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Combining information from weak sources, such as known pulsars, for gravitational wave detection, is
an attractive approach to improve detection efficiency. We propose an optimal statistic for a general
ensemble of signals and apply it to an ensemble of known pulsars. Our method combines F -statistic values
from individual pulsars using weights proportional to each pulsar’s expected optimal signal-to-noise ratio
to improve the detection efficiency. We also point out that to detect at least one pulsar within an ensemble,
different thresholds should be designed for each source based on the expected signal strength. The
performance of our proposed detection statistic is demonstrated using simulated sources, with the
assumption that all pulsar ellipticities belong to a common (yet unknown) distribution. Comparing with an
equal-weight strategy and with individual source approaches, we show that the weighted combination of all
known pulsars, where weights are assigned based on the pulsars’ known information, such as sky location,
frequency and distance, as well as the detector sensitivity, always provides a more sensitive detection
statistic.

DOI: 10.1103/PhysRevD.94.084029

I. INTRODUCTION

Pulsars are believed to be rapidly rotating neutron stars
(NSs) that can emit continuous gravitational wave (GW)
radiation if their mass distributions are asymmetric [1].
Observations from first-generation GW detectors have
placed upper limits on the amplitude of these GWs from
the known galactic millisecond pulsars. This in turn allows
constraints to be placed on the ellipticities of these NSs [2].
With the advanced detector era having recently begun with
Advanced LIGO [3] in operation and Advanced Virgo [4],
and KAGRA [5] close behind, we will soon be able to make
observations of these sources with significantly increased
sensitivity.
For each pulsar with known sky location and assumed

GW phasing (as inferred from arrival times of its radio
pulses), time and frequency-domain matched-filtering
approaches [6–10] are commonly applied. The former
has been used within the LIGO-Virgo Collaboration for
the known pulsar searches and applies a Bayesian mar-
ginalization strategy to the unknown system parameters [6].
The latter, frequency-domain approach, known as the
F statistic [8] performs an analytical maximization of
the likelihood over the unknown parameters of each pulsar
and it is this method that we make use of for the remainder
of this paper.
Combining sources to improve detection probability is

an attractive approach to weak signal detection (e.g.
detecting NS ellipticity from analysis of the GW stochastic
background [11] and detecting gravitational wave memory
using binary black hole mergers [12]). Since GW detectors
currently study ∼200 known pulsars, the existing detection

strategy for this relatively large ensemble can be viewed as
trying to detect each one separately, and then waiting for
the first detection to appear. This is certainly the most
obvious strategy to take, but not obviously the most
optimal. Cutler and Schutz (CS) [13] proposed an alter-
native: first sum the F -statistic from each pulsar, and then
use that sum as a new detection statistic. In this initial study,
CS used an equal weight for all the pulsars to be combined.
One issue with this approach is that including pulsars which
are likely to emit relatively weak GWs decreases the signal-
to-noise ratio (SNR) of the combined statistic. As indicated
in their paper, the SNR of the combined statistic decreases
if the detection ensemble includes weak sources where the
squared SNR is less than half of the average squared SNR
for all observed pulsars. Therefore, to more efficiently
detect GWs from an ensemble of all known pulsars, it
seems sensible to investigate the effects of giving nonequal
weights to the pulsars within the ensemble.
In this paper, we generalize the idea proposed by CS, by

considering the prior distribution of GW strengths from the
pulsars within the ensemble. After a brief introduction to
pulsar GW emission and the F statistic, we apply the
general theory of hypothesis testing, and obtain a Neyman-
Pearson criterion for detecting GWs from an ensemble of
pulsars. This leads to an optimal detection statistic, which
in idealized situations (i.e., when our prior knowledge of
the signal and our model for the noise are an accurate
representation of reality) provides the highest detection
probability with a given false-alarm probability. As we
show, this statistic can in some cases be approximated by
linearly combining F -statistic values from the ensemble of
pulsars with appropriate weights.
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We assume that the ellipticities of pulsars follow a
common (yet unknown) intrinsic distribution and that
the orientation of their rotation axes is isotropically
distributed. We then draw on our knowledge of their sky
location, distance from the Earth, and their rotation
frequency to construct prior distributions on the expected
GWamplitudes from our known pulsars. Since the intrinsic
ellipticity distribution remains unknown, we model it as a
simple exponential distribution, but perform tests using
both exponential and Gaussian distributions.
This paper is organized as follows. In Sec. II, we briefly

review the form of GW emission from individual pulsars
and the F statistic; in Sec. III, we introduce the optimal
statistic for a general ensemble of pulsars and discuss how
it may apply to a set of pulsars in idealized situations; in
Sec. IV, we test our statistic on two possible intrinsic
distributions of pulsar ellipticity. We summarize our main
conclusions in Sec. VI.

