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Gravitational waves emitted during the coalescence of binary neutron star systems are self-calibrating
signals. As such, they can provide a direct measurement of the luminosity distance to a source without
the need for a cross-calibrated cosmic distance-scale ladder. In general, however, the corresponding
redshift measurement needs to be obtained via electromagnetic observations since it is totally
degenerate with the total mass of the system. Nevertheless, Fisher matrix studies have shown that,
if information about the equation of state of the neutron stars is available, it is possible to extract
redshift information from the gravitational wave signal alone. Therefore, measuring the cosmological
parameters in pure gravitational-wave fashion is possible. Furthermore, the huge number of sources
potentially observable by the Einstein Telescope has led to speculations that the gravitational wave
measurement is potentially competitive with traditional methods. The Einstein Telescope is a conceptual
study for a third generation gravitational wave detector which is designed to yield 103–107 detections of
binary neutron star systems per year. This study presents the first Bayesian investigation of the accuracy
with which the cosmological parameters can be measured using information coming only from the
gravitational wave observations of binary neutron star systems by the Einstein Telescope. We find, by
direct simulation of 103 detections of binary neutron stars, that, within our simplifying assumptions, H0,
Ωm, ΩΛ, w0 and w1 can be measured at the 95% level with an accuracy of ∼8%, 65%, 39%, 80% and
90%, respectively. We also find, by extrapolation, that a measurement accuracy comparable with current
measurements by Planck is possible if the number of gravitational wave events observed is Oð106–7Þ.
We conclude that, while not competitive with electromagnetic missions in terms of significant digits,
gravitational waves alone are capable of providing a complementary determination of the dynamics of
the Universe.

DOI: 10.1103/PhysRevD.95.043502

I. INTRODUCTION

The family of second generation interferometers
Advanced LIGO [1] began its operations in the last quarter
of 2015 [2]. Advanced Virgo [3] is scheduled to join the
LIGOnetwork in 2017,withKAGRA[4] andLIGO India [5]
to follow afterwards. The detection of gravitational waves
from the coalescence of merging black holes [6–8] has led
already to important scientific measurements as tests of

general relativity [8,9] and astrophysics [8,10,11]. Given the
expected number of yearly detections [8,12,13], the expect-
ations on the scientific deliverables are high: tests of the
strong field dynamics of general relativity [8,9,14–16], a
“cosmic distance scale ladder”-free determination of the
Hubble constant [17–19], and a determination of the neutron
star equation of state [20–23].
Detectors beyond the second generation are already

being envisaged. For instance, the Einstein gravitational
wave Telescope (ET) [24] is a proposed underground
detector consisting of three 10 km arm length Michelson
interferometers in a triangular topology with opening
angles of 60 degrees [25]. The strain sensitivity is estimated
as a factor of 10 better than second generation detectors,
down to frequencies of 1–3 Hz depending on the actual
configuration of the instrument [26]. The high sensitivity
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promises the detection of a very large number of gravita-
tional waves (GW) signals with large signal-to-noise ratios
(SNR), thus allowing for unprecedented population studies
as well as extremely accurate measurements of the physical
parameters of coalescing binary systems [24].

A. Cosmological inference with gravitational waves

When estimating the parameters of GW sources, and in
particular the coalescences of binary neutron stars and black
holes, the luminosity distance can be observed directly
[27,28]. ThismakesGWan ideal laboratory to place samples
in the Hubble diagram in a manner that is free from the
potential systematics affecting electromagnetic (EM) meth-
ods. Unfortunately, in the vast majority of cases, the redshift
cannot be measured from GW alone and this piece of
information needs to be extracted by means other than GW.
In recent years, various proposals have been put forward

to overcome this difficulty. For instance, one can assume
that the coalescences of compact binaries are the progeni-
tors of short gamma ray bursts (sGRBs) [29]. In this case,
coincident observations of a GWevent and the correspond-
ent sGRB would allow the measurement of the luminosity
distance from GWand the redshift from spectroscopy of the
host galaxy [17,30–32].1 For second generation interfer-
ometers, this method indicates a relative accuracy on the
measurement of the Hubble constantH0 of a few percent in
the case where 10–15 such events are detected. However,
whether the coalescences of compact binaries are the
progenitors of sGRBs is still a matter of debate. Also,
the fraction of GW events also observable as sGRBs might
be as low as 10−3 [35] due to sGRB beaming effects.
An alternative approach, following broadly the argument

first given in Ref. [27], would be to statistically identify the
possible host galaxies of a GWevent to obtain a distribution
of possible redshifts associated with each GW detection.
This method should yield ∼5% percent accuracy on H0

using 20–50 events [18] observed by Advanced LIGO/
Virgo. A similar methodology has also been applied to
space-based detectors [36,37].
A few methods aim at extracting the redshift using GW

observations alone. For example, one can use the knowl-
edge of the (rest frame) mass function of NS and the
measured (redshifted) mass to infer the redshift of the
source [19,38]. In this framework, second generation
interferometers should infer the Hubble constant H0 with
∼10% accuracy using about 100 events [19].
The results of advanced interferometers can be greatly

improved by third generation instruments such as ET. In
fact, ET can probe regions of the Universe where the effects

of the dark energy will be substantial, thus allowing an
independent sampling of the cosmic history.
The potentialities of ET have already been investigated

by various groups [30,31,39], concluding that, when only a
limited set of cosmological parameters is considered, the
accuracy of the inference is comparable to that of current
EM measurements.

