ is found to be roughly 64% for both mirrors. If the

coefficient of scattered transmittance is considered as well (6%), the overall transmittance at sea level is τ = 70%.

Finally, regarding the cloud cover factor (ψ), it depends on the latitude and the Equatorial regions occurs to be less

covered by clouds all over the year. Moreover, large beams are less attenuated with respect to smaller beams delivered

for example by low Earth orbits. In this case, the delivered beams of light are approximately 110 km in diameter. For

these reasons a cloud cover factor of 90% is considered in this study.

Therefore, considering all loss factors and Eq. (23), it can be seen that the final energy produced depends on the

dimensions of the mirrors and the solar farms. As can be seen in Eq. (20) the illuminated area does not depend on the

dimensions of the mirrors but only on its position in space (slant range (y) and elevation angle (ε)) and their average

values are in the range 4931− 8753 km2. In Table (3), the results of the energy produced by the three solar farms are

reported for several values of the area of the mirror and the solar farms.

Table 3. Total energy generated per day from the three solar power farms on the ground for several sizes of the

mirrors and the solar farms.

Dm (km) Am (km2) Mass (T) ASP (km2) EtotSP1 (GWh) EtotSP2 (GWh) EtotSP3 (GWh)

1.13 1 6.67 100 0.0092 0.0090 0.0095

2.52 5 33.33 100 0.046 0.045 0.047

3.57 10 66.67 100 0.092 0.091 0.095

6.18 30 200 100 0.28 0.27 0.28

7.97 50 333.33 100 0.46 0.45 0.47

11.28 100 666.67 100 0.92 0.91 0.94

6.18 30 200 200 0.55 0.54 0.57

7.97 50 333.33 200 0.92 0.91 0.95

7.97 50 333.33 300 1.38 1.34 1.42

7.97 50 333.33 500 2.30 2.26 2.37

11.28 100 666.67 500 4.60 4.53 4.74
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In particular, the first 6 rows in Table (3) show the energy produced (GWh) by mirrors of several dimensions

(1 − 100 km2) and solar farms of 100 km2. Considering a mirror of 50 km2 and 200 km2 solar farms, Figures 14

and 16 can be obtained.

Figure 14. Distribution of the power (GW) generated in a day by the solar farm in central Africa.

Figure 15. Distribution of the power (GW) generated in a day by the solar farm on the Pacific Coast.
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Figure 16. Distribution of the power (GW) generated in a day by the solar farm in Oceania.

The figures represent the distribution of the power in GW generated in a day by each solar farm. In particular, the

effect of both mirrors and the eclipse time are taken into account. The shape of the curves is due to the elliptical orbit

of the mirrors. The distance of the mirrors in space with respect to the solar farms changes greatly along the orbit: the

power generated is lower when the mirror is at the apogee. The distance y appears to be the most significant term in

the computation of Eq. (23). Moreover, in Figures 14 and 15 the effect of the eclipse can be noted: the first mirror

is in eclipse from 1.40 AM to 3.58 AM while is orbiting above the solar farm in central Africa, whereas the second

mirror is over-shaded by the Earth between 3.53 AM and 5.58 AM , when it is above the Pacific Coast.

In the figures, local dawn/dusk lines are reported to show the duration of the day. Data is obtained considering the

annual average of the solar angle above the location (data from Archive of Surface meteorology and Solar Energy,

John M. Kusterer, NASA Langley ASDC User Services). As can be seen in the figures above, in all the three cases the

first mirror provide energy for three hours after dawn. However, despite the sun already rose, it can be demonstrated

that in the first three hours of sunlight, the Sun is only 20-30◦ (depending on the season) above the horizon; therefore,

the energy supplied by the mirror is still rather advantageous for the solar farms. Despite the energy produced through

the two space mirrors can be as high as 4.74 GWh per day (see Tab. 3), the maximum flux (W/m2) reaching the

surface every day is estimated to be only the 3% of normal daylight. This estimation is obtained considering the best

case scenario where the maximum quantity of energy is received.

CONCLUSION

A constellation of two large space mirrors (area-to-mass ratio 150 m2/kg) is considered to provide three solar

farms on the ground with additional solar power during the night or peak hours (evening and early morning). Through

the basic concepts of the theory of flower constellations, the semi-major axis and other orbital elements such as the
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RAAN and the mean anomaly are chosen so that the constellation has a repeat ground track and each mirror completes

3 orbits per day. The starting configuration for the constellation consisted of four mirrors; however, only two of them

have been selected and further investigated because their orbits appear to be mostly on the dark side with respect

to the Sun. These orbits are also called “Sun-perigee pointing” because the perigee points always towards the Sun.

This means that the mirrors spend most of their time near apogee and orbiting above the areas of interest during the

night. This feature is exploited to select the orbits of interest and reduce the configuration to only two space mirrors.

These orbits maintain their shape in space and provide a repeat ground track if perturbations are neglected. However,

the space mirrors are high area-to-mass ratio objects and, therefore, perturbations due to solar radiation pressure are

important. Thus, Reference 4 and 8, where the effect of oblateness and SRP are exploited to find suitable frozen orbits,

are considered.

The solar radiation pressure that the mirrors are subject to depends strictly on the incident angle and, in other words,

on the orientation of the mirror with respect to the Sun. For this reason it is related to the steering law adopted for the

mirror. In this paper, two different steering laws are considered. The first entails that the mirror points towards the

centre of the Earth, whereas the second steering law considers the track of each solar farm while the mirrors satisfy

the visibility conditions. The first steering law is rather straightforward and provides a useful starting approach for the

development of the second law. The second steering law is more complex, the solar farms have to be exactly under

the apogee of the orbits in order to assure that the mirror receives the same SRP along the orbit and its final balance

is zero. In this way, the perturbations of J2 and SRP are counterbalanced and their effect on the semi-major axis and

the eccentricity is null. The only parameter to be affected by the perturbations is the argument of the perigee this

issue is exploited in order to control the variation of the apse line of the orbit and point always towards the Sun. The

eccentricity of the orbits is chosen so that the apse line precesses at the same rate of the Sun. In this way, the perigee

of the orbit always points towards the Sun.

Therefore, the second steering law represent a slight different but more accurate method to provide the solar farms

with additional solar energy. Each mirror orbits above every solar farm every day. In particular, considering the local

time at every location and the combination of the coverage of both mirrors, the solar farm in central Africa receives

surplus energy from 7.50 PM to 8.30 AM , the one on the Pacific coast from 11.40 PM to 12.20 PM and the third

solar farm located in Oceania between 6.40 PM and 6.45 AM . Each mirror is in eclipse once per day, the first mirror

is over-shaded by the Earth for 2h 21′ while it is above central Africa and the second mirror for 2h 5′ while orbiting

above the Pacific coast. Considering the eclipse time, the total coverage time for the solar farm in central Africa is 11

hours, for the solar farm in the Pacific coast is 10h 55′ and for the solar farm in Oceania is 13h 13′. Considering the

loss factors due to the quality of the mirror, the efficiency of the solar farm and natural conditions, the total energy

generated depends on both the dimensions of the mirrors and solar farms. Considering, for example, three solar farms

of 200 km2 and two 50 km2 parabolic mirrors, the total additional energy delivered each day is 0.92 GWh in central
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Africa, 0.91 GWh for the solar farm on the Pacific coast and 0.95 GWh for the third farm in Oceania.
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