II. BRIEF REVIEW OF GW FROM KNOWN
PULSARS AND THE F STATISTIC

In this section, we give a brief overview of the signal
model and maximum-likelihood detection statistic for a
single pulsar.

A. Gravitational waveform

For a single GW detector, the signal strain as a function
of time, hðtÞ, from

hðtÞ ¼ 16π2ϵIf2

d
½αþ ~FþðtÞ þ α× ~F×ðtÞ� cos½ΦðtÞ þ Φ0�;

ð1Þ
with

αþ ¼ 1þ cos2ι
2

cos 2ψ þ cos ι sin 2ψ ; ð2Þ

α× ¼ −
1þ cos2ι

2
sin 2ψ þ cos ι cos 2ψ : ð3Þ

Here we have assumed the pulsar, at distance d from the
Earth, to be an triaxial ellipsoid rotating at frequency f
around one of its minor axes, which stays constant in
orientation. In [8] this is the case when the angle between
the total angular momentum vector of the star and the star’s
axis of symmetry is π=2.
The pulsar is nearly spherical, with a moment of inertial I

around its rotation axes; ϵ is its ellipticity, given by

ϵ ¼ I1 − I2
I

ð4Þ

with I1 and I2 being the two moments of inertia around the
two principal axes that are orthogonal to the rotation axis.

The above four quantities (d; f; ϵ; I) define the strength of
the source as received at the detector.
In addition, ~Fþ;×ðtÞ are the (time-dependent, due to

Earth’s rotation) antenna patterns of the detector toward a
source at the sky location of the pulsar, while ΦðtÞ defines
the GW phase evolution inferred from its radio (or x-ray)
pulsations—both are considered known. For the type of
emission we are considering, GW radiation will be emitted
at twice the rotation frequency, 2f, with additional mod-
ulations due to the orbital motion of the pulsar and the
motion of the detector due to the Earth’s rotation and orbit.
Finally, we have the polarization angle ψ , the inclination

angle ι that describes the pulsar’s orientation, and Φ0, an
additional unknown GW reference phase, all of which we
consider as unknown.
In terms of notation, our ι andψ are the same as used in [8],

while ~FþðtÞ and ~F×ðtÞ are respectively equivalent toaðtÞ and
bðtÞ of [8]wherewe have assumed that the angle between the
two interferometer arms equals π=2.

B. The single-pulsar F statistic

Under the assumption that the measured strain is a
combination of a GW signal and additive detector noise
n, with a single-sided noise special density ShðfÞ, the “near
optimal” statistic is given by the so-called F statistic,
derived by Jaranowski et al. [8]. For point hypotheses with
no uncertain model parameters the maximum-likelihood
approach of the F statistic is optimal in the Neyman-
Pearson sense whereby the detection probability PDE is
maximized at fixed false-alarm probability PFA. However,
even for individual pulsar detection the signal model does
include additional unknown model parameters in which
case the truly optimal approach is Bayesian and requires
marginalization over those parameters [14]. Our investiga-
tion makes use of theF statistic as our input data and hence
by association also suffers from a lack of total optimality.
However, as shown in [15] the reduction in sensitivity of
the F statistic over the fully optimal approach is slight.
For an observation time Tobs, the F statistic satisfies a χ2

distribution with four degrees of freedom (4-D) and has a
noncentrality parameter equal to the squared optimal SNR
ρ2, defined by

ρ2 ¼ 256π4ϵ2I2f4K
d2

Tobs

Shð2fÞ
ð5Þ

(note that 2f is approximately the gravitational wave
frequency) with

K ¼
X

p;q¼þ;×

αpαqFpq;

Fpq ¼
1

Tobs

Z
Tobs

0

~FpðtÞ ~FqðtÞdt: ð6Þ
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The unknown quantities defining the optimal SNR are the
ellipticity ϵ and the geometrical factors contained within
αþ;× describing the GW polarization and orientation of the
pulsar. Note that Fþþ ≠ F×× and that averaging over many
sidereal days leads to Fþ× → 0 and so such terms can be
ignored.
For αþ;× we assume that ι and ψ are distributed

according to a random orientation of the pulsar’s rotation
axis. In this case, points with coordinates (αþ, α×) are
distributed on the two-dimensional plane axisymmetrically
around the origin, with modulus