B. Outline

In this paper, we will expand on the approach proposed
by Messenger and Read [40] in which if one of the two
components is a NS, information about the equation of state
(EOS) allows a direct measurement of the rest-frame
masses and thus of the source redshift [40]. Using
Fisher matrix formalism, the authors estimate the accuracy
with which z can be measured to be∼8–40%, depending on
the EOS and on the distance to the source. Recently, a
similar investigation was carried out in [41] using a more
realistic Monte Carlo data analysis method. The authors
concluded that the average uncertainty is closer to 40% for
a hard EOS and essentially independent of redshift.
Nevertheless, given the large number of sources that can

be observed by ET and the possibility of combining
information across them, even the large uncertainty reported
in Ref. [41] could be sufficient to obtain interesting
indications on the accuracy with which ET will measure
the cosmological parameters. In this paper, we explore this
idea in a simplified scenario and conclude that ET can indeed
set bounds that are comparable to current EMmeasurement.
We are interested in the cosmological information that can
be inferred exclusively from the observation of gravitational
waves. We will thus not discuss the potential of coincident
GW-EM detections which are presented elsewhere [31,39].
We note here that, because of the colocation of the three ET
interferometers and because of its topology, its expected sky
resolution is extremely poor. Consequently, the probability
of a successful EM-GW association is a priori very small.
Note that at the time of ET, second generation detectors are
expected to be operational with improved sensitivities [42].
For a substantial fraction of the loudest GWevents, the sky
localization from a network made of ET and advanced
detectors will be vastly improved compared to ET alone. In
this case, some of the aforementioned EMþ GW methods
might become feasible and used to yield constraints on the
cosmological parameters.
The rest of the paper is organized as follows. In Sec. II we

cast the problem in a Bayesian framework, and identify the
necessary components to arrive at the cosmological infer-
ence. In Sec. III we describe the procedures of simulating
GWevents and the detector noise, and the implementation of
the analysis. In Sec. IV we present the results of our
simulations and finally in Sec. V we summarize and discuss
our results. The mathematical solution to the problem of the
inference of the cosmological parameters in the presence of a
detection threshold is given for completeness in the
Appendix.

1Kilonovae are also expected EM counterparts to binary
neutron star (BNS) coalescences [33]. However their utility as
cosmological probes is yet unclear due to their intrinsically faint
luminosities (e.g. [34]) which limits the distance at which they
can be confidently detected.
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II. METHOD

In this section we present a Bayesian solution to the
problem of computing posterior probability density func-
tions for a set of cosmological parameters from GW data.
We broadly follow the presentation in [18]. Note that the
treatment is not specific to the case of ET.

A. Inference of the cosmological parameters in the
absence of a detection threshold

Consider a catalogue of GW events E ≡ fϵ1;…; ϵNg.
Each event is defined as a stretch of data diðtÞ given by
the sum of noise niðtÞ and a gravitational wave signal

hið ~Θi; tÞ, i.e.
ϵi∶ diðtÞ ¼ niðtÞ þ hið~Θi; tÞ; ð1Þ

where ~Θi indicates the set of all parameters of the signal i.
The noise is taken to be a stationary Gaussian process

with a zero mean and covariance defined by its one-sided
spectral density SnðfÞ such that

pðnijIÞ ∝ exp

�
−
1

2

Z
∞

0

df4
j ~niðfÞj2
SnðfÞ

�
;

∝ exp

�
−
1

2
ðnjnÞ

�
ð2Þ

where I represents all the relevant information for the
inference problem, a tilde represents the Fourier transform,
and where we have introduced a scalar product between
two real functions AðtÞ and BðtÞ as

ðAjBÞ ¼ 4ℜ
Z

∞

0

df
~A�ðfÞ ~BðfÞ
SnðfÞ

: ð3Þ

The likelihood of observing the event ϵi is then given by

pðϵij ~Θi; S; IÞ ∝ exp

�
−
1

2
ðdi − hijdi − hiÞ

�
ð4Þ

where S is the signal model that relates the signal

parameters ~Θi to a gravitational wave signal h.
Moreover, the signal-to-noise ratio (SNR) ρ can be suc-
cinctly written as