ζ≡ α2þ þ α2× ¼ 1þ 6cos2ιþ cos4ι
4

ð7Þ

and cos ι uniformly distributed between −1 andþ1. We can
write

K ¼ ζ½Fþþcos2ð2 ~ψÞ þ F××sin2ð2 ~ψÞ� ð8Þ

with ~ψ related to ψ by an offset,

4 ~ψ ¼ 4ψ − arctan
4 cos ιð1þ cos2ιÞ

sin4ι
; ð9Þ

hence uniformly distributed between 0 and 2π. In this
paper, we simply generate an ensemble of binaries using
uniformly distributed cos ι and uniformly distributed ψ .
The average of K over this ensemble is given by

hKi ¼ hζi
2

ðFþþ þ F××Þ ¼
2

5
ðFþþ þ F××Þ: ð10Þ

It was shown by CS that for the detection of a single
pulsar in a network of M detectors, the F statistic still
satisfies a 4-D χ2 distribution with a noncentrality param-
eter ρ2net ¼

P
M
i ρ2i , where ρ

2
i is the optimal single detector

SNR as defined in Eq. (5).

C. Scaling of detectability with observation time

In our idealized treatment with Gaussian noise, the
significance of detection only depends on the noncentrality
parameter ρ2, which is proportional to the observation time
Tobs. For this reason, the Tobs required for a detection with a
particular confidence level is inversely proportional to K
and ϵ2, or

Tdet ¼
Shð2fÞd2

256π4ϵ2I2f4K
ρ2� ð11Þ

with ρ� being a threshold (or a sensitivity level for ρ)
determined by the desired false-alarm probability (PFA) and
detection probability (PDE), as we discuss below.
Let us follow a frequentist approach of hypothesis testing.

Suppose X is our detection statistic, which is either a 4-D χ2

distribution or a 4-D noncentral χ2 distribution with non-
centrality parameter ρ2. Let us first impose a detection
thresholdXth onX, so thatP½X > Xthjρ2 ¼ 0� ¼ PFA, which
leads to

�
1þ Xth

2

�
e−

Xth
2 ¼ PFA; ð12Þ

where the threshold Xth is determined implicitly from PFA.
If X now has a nonzero ρ2, its probability of overcoming the
threshold becomes the detection probability, or

PDE ¼ P½X > Xthjρ2�: ð13Þ

The threshold ρ2� is determined by requiring that when
ρ2 ≥ ρ2�, Eq. (13) provides a significant PDE.

III. THE DETECTION STATISTIC
OF MULTIPLE PULSARS

In this section we extend the single-pulsar analysis
approach of Sec. II C to apply to the detection of GWs
from an ensemble of pulsars.

A. General theory

To formulate how we might detect a combination of n
nearby sources, let us consider the general problem of
distinguishing the distribution of n random variables,
(X1;…; Xn), between two probability densities pA and
pB. Suppose we have a region V, and we claim A if
ðX1;…; XnÞ ∈ V, and B otherwise. In the context of GW
detection A is without signal, while B is detection. In this
way, our false-alarm probability is

PFA ¼
Z
V
pAðx1;…; xnÞdx1…dxn; ð14Þ

where V represents not being within the region V, and our
detection probability is

PDE ¼
Z
V
pBðx1;…; xnÞdx1…dxn: ð15Þ

We then have to find the region V for which PDE is
maximized given PFA. It is possible to find that the
boundary of V should be given by

μpAðx1;…; xnÞ ¼ pBðx1;…; xnÞ: ð16Þ
This is an implicit formula: given different values of the
Lagrange multiplier μ, we arrive at regions that have
particular pairs of (PFA, PDE). For each pair, the detection
probability is the maximum possible value given PFA.
Operationally, the boundaries of all these V’s are given by
surfaces specified by Eq. (16). In other words, for data
X1;…;n, if we define the likelihood ratio
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L ¼ pBðX1;…; XnÞ
pAðX1;…; XnÞ

ð17Þ

as a detection statistic, and by imposing a threshold, we
obtain the best PDE with given PFA.
If we have various versions of B parametrized by a set of

parameters θ, we can further average over these possibil-
ities with their prior probability distributions wðθÞ, such
that

PDE ¼
Z

dθwðθÞ
Z
V
pBðx1;…; xn; θÞdx1…dxn: ð18Þ

This simply arrives at modified boundaries of V
given by

μpAðx1;…; xnÞ ¼
Z

wðθÞpBðx1;…; xn; θÞdθ ð19Þ

meaning that

L ¼
R
wðθÞpBðX1;…; Xn; θÞdθ

pAðX1;…; XnÞ
: ð20Þ

This is in fact the same as the marginal likelihood ratio (the
Bayes factor in a Bayesian approach) for obtaining the data
X1;…;n; therefore we have simply established the optimality
of the Neyman-Pearson approach in our case.

B. Multiple pulsars

In the detection of multiple pulsars, let us consider A to
be n independent 4-D χ2 distributions, and B to be n
independent 4-D noncentral χ2 distributions, with non-
centrality parameter λ1, …, λn (for simplicity, we use λ
rather than the optimal SNR ρ2). Recall that for a k-D
noncentral χ2 distribution, we have

pðk;λÞðxÞ ¼
1

2
e−ðxþλÞ=2

�
x
λ

�
k=4−1=2

Ik=2−1ð
ffiffiffiffiffi
λx

p
Þ; x > 0;

ð21Þ

where I is the modified Bessel function of the first kind.
We can then write

pAðx1;…; xnÞ ¼ pð4;0Þðx1Þ � � �pð4;nÞðxnÞ ð22Þ

and

pBðx1;…; xnÞ ¼ pð4;λ1Þðx1Þ � � �pð4;λnÞðxnÞ: ð23Þ

Following Eq. (16), for fixed values of λ1,…λn, we have

Yn
j¼1

2e−λj=2I1ð
ffiffiffiffiffiffiffiffi
λjxj

p Þffiffiffiffiffiffiffiffi
λjxj

p ¼ μ ð24Þ

as optimal boundaries of V which can also be written as

X
j

log

�
I1ð

ffiffiffiffiffiffiffiffi
λjxj

p Þffiffiffiffiffiffiffiffi
λjxj

p
�
¼ const: ð25Þ

This shows how signals should be combined resulting in
our combined detection statistic

Lopt
fix ¼

X
j

log

�
I1ð

ffiffiffiffiffiffiffiffiffi
λjXj

p Þffiffiffiffiffiffiffiffiffi
λjXj

p
�

ð26Þ

where X1;…;n are the n observables.
If each λ depends on a set parameters θ, and for each j

there is a corresponding prior distribution wjðθÞ, then from
Eq. (19), we can write

Lopt ¼
X
j

log

�Z
wjðθÞe−λðθÞ=2

I1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðθÞXj

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðθÞXj

p dθ

�
: ð27Þ

As a sanity check, if wjðλÞ ¼ δðλ − λjÞ, we recover the
previous result.

C. Special case: exponential distribution

We can further simplify the construction of the optimal
statistic, simply and arbitrarily assuming that each λj value
is drawn from an exponential distribution, or

wjðλÞ ¼
1

λj
e−λ=λj ; λ > 0; ð28Þ

where λ is the mean value of the prior distribution on λ for
each pulsar. In this case, we obtain the following closed-
form expression:

Lopt
exp ¼

X
j

log

�
eYj − 1

Yj

�
ð29Þ

with

Yj ¼
λj

λj þ 2

Xj

2
: ð30Þ

This is quite interesting: those sources with λj ≫ 2 (already
quite detectable individually) should be combined with a
similar weight, while those much less than unity should be
combined according to the expectation value of the non-
centrality parameter, λj. The latter case is discussed further
below.

D. Special case: weak-signal limit

A different way to obtain an optimal statistic is to
directly assume that we should linearly combine the F
statistic according to
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Lwopt
lin ¼

X
j

αjXj; ð31Þ

and optimize the signal-to-noise ratio, which is given by the
increase of hLwopt

lin i due to nonzero λj divided by the
variance of Lwopt

lin in the absence of signal. This leads to

αj ∝ λj

¼ f4jhKji
d2jShð2fjÞ

; ð32Þ

where the second line is valid for the known pulsars case, if
we assume the intrinsic parameter of pulsars follows the
same distribution (see the discussion in Sec. V). This can be
derived from the optimal statistic, if we assume that we are
interested in the low signal amplitude limit where the λj are
small. In this case, we can Taylor expand Eq. (27) and
obtain, at leading order,

Lwopt
lin ≈

X
j

ðXj − 2Þλj
4

ð33Þ

which is equivalent to using

Lwopt
lin ≈

X
j

αjXj; ð34Þ

which is also consistent with Eq. (29) when λj is small.
This implies that if we could tolerate a high false-

alarm probability by setting our threshold low, it is
plausible that combining the observables proportional
to the (prior) expectation value of noncentrality param-
eters would be optimal. However, as shown in Sec. IV, in
the situations we encounter, this approximation is not
quite valid.