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

p
: ð5Þ

The posterior distribution for any parameter in our signal
model S is related to the likelihood in Eq. (4) through the
application of Bayes’ theorem

pð~Θijϵi; S; IÞ ∝ pð~ΘijS; IÞpðϵij ~Θi; S; IÞ ð6Þ
where pð~ΘijS; IÞ is the prior probability distribution for

the parameters ~Θi. When multiple independent detectors
are included in the analysis, the likelihood [Eq. (4)]
generalizes to

pðϵij ~Θi; S; IÞ ¼
Y
k

pðϵðkÞi j ~Θi; S; IÞ: ð7Þ

For this work, we are only interested in the posterior

probability for a subset of parameters ~Ω≡ fH0;Ωm;
ΩΛ;…g. Therefore, we marginalize over the remaining

subset of parameters ~θi, i.e.

pð ~Ωjϵi; S; IÞ ¼
Z

d~θipð~Θijϵi; S; IÞ

¼
Z

d~θipð~θi; ~ΩjS; IÞpðϵij~θi; ~Ω; S; IÞ

¼ pð ~ΩjS; IÞ
Z

d~θipð~θij ~Ω; S; IÞpðϵij~θi; ~Ω; S; IÞ

¼ pð ~ΩjS; IÞLðϵi; ~ΩÞ; ð8Þ

where we have introduced the so-called “quasi-likelihood”
[43]

Lðϵi; ~ΩÞ≡
Z

d~θipð~θij ~Ω; S; IÞpðϵij~θi; ~Ω; S; IÞ: ð9Þ

Finally, the posterior for ~Ω given an ensemble of events E
can be shown to be

pð ~ΩjE; S; IÞ ¼ pð ~ΩjS; IÞ
Y
i

Lðϵi; ~ΩÞ: ð10Þ

Therefore, in order to obtain the posterior for ~Ω, we need to
perform a multidimensional integral in Eq. (9) for each of
the GW events. The description of this procedure and the
generation of data follow in Sec. III.

III. ANALYSIS

In this section we describe the simulation that was
performed. Firstly, we outline the generation of the data,
consisting of the GW signal model, the astrophysical and
cosmological assumptions regarding the source population,
and the simulation of the detector noise. Secondly, we show
the data analysis implementation with which the simulated
data were analyzed. In particular, we describe the con-
struction of the quasi-likelihood, and it subsequent use to
arrive at our cosmological inference. The GW signals and
the detector noise have been generated using the LIGO
Analysis Library (LAL) [44].

A. Astrophysical and cosmological assumptions

The NS masses are distributed according to a Gaussian
distribution with a mean of 1.35M⊙ and a standard
deviation of 0.15M⊙ [45] which is assumed constant
throughout the cosmic history. For the NS equation of
state we consider three cases: a hard EOS, a medium
and a soft EOS. They are labeled as MS1 [46], H4 [47]

COSMOLOGICAL INFERENCE USING ONLY … PHYSICAL REVIEW D 95, 043502 (2017)

043502-3



and SQM3 [48]. We investigate these three cases since in
[40] it was shown that the accuracy with which the redshift
can be measured depends on the magnitude of the physical
effects related to the details of the EOS. One can think of
these three cases as an optimistic, a realistic and a
pessimistic one, respectively.
The events are distributed uniformly in the cosine of the

inclination, polarization and time of arrivals. The events are
also uniformly distributed in comoving volume. Their
redshifts are sampled from the probability density given
by [49]

pðzj ~ΩÞ ¼ dRðzÞ
dz

1

RðzmaxÞ
ð11Þ

where RðzÞ is the cosmic coalescence rate. It is worth

nothing that pðzj ~ΩÞ is an explicit function of ~Ω.
The differential cosmic coalescence rate is equal to

dRðzÞ
dz

¼ dV
dz

r0eðzÞ
1þ z

ð12Þ

where r0 is the local rate, eðzÞ is the cosmic star formation
rate and V is the comoving volume. In a Friedmann-
Lemaître-Robertson-Walker (FLRW) universe, the rate of
change of V with z is given by

dV
dz

¼ 4π
D2

LðzÞ
ð1þ zÞ2HðzÞ ; ð13Þ

where we have introduced the Hubble parameter

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ Ωkð1þ zÞ2 þ ΩΛEðz; wðzÞÞ

q

ð14Þ

and the luminosity distance [50]

DLðzÞ ¼

8>>>>><
>>>>>:

ð1þzÞffiffiffiffi
Ωk

p sinh
h ffiffiffiffiffiffi

Ωk
p R

z
0

dz0
Hðz0Þ

i
for Ωk > 0

ð1þ zÞ R z
0

dz0
Hðz0Þ for Ωk ¼ 0

ð1þzÞffiffiffiffiffiffi
jΩkj

p sin
h ffiffiffiffiffiffiffiffiffijΩkj
p R

z
0

dz0
Hðz0Þ

i
for Ωk < 0

: ð15Þ

H0 is the Hubble constant, Ωm is the matter fractional
density, ΩΛ is the fractional energy density of dark energy,
and Ωk ¼ 1 −Ωm −ΩΛ is the curvature. Finally