E. Comparison with individual pulsar detection

Before we compare our strategy with existing strategies
that do not combine signals from multiple pulsars, let us
first clarify what it means to not combine signals. A careful
examination provides two possible variants.

1. Assigning equal false-alarm probability
to each pulsar

The first approach regards treating each pulsar as truly
independent, and by setting the same false-alarm proba-
bility for each pulsar—even though each pulsar is not
equally likely to provide detection. In this procedure, we
therefore set the same threshold Xth for each pulsar,
requiring

1 − PnðX < Xthjρ2 ¼ 0Þ ¼ PFA ð35Þ

and leading to the following total detection probability,

PDE ¼ 1 −
Yn
j¼1

PðX < XthjλjÞ; ð36Þ

of detecting at least one pulsar within this ensemble.

2. Assigning false-alarm probability according
to signal strength

This is clearly problematic since we have potentially
∼200 pulsars—assigning the same false-alarm value to
pulsars with dramatically different potential signal strength
is clearly wasteful. If a different threshold is set for each
pulsar, in such a way that the detection probability of an
ensemble is maximum, we then require

μ ¼
Z

wjðθÞ
pð4;λjÞ
pð4;0Þ

dθ

¼
Z

wjðθÞ
e−λðθÞ=2I1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðθÞXth

j

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðθÞXth

j

q dθ ð37Þ

where μ is a constant independent of j. As we vary μ, we
obtain a varying set of Xth

j that would provide us with the
optimal thresholds for each Xj, such that the total detection
probability of detecting a GW signal within this ensemble
is maximum given the false-alarm probability [as defined in
Eq. (35) with different Xth].

IV. MONTE CARLO SIMULATIONS
OF SIMPLE MODELS

In this section, we perform numerical investigations
of two simple models. In particular, we study the case of
constant λj first, then the case where the λj values
follow exponential distributions. This provides impor-
tant basic understanding before we move on to the
known pulsars.

A. Constant λj
In this section, we perform Monte Carlo simulations for

signals with fixed λj, the simplest case. We compare four
strategies: (i) imposing a constant threshold on all Xj

(Sec. III E 1), (ii) imposing a variable threshold on Xj,
according to Eq. (37), (iii) using a linear-combination
statistic

Llin ¼
Xn
j¼1

αβjXj ð38Þ

with various values of β, and (iv) using the optimal statistic,
according to Eq. (26).
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We have chosen

αj ¼ λj ¼
λ0
j
; j ¼ 1;…; 8; ð39Þ

which is designed to simulate an ensemble of sources that
are distributed on a two-dimensional plane. If, within
each disk with radius r, the number of sources is
proportional to r2, then for the Nth source, its distance
should be ∼

ffiffiffiffi
N

p
; therefore the noncentrality parameter

should be ∼1=N.
As we vary λ0 from 3 to 15, and fixing PFA ¼ 0.01, we

compare the detection probability. As is shown by Fig. 1,
the optimal strategy is substantially better than strategies (i)
and (ii). In particular, in order for (i) and (ii) to achieve 50%
detection probability, the noncentrality parameter must be a
factor of ∼2 stronger.
In Fig. 2, we investigate the performance of the linear-

combination statistics. For PFA ¼ 0.01, we plot PDE as a
function of the index β. It seems here that β ∼ 0.5 performs
slightly better than β ∼ 1, although the optimal β value
depends on λ0, and is located somewhere between 0.5
and 0.8.

B. Exponential distributions for λj
Let us now consider λj values that have simple expo-

nential prior distributions for which we have analytical
formulas derived in Sec. III C. This is also important
because we can test whether having the correct prior
information in constructing the detection statistic can
significantly affect detection efficiency. In particular, while
the optimal statistic seems highly dependent on the prior

distribution of λ, the linear statistic Llin is robust against a
rescaling of the distributions of all λj.
Again, to be concrete, we chose to have λj’s follow

exponential distributions, with mean values given by
Eq. (39). The detection probability with PFA ¼ 0.01 is
shown in Fig. 3 for λ0 ranging from 3 to 30. Here, we see
again that the optimal statistic is substantially better than

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96
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1

1.02

β

P
lin D

E
/P

op
t

D
E

FIG. 2. Detection probability of linear combination statistics
[Eq. (38)] compared to the optimal detection probability. Differ-
ent traces correspond to λ0 ranging from 3 to 10, and we have
fixed PFA ¼ 0.01.
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FIG. 1. Detection probability for the model given by Eq. (39),
using the optimal combined statistic (com-opt) and individual
thresholds (ind-subopt for equal thresholds, see Sec. III E 1, and
ind-opt for optimal thresholding, see Sec. III E 2). We have fixed
PFA ¼ 0.01.
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FIG. 3. Detection probability for models with λj following
exponential distributions with mean value given by Eq. (39). We
have fixed PFA ¼ 0.01. Shown here are from the optimal statistic
(com-opt), optimal statistic scaling prior distributions by 10
(com-opt-10p) and by 1=10 (com-opt-01p), linear-combination
statistic with β ¼ 1=2 (com-lin), individual pulsar detection with
optimal thresholding on each Xj (ind-opt) and individual pulsar
detection with common threshold (ind-subopt).
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individually detecting the pulsars—while a more strategic
thresholding allows some improvement.
In this case, we can see the potential benefits of the linear

statistic: when the wrong prior distributions are used (with
λj → 10λj and λj → λj=10) to compute the optimal sta-
tistic, the detection efficiency drops to a level worse than
using the linear statistic, which is independent of an overall
rescaling of all λj values.

C. Scaling with the number of sources

Let us now consider how the detection probabilities of
the various schemes scale with the number of sources. We
do this by simply extending Eq. (39) to include a variable
number of sources N.
In Fig. 4, we can see that as the number of sources

increases the detection probability of the optimal and linear
combination statistics with β ¼ 0.5 also increases. The
detection probability of individual pulsars using a common
threshold decreases, while the individual detection with
optimal thresholding also keeps increasing, but stops
increasing at a relatively low number of sources. This
can be explained as being due to the combined statistics’
ability to incorporate weaker sources without sacrificing
sensitivity.
Numerically, we can see that a substantially larger signal

strength has to be present for the individual detection
strategies. In addition, we emphasize that the linear-
combination statistic, here shown to be very close to being

optimal, is independent from an overall rescaling of the
distribution of λj ’s. The optimal thresholding, on the other
hand, does depend on the particular model of λ.

V. MONTE CARLO SIMULATIONS
FOR KNOWN PULSARS

We now discuss the case of detecting GWs from multiple
known pulsars. We start by describing the known and
unknown aspects of these sources, and then present the
setup and conclusions of our numerical simulations.

A. Known pulsars: prior distributions for λj
For the case of multiple pulsars, the noncentrality

parameter λj for each pulsar in a single detector is simply
equal to ρ2j , as given by Eq. (5). We now discuss in detail all
factors contributing to our prior knowledge of ρ2j .
The ellipticity ϵj crucially defines the level of quadrupole

deformation of the NS. At present, we have only theoretical
constraints based on the internal structure of NSs, which
span a wide range, and observational upper limits from
previous GW searches, which span the range ∼10−7 − 10−2

[2]. Our baseline assumption is that the ϵ of all pulsars
follows a common (yet unknown) distribution; this could
be motivated as arising from the belief that all these
eccentricities were generated by the same physical mecha-
nism. We note that it is plausible for Advanced LIGO to
detect at the level of ϵ ∼ few × 10−8.
The geometrical factor K depends on the inclination

angle ι, polarization angle ~ψ , and antenna patterns Fþþ and
F××; see Sec. II B. We assume no knowledge concerning
the orientation of the pulsar, therefore uniformly distrib-
uting cos ι between −1 and þ1, and uniformly distributing
~ψ between 0 and 2π. As for Fþþ and F××, they further
depend on the geographical location and orientation of the
detector, as well as the source’s declination angle (the right
ascension dependence is averaged away after many sidereal
days observation).
As noted by CS, for the network ofM detectors case, the

noncentrality parameter of each pulsar is simply

λnetj ¼
XM
i

λji; ð40Þ

B. Simulations and results

Our simulations assume one year of observation using
the network of Advanced LIGO and Virgo at design
sensitivity [16,17]. The positions and orientations of the
detectors are taken from Table I of [8]. The known pulsar
parameters (distance, sky location and frequency) used to
compute λnetj are taken from the 195 known pulsars
analyzed in the initial detection era, and we assume that
the moment of inertia I ¼ 1038 kgm2 [10]. To provide a
proof of principle of our proposed method, we assume (i) ϵ2

values follow exponential distributions with two different

0 5 10 15 20 25 30 35
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15
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30