Eðz; wðzÞÞ ¼ ð1þ zÞ3ð1þw0þw1Þe−3w1z=ð1þzÞ ð16Þ

is a convenient parametrization to capture the effects of

the redshift evolution of dark energy [51]. For ~Ω we chose
fiducial values of

ðh;Ωm;ΩΛ;Ωk; w0; w1Þfid ¼ ð0.7; 0.3; 0.7; 0;−1; 0Þ; ð17Þ

where h ¼ H0=100 kmMpc−1 s−1. Even though the ET
horizon distance is ≃37 Gpc (z≃ 4.15 for our fiducial
cosmology), we limit our analysis to zmax ¼ 2 as this
corresponds approximately to the sky averaged horizon
distance of 13 Gpc for BNS systems [52]. For simplicity,
we decided to assume a star formation rate eðzÞ that does
not change with redshift and is therefore irrelevant for
our problem.
We simulated 1,000 binary NS events as observed by ET.

The parameters θi of each individual source have been
generated according to the assumptions described in

Sec. III A. The corresponding waveform ~hðf; ~ΘiÞ was then
added to Gaussian noise which is colored according to the
amplitude spectral density shown in Fig. 2. In Fig. 1 we
show the network SNR distribution in the ET detector
computed using Eq. (5).
Differently from most existing literature, we do not filter

our sources with any SNR threshold. If we were to do so,
we would be introducing a selection bias [53]. Note that,
due to the potentially large number of sources observed by
ET and their distribution in a comoving volume, the vast
majority of them will in practice not be detected in a search
which uses the SNR as decision statistics. It is known that
ignoring these unregistered sources leads to a significant
bias in the estimation of “global” parameters; see [53].
The main reason for the emergence of biases is inti-

mately linked to the functional form for the prior on z,
Eq. (11). Since Eq. (11) quantifies the prior expectation
regarding the distribution of sources in the comoving

volume, it is an explicit function of ~Ω. The quasi-like-
lihoods for the majority of our simulated events are almost

uniform in ~Ω (see Sec. III C 2); therefore our inference is
greatly influenced by the prior distribution: if one were to
analyze sources that are louder than some threshold SNR
the overall population of events would appear on average

FIG. 1. Network SNR distribution of the 1,000 BNS events
generated sampling Eqs. (11) and (13) for a our fiducial
cosmology Eq. (17).
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closer than the actual population. At the same time, the
observed distribution of z would follow the actual cosmo-

logical distribution. Since pðzj ~ΩÞ in Eq. (11) relatesDL and

z via ~Ω, this leads to estimates of Ωm → 1 and h → 0.
Similarly, if one were to consider only events that are
quieter than a given SNR threshold, then Ωm → 0 and
h → 1, and thus ΩΛ → 1. In the Appendix, we give a

mathematical solution to the problem of inferring ~Ω that
accounts for sets of unobserved events. However, the
solution in the Appendix is not computationally treatable
with current techniques and for a large number of events;
therefore we opted for a SNR selection threshold of 0 and
analyzed all simulated events. Furthermore, our choice
relies on the capacity of distinguishing between low SNR
GW signals and low SNR background events due to noise
in the detector. A discussion of this problem can be found in
[53]. The triangular configuration of ET provides an
additional tool to study the distribution of signal and noise
in low SNR events. Thanks to its topology, ET admits the
construction of a null stream which is devoid of any GW
signal as the sum of the outputs of the individual Michelson
detectors [25]. Being a pure noise process, the analysis of
the null stream can be used to understand the SNR
distribution of noise events which can then be used to
infer the SNR distribution of quiet sources.

B. The signal model

In the previous paragraph we introduced the signal model
S without specifying its properties. In this section, we lay out
the assumptions that go into the construction of S.
In modeling the GW from a binary system, we limit our

analysis to the inspiral phase of the coalescence process.
We model the inspiral using an analytical frequency
domain 3.5 post-Newtonian waveform in which we ignore
amplitude corrections and the effects of spins. This is not a
big limitation as NS are expected to be slow rotators [54].
In particular, we use the so-called TaylorF2 approximant
[55], which can be written as

~hð ~Θ; fÞ ¼ Að ~ΘÞf−7=6eiΦð~Θ;fÞ; ð18Þ

where the waveform is written in terms of the amplitude

Að~ΘÞ and the phase Φð ~Θ; fÞ.
The amplitude of the waveform Að~ΘÞ is given by

Að ~ΘÞ ∝ M5=6

DL
Qðι;ψ ; α; δÞ ð19Þ

where we have introduced the chirp mass M ¼ m3=5
1 m3=5

2 =
ðm1 þm2Þ1=5; DL is the luminosity distance defined in
Eq. (15); ðα; δÞ signify the sky position of the source; and
ðι;ψÞ give the orientation of the binary with respect to the
line of sight [55].