N

λ 0

FIG. 4. Values of signal strength (λ0) at which each detection
strategy can yield detection probability of 50% (red symbols) and
90% (blue symbols), respectively, as a function of the number of
sources, N. We have used the optimal statistic (stars), linear-
combination statistic with β ¼ 0.5 (square), uniform threshold for
all sources (hollow circles) and optimal thresholding (solid
circles). Increase of λ with N in the uniform threshold case
indicates that including more sources introduces contamination
from weaker sources. We assumed exponential distributions for
λj in this plot and have fixed PFA ¼ 0.01.
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rate parameters 4 × 10−16 and 9 × 10−16, and (ii) ϵ values
follow normal distributions with mean values of
1.5 × 10−8, and 2 × 10−8 with standard deviations equal
to half of their respective mean values.
We have performed simulations to test the detection

efficiency of our proposed robust statistic Llin [Eq. (38); see
discussion in IV] via the receiver operating characteristic
(ROC) curve, which is a parametric plot of the probability
of false alarm versus the probability of detection.
The ROC curve is constructed using 105 simulations of

Xj with noncentrality parameter λnetj and 105 noise only
simulations. With the assumption of ϵ2 following the same
distribution, the αnetj is used in Eq. (38) to compute every

simulated Llin in place of αj for the M detectors case,
defined as

αnetj ¼
XM
i

αji ¼
XM
i

f4jhKji
d2jShið2fjÞ

: ð41Þ

We compare the detection efficiencies of ensemble based
strategies including the weighted-combination (β ¼ 0.5)
and equal-combination (β ¼ 0, the CS case) method, with
the individual pulsar detection strategy including the

expected brightest [the largest value of f4hKi
d2Shð2fÞ], measured

brightest (the maximum ρ2j in each simulation) case.
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FIG. 5. ROC curves for different detection methods. WA (EA), W3 (E3), W6 (E6), W50 (E50), N1 and M1 correspond to weighted
(equal) combinations of all, the expected brightest three, the expected brightest six, the expected brightest fifty, the expected brightest
and the measured brightest pulsar(s) respectively. The ϵ2 in injections were drawn from an exponential distribution with rate parameter
2 × 10−16.
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FIG. 6. Same as Fig. 5 but with ϵ following the Gaussian distribution with mean value of 1.5 × 10−8, and half of mean values as its
variance value.
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The results are first presented in terms of answers to the
following two questions: Will collecting more pulsars
return higher PDE values than an individual detection?
How many sources should be combined to obtain the
maximum PDE at given PFA? As shown in Figs. 5 and 6 for
various ellipticity distributions, the more sources are
combined, the higher PDE is for our proposed robust
statistic Llin with β ¼ 0.5, although combining the weakest
part of the population (e.g. the weakest 50 sources) will not
greatly contribute to PDE. As expected, we find that the PDE

increases when combining the first few high amplitude
sources, and then decreases for the equal-weight method
(β ¼ 0) as more and more weak sources are added to the
combination. These results are consistent with the simple
test in Sec. IV. Since we do not know the true values of all

pulsar parameters, it is interesting to ask whether the
measured brightest source or the expected brightest source
would be more detectable than any other ensemble of
sources.
Since the weighted-combination method is optimized for

the whole population of GW signals, neither the measured
brightest source nor the expected brightest one is more
detectable than the whole population. This is not the case
for the equal-weight combination method (see Figs. 5
and 6).
As shown in Fig. 7, our proposed weighted-combination

method includes the known information of all sources and
detectors; therefore combining all sources should yield a
higher PDE compared to other methods. In the case of

ϵ2 ¼ 2 × 10−16, given PFA ¼ 0.0001, the PDE ∼ 0.9 for the
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FIG. 7. ROC curves of the weighted-combination (WA), equal-combination (EA), the expected brightest (N1) and the measured
brightest (M1) detection methods for 105 signal injection simulations and 105 noise only simulations. WA and EA correspond to
weighted and equal combinations of all pulsars, respectively. The intrinsic parameter in injections was drawn from two distributions:
(i) ϵ2 follows an exponential distribution with rate parameter 2 × 10−16 (top-left panel) and 4 × 10−16 (bottom-left panel), and (ii) ϵ
follows a Gaussian distribution with mean value of 1.5 × 10−8 (top right) and 2 × 10−8 (bottom right) with standard deviations equal to
half of the mean value. Detection probability ratios (dashed lines) are shown in each panel.
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weighted-combination method is a factor of ∼2 to 4 more
sensitive than other methods (see the top-left panel of
Fig. 7). The improved performance of the weighted-
combination method over other methods appears to be
independent of the ellipticity distribution types and dis-
tribution parameter values used in our simulations.
The typical pulsar distance measurement error is ∼20%

but could be up to a factor of 2–3 larger (e.g. [18]). To test
the robustness of our proposed method, we test our
sensitivity to distance uncertainty by drawing our pulsar
distances from Gaussian distributions with mean values
equal to the best estimated distance and with a standard
deviation equal to 20% of the mean. As shown in Fig. 8, the
distance uncertainties do not change the general perfor-
mance of all methods: our proposed weighted-combination
method still is the most efficient method and improves the
PDE by a factor of ∼1.5 to 4 compared to different methods
and given PFA ¼ 0.0001. The level of improvement
decreases when the GW signals become stronger.