The wave phase can be written in the form

Φð~Θ; fÞ ¼ 2πftc − ϕc −
π

4

þ
X7
n¼0

½ψn þ ψ ðlÞ
n ln f�fðn−5Þ=3; ð20Þ

where the ψn are the so-called post-Newtonian coefficients
(see e.g. [56]), which are functions of the component
masses m1 and m2, and ðtc;ϕcÞ are the time and phase of
coalescence. Note that all masses are defined in the
observer frame, and the rest frame mass mrest is related
to the observed mass through

m ¼ mrestð1þ zÞ; ð21Þ
where z is the redshift of the GW source.
The description of the phase in Eq. (20) assumes that the

object is a point particle, and thus cannot be tidally
deformed. However, since we consider all of our events
are binary NS coalescences, we modify the gravitational
wave phase in Eq. (20) by including the finite-size con-
tributions to the phase. These in turn depend on the tidal
deformability λðmrestÞ [21] of the star which is a function of
its equation of state and its rest frame mass. The finite-size
contributions to the GW phase, as a function of observed
masses, are given by

Φtidalð~Θ; fÞ ¼
X2
a¼1

3λað1þ zÞ5
128ηM5

�
−
24

χa

�
1þ 11η

χa

�
ðπMfÞ5

−
5

28χa
ð3179 − 919χa − 2286χ2a

þ 260χ3aÞðπMfÞ7
�
; ð22Þ

where the sum is over the components of the binary,
χa ¼ ma=M, λa ¼ λðmaÞ where ma are the component
masses, M is the total mass, and η ¼ m1m2=M2.
Knowledge of the EOS and using information encoded

in the GW tidal phase contribution allows us to measure the
redshift of the source [40]. While the EOS is not known yet,
various studies have shown that it could be possible to infer
it from observations of BNS with second generation
detectors [20–23,57,58]. In what follows, we will assume
that the nature of the NS interior is known.

C. Data analysis

For our analysis, we assumed a noise curve for ET
corresponding to the “B” configuration [59], corresponding
to the projected sensitivity achievable with the current
technologies (see Fig. 2). Given the anticipated rates of
compact binary coalescences [13], the detection rates of
binary NS systems in ET are expected to lie in the range
103–107 yr−1 [24].
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The parameters ~θ of our signal model are the component
masses m1 and m2, inclination ι, polarization ψ , right
ascension α and declination δ, the time of coalescence tc,
the phase of coalescence ϕc, luminosity distance DL and
the redshift z. In our analysis we ignored the presence of
spins, as it is believed to be small in binary NS systems
[54]. We analyzed our ensemble of sources assuming that
the EOS of the NS is known, thus accounting for a total of
three analysis runs (one for each of our predefined hard,
medium and soft EOSs). To obtain the posterior probability

distribution on the cosmological parameters ~Ω we pro-
ceeded in three steps. Firstly, we analyzed each source to
compute a quasi-likelihood as a function of the redshift z
and the luminosity distance DL. Secondly, these quasi-
likelihoods are then converted into quasi-likelihoods as a

function of the cosmological parameters ~Ω as shown in
Eq. (9). Finally, the posterior probability function for the
cosmological parameters given an ensemble of events is
computed from Eq. (10).

1. Obtaining the quasi-likelihood

For each event ϵi, we compute the quantity

Lðϵi; DL; z; ~ΩÞ≡
Z

d~λpð~λj ~Ω; S; IÞpðϵij~λ; ~Ω; S; IÞ ð23Þ

that is a partially marginalized quasi-likelihood, where the
marginalization is done on all parameters that are not

relevant to the inference of ~Ω. These are ~λ≡ ðm1; m2;ψ ; ι;
ϕc; tc; α; δÞ. The further marginalization over z and DL will
be described later on. For the time being, let us describe
the details of the analysis for the computation of Eq. (23).
The above integral was computed using a nested sampling
algorithm [60] implemented similarly to what was
described in [61]. For each of the three analysis runs,
we chose the same prior probability distributions for all

parameters, with the exception of the component masses.
For the common parameters we used uniform probability
distributions on the 2-sphere for sky position ðα; δÞ and
orientation ðψ ; ιÞ and uniform in the time of coalescence tc
with a width of 0.1 seconds around the actual coalescence
time. For the first marginalization, we choose uniform
sampling distributions for bothDL and z in the intervals [1,
105] Mpc and [0,2], respectively.
For the component masses, the priors were different

across the different runs; each EOS in fact predicts not only
the functional form of the tidal deformability λðmÞ that
enters in the phase of the GW waveform, but also the
maximum permitted mass of the NS itself. Therefore, for
the three EOSs under consideration we used the maximum
expected rest frame massMmax of 2.8, 2.0, 2.0M⊙ for MS1,
H4 and SQM3 respectively. The prior probability distri-
bution for the component masses was then chosen to be
uniform between 1M⊙ and Mmax.

2. Cosmological inference

The marginalization over the redshift and luminosity
distance was then performed as follows: once a cosmo-
logical model is introduced, z and DL are not independent
parameters anymore; they are related unequivocally by
Eq. (15). Thus—after some algebra which can be found in
[18]—we are left with the following integral to compute,

Lðϵi; ~ΩÞ ¼
Z

zmax

0

dzpðzj ~Ω; SIÞLðϵi; DLðzÞ; z; ~ΩÞ; ð24Þ

where pðzj ~Ω; SIÞ is given in Eq. (11) and we choose,
consistently with the source’s generation, zmax ¼ 2.
One of the problems we needed to overcome in order to

perform the integral in Eq. (24) was how to represent

Lðϵi; DLðzÞ; z; ~ΩÞ in a tractable way. In fact, one of the
outputs of the nested sampling algorithm is a set of samples
drawn from the integrand in Eq. (23) which is difficult to
manipulate—in particular difficult to integrate—without
making any assumptions about the underlying probability
distribution.
A possible treatment of the problem would be to use

the samples from Eq. (23) and approximate it using a
normalized histogram. This procedurewas successfully used
in other unrelated studies [14]; however, for our purposes it is
not accurate enough. In fact, a histogram representation is
dependent on a parameter, the bin size (or equivalently the
number of bins once the range is specified), which cannot be
inferred from the data but has to be chosen arbitrarily. The
majority of the quasi-likelihoods in Eq. (24) tend to be very
uniform over the cosmological parameter space for individ-
ual sources and, as noted in Sec. III A, the inference is
strongly dominated by the prior on z. Most sources are close
to or below the detection threshold of the detector. Thus a
single source, in general, yields very little information about
the underlying cosmology. Therefore any small fluctuation in
the histogram approximation due to the random variation of

FIG. 2. Amplitude spectral density for ET in the “B”
configuration.
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the number of samples in any specific binwould be amplified
and would eventually lead to a biased estimate of the

posterior probability density for ~Ω. As an example, compare
the panels in Fig. 3. The left panel shows samples from
Eq. (24) for a source having a network SNR ¼ 25. In this
case, the isoprobability contours are almost consistent with a
normal distribution. The right panel shows instead a source
with network SNR ¼ 4. In this case the samples are almost
uniformly distributed; thus if one were to approximate
Eq. (24) with a two-dimensional histogram, different choices
of the bin size would result in different approximations,

whichwould yield very different inferences of ~Ω. Instead,we
decided to follow a different course of action. Given a set of
samples, for any partition of the parameter space, the
resulting probability distribution of the observations is
always a multinomial distribution; therefore the “probability
distribution” of the occurrences in each bin is a Dirichlet
distribution. The above property defines a Dirichlet process
[62] which can be used to define an analytical representation
of the underlying probability distribution of which we have
only a finite number of samples available. For the math-
ematical details and definitions, the reader is referred to the
original paper by Ferguson [62] or to the more recent
discussions in [63]. We used the approximate variational
algorithm [64] as implemented in [65] to find the Dirichlet
processGaussianmixturemodel to represent the integrand in
Eq. (24). The output of this procedure is an analytical
representation of the target probability distribution as an
infinite mixture of Gaussian distributions which is analytical
and continuous. This form can then be used as the integrand
in Eq. (24) and the integral itself can be evaluated using
another nested sampling algorithmwhose output can then be

combined to compute the posteriors for ~Ω, Eq. (10).
For this last marginalization, we assume priors on ~Ω that

are uniform in all parameters. In particular, h ∈ ½0.1; 1.0�,

Ωm ∈ ½0.0; 1.0�, ΩΛ ∈ ½0.0; 1.0�, w0 ∈ ½−2; 0� and finally
w1 ∈ ½−1; 1�.

IV. RESULTS

For each of the equations of state assumed we considered
various scenarios within the set of ðh;Ωm;ΩΛ; w0; w1Þ.
We show posterior distributions for the cosmological
parameters obtained from the joint analysis of 1,000 events.

FIG. 3. Sample marginal likelihoods [Eq. (23)] for z andDL. The left panel shows the marginal likelihood for an event with a network
SNR ¼ 25. The right panel shows the marginal likelihood for an event with a network SNR ¼ 4. On both panels, the lines indicate the
source distance and redshift.