VI. DISCUSSION

We have proposed a novel weighted-combination detec-
tion statistic for GWs from an ensemble of known pulsars.
The aim of this approach is to improve the detection
efficiency of GWs over that of individual pulsar detection
based on the F statistic applied to single pulsars. The
general argument behind the combination detection strat-
egy is that a group of sources should be more detectable
than an individual one if they share certain characteristics.
We have shown that our general optimal statistic for the
weighted combination of GW signals outperforms all other
approaches.
We have shown that to more efficiently detect GW

signals emitted from an ensemble of pulsars, each source

within the ensemble could be assigned a different detection
statistic threshold based on the expected signal strength.
Furthermore, by assuming that the SNRs of all sources are
constant or follow exponential distributions, we have
shown that the linearly weighted-combination statistic is
very close to being optimal and is robust to the choice
of prior SNR distributions. These analytic and simple
Monte Carlo test predictions are consistent with results
obtained from simulations of known pulsars.
We have also used the ROC function to determine the

sensitivity of a range of possible search strategies where the
detection probability between approaches is compared as a
function of false-alarm probability. To demonstrate the
performance of the new weighted-combination detection
method for the advanced detectors era, we have compared
the detection efficiency of the linearly weighted-combina-
tion method versus the equal-combination and individual
detection method. We have done this by simulating GW
signals emitted from the 195 known pulsars within the
sensitive frequency band of Advanced LIGO and Virgo. We
assume that the intrinsic pulsar parameter ellipticity ϵ2

follows a common distribution in these simulations. The
true form of the ellipticity distribution and its associated
parameters are unknown. We have chosen to use both
exponential and Gaussian distributions with mean values
corresponding to ellipticities ϵ ∼ 10−8, a value consistent
with the initial GWera nondetection of pulsar signals and a
possible advanced era detection. In general, the combina-
tion methods return better detection efficiency than a
method that simply considers the closest or brightest pulsar.
Being consistent with results of simple Monte Carlo tests,
the most efficient method in simulations for known pulsars
involves combining all known pulsars with weights ∝ ρ,
the expected value of the optimal SNR of each pulsar. For
the specific case where ϵ ∼ 1.5 × 10−8, for one year
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FIG. 8. The same as for the top panels of Fig. 7 but taking into account the measured distance error. The measured distance error effect
is included by drawing “true” pulsar distances from a normal distribution with mean value equal to their current best estimates and a
standard deviation of 20% of those mean values.
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observation of the advanced detector network, we find that
PDE ∼ 0.95 given PFA ¼ 0.0001. In this case, the improve-
ment by our proposed combined method could be up to a
factor of ∼4 compared with other methods. These results
are consistent with the case of taking into account the
measurement errors of pulsar distances.
An important feature of the proposed combinationmethod

is that it is very flexible. Using the newmethod it is simple to
includemore observed pulsars or updated source information
(e.g. distance or orientation parameters), without recalculat-
ing any individual detectionF -statistic values. However, we
would expect that a fully Bayesian approach for combining
all known pulsars may be more sensitive albeit at an
increased computational cost.
The flagship known pulsar analysis within the GW

community is a Bayesian approach [6,7,15,19]. We note
that it is likely that a comprehensive Bayesian approach to
combining all known pulsars into a single analysis may
produce a truly optimal result. Besides all of the informa-
tion discussed above, one could also consider the uncer-
tainty of the major assumption (model) of this work: that all
pulsars’ ellipticity values follow a common but unknown
distribution. A hierarchical Bayesian approach would allow
us to naturally investigate the true priors governing the
distribution. In this case the form of the prior would be

represented as a possible model and the parameters
governing that distribution would be the “hype” parameters
of that model. We could also apply Bayesian model
selection to distinguish between different prior distributions
e.g. exponential vs Gaussian or power law, etc. However, it
is unclear how constraining such an analysis would be and
we hope to tackle this problem in future studies. Beyond the
detection of GWs emitted by a ensemble of pulsars, the
posterior probability of all parameters could be output from
a Bayesian approach. In future studies we hope to inves-
tigate such a Bayesian application to the detection of GWs
from the ensemble of known pulsars.
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