FIG. 4. Posterior distributions for h and Ωm obtained from the
analysis of 1,000 BNS events for a flat universe (Ωk ¼ 0) and no
dark energy equation of state. In the one-dimensional posteriors
the dashed lines indicate the 2.5%, 50% and 97.5% confidence
levels. In the two-dimensional posterior distribution we show the
68%, 95% and 99% confidence regions. On all panels the solid
(blue) lines indicate the fiducial values.
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We also report confidence intervals from the number of
events greater than 1,000 obtained via extrapolation.
Moreover, since all EOSs yield very similar results, we

choose to report only posteriors for the cosmological
parameters obtained from the MS1 equation of state.
We computed posterior distribution functions for three

distinct cases:
(i) flat FLRW universe, Fig. 4;
(ii) general FLRW universe, Fig. 5;
(iii) general FLRW universe, with dark energy parame-

ters, Fig. 6.
In the following subsections we report on the values of

the various cosmological parameters in each different
cosmological model we considered. We note here that,
as expected, the accuracy of the cosmological parameters
measurement is better for the flat case and gets progres-
sively worse with the increasing dimensionality of the
model under consideration. Also, all uncertainties we report
are at the 95% confidence level.
Posterior distributions on the parameters of all cosmo-

logical models from the analysis of 103 BNS events are
reported in Figs. 4, 5 and 6.
Depending on the actual astrophysical rate, ET will

observe between 103 and 107 BNS events per year [24]. It is
computationally unfeasible at the moment to simulate and

analyze in a realistic way such a large number of events. We
therefore extrapolated the results we obtained for 1,000
sources to the maximum expected number of events. We
assumed that the central limit theorem holds; in other words
that our posteriors for 103 events are approximately
Gaussian, and simply scaled the variance of the one-
dimensional posteriors by the number of sources N.
Tables I, II and III show the extrapolation of the 95%
widths (2σ) to a number of events ranging from 104 to 107

for all relevant parameters for each of the cosmological
models we considered in our analysis.

A. H0

We find that 103 BNS observations yield the following
results: for the model (i) the accuracy is 0.05 (7%) which
remains approximately constant in the case (ii) and worsens
to 0.08 (11%) in the general case (iii). In comparison with
other GW studies, we find our measurements to be
significantly worse. For instance [18] reports a 95%
accuracy of ∼10% with second generation interferometers
and similarly so do [32] and [38]. In comparison to
traditional methods, the most constraining measurement
from the Planck experiment in conjunction with other
methods reports an accuracy of ∼0.5% [66]. So with 103

GW sources current measurements are far more accurate

FIG. 5. Same as Fig. 4, but for a general FLRW universe.
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than those obtained with our method using ET. However,
when extrapolating to the potential number of observable
BNS systems, we find the Planck-like accuracy is reached
with ∼105 BNS observations. A further order of magnitude
improvement is seen for 107 BNS observations; see Table I.

B. Ωm and ΩΛ

We find that with 103 BNS events Ωm can be measured
with an accuracy of 0.125 (47.5%), 0.135 (45%) and 0.19
(65.5%) for the models (i), (ii) and (iii) respectively. The
above numbers compare very unfavorably with the ∼2%
yield by Planck [67]. However, if more sources are

observed the current accuracy is reached with 106–7

sources, depending on the actual cosmological model.
The situation is similar for the measurement of the

cosmological constant ΩΛ. With 103 BNS observations we
find an accuracy of 0.23 (37.5%) and 0.275 (39%) for the
models (ii) and (iii) respectively. As a comparison Planck
reports∼0.9% [66].However, a similaruncertainty is reached
with 106–7 sources. The results are summarised in Table II.

C. Dark energy parameters

In the case in which the DL − z relation is modified
to allow for a time varying cosmological constant

FIG. 6. Same as Fig. 4, but for a general FLRWuniverseþ DEparameters.
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[see Eq. (16)], the parameters w0 and w1 were included in
the model. From the analysis of 103 events, at 95%
confidence, we find Δw0 ¼ 0.8 and Δw1 ¼ 0.9. In com-
parison, assuming 103 BNS events with optical counter-
parts and electromagnetic priors on the remaining
cosmological parameters [31] finds Δw0 ≈ 0.1 and
Δw1 ¼ 0.3. The most recent determination by Planck
[67] of the parameters w0 and w1 reports Δw0 ≈ 0.2 and

Δw1 ≈ 0.5. Extrapolation to the potential number of
sources observable in 1 year shows that the accuracy on
w0 and w1 can be improved by 2 orders of magnitude, thus
1 order of magnitude better than the current best estimates;
see Table III. It is worth noting that the posterior distri-
butions for w0 and w1 are not very Gaussian; therefore the
extrapolations to a large number of events might not be as
reliable as for the other cosmological parameters.

TABLE II. 95% accuracies on the measurement of the matter energy density Ωm and the cosmological constant
ΩΛ for various detected numbers of sources for the general five parameter case. For 103 sources, the widths have
been computed using our nested sampling algorithm; otherwise the widths are the result of an extrapolation.

ΔΩm
N

Model 103 104 105 106 107

Flat FLRW 1.3 × 10−1 4.0 × 10−2 1.3 × 10−2 4.0 × 10−3 1.3 × 10−3

General FLRW 1.3 × 10−1 4.2 × 10−2 1.3 × 10−2 4.2 × 10−3 1.3 × 10−3

General FLRWþ DE 1.9 × 10−1 0.6 × 10−1 1.9 × 10−2 0.6 × 10−2 1.9 × 10−3

ΔΩΛ
N

Model 103 104 105 106 107

General FLRW 2.3 × 10−1 0.7 × 10−1 2.3 × 10−2 0.7 × 10−2 2.3 × 10−3

General FLRWþ DE 2.8 × 10−1 0.9 × 10−1 2.8 × 10−2 0.9 × 10−2 2.8 × 10−3

TABLE III. 95% accuracies on the measurement of the dark energy parameters w0 and w1 for various detected
numbers of sources. For 103 sources, the widths have been computed using our nested sampling algorithm;
otherwise the widths are the result of an extrapolation.

Δw0

N

Model 103 104 105 106 107

General FLRWþ DE 0.8 × 100 2.5 × 10−1 0.8 × 10−1 2.5 × 10−2 0.8 × 10−2

Δw1

N

Model 103 104 105 106 107

General FLRWþ DE 0.9 × 100 2.9 × 10−1 0.9 × 10−1 2.9 × 10−2 0.9 × 10−2

TABLE I. 95% accuracies on the measurement of the reduced Hubble parameter for various detected numbers of
sources for the general five parameter case. For 103 sources, the widths have been computed using our nested
sampling algorithm; otherwise the widths are the result of an extrapolation.

Δh
N

Model 103 104 105 106 107

Flat FLRW 0.5 × 10−1 1.6 × 10−2 0.5 × 10−2 1.6 × 10−3 0.5 × 10−3

General FLRW 4.6 × 10−2 1.5 × 10−2 4.6 × 10−3 1.5 × 10−3 4.6 × 10−4

General FLRWþ DE 0.8 × 10−1 2.5 × 10−2 0.8 × 10−2 2.5 × 10−3 0.8 × 10−3
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V. DISCUSSION

In this study we investigated the potentialities of BNS
observations with ET as cosmological probes. In particular,
we quantified the cosmological information that can be
extracted from pure GW observations of BNS. The ingre-
dient that allows the measurement of the redshift is the
knowledge of the NS equation of state and thus of the NS
tidal deformability.
We simulated 1,000 events and relied on extrapolation to

the expected 104–107 events per year. The main result of
this study is that from GW alone, ET could measure all
cosmological parameters with an accuracy that is compa-
rable with current state-of-the-art measurements from EM
missions.
This is the very first study of this kind, and therefore it

should be regarded as a proof of principle. Our analysis relies
on a set of simplifying assumptions which should be
progressively relaxed for a comprehensive investigation.
We neglected the NS spins and eventual precession of the
orbital plane.We do not expect this to be a serious limitation,
since NSs are expected to be slow rotators [54]; however it is
not clear how a small degree of precession would impact the
analysis of ET data. There is evidence that for binary black
holes andNSblackhole binaries accounting for precessionof
the orbital plane leads to more accurate distance measure-
ments [68]. If a redshift measurement can be associated to
these classes of sources, the determination of ~Ω would
improve substantially, also thanks to the considerably larger
volume that is observable by ET.
Due to its low frequency sensitivity, BNS signals in the

local Universe (z < 1) will be in the ET sensitive band for a
time scale of hours to days, depending on the observer
frame masses. It is clear that this problem cannot currently
be investigated using a fully realistic simulation since the
generation of the most accurate waveforms and cutting
edge data analysis algorithms are not yet sufficiently fast.
A further complication arises from the number of signals
itself; a detection rate of 107 events per year implies an
average time delay between signals of ∼3 seconds. Given
the duration of the signals in the band, it follows that
several signals would be present simultaneously in the ET
data stream at any given time. No systematic study or
algorithm yet exists to investigate this problem.
We further assumed perfect knowledge of the NS EOS.

While there are indications that second generation inter-
ferometers could measure the EOS [20–23], it is unlikely
that we would know it without any form of uncertainty.
However, we do not consider this a serious limitation as
long as the error bar on any given value of the NS mass m
and its tidal deformability λðmÞ is sufficiently small to
avoid confusion between different EOSs. Moreover, we did
not include in our analysis the merger part of the waveform,
which, especially for the most distant sources, would be in
the sensitive band of ET. The inclusion of the merger in the
analysis would yield more information about the BNS mass

and spin parameters as well as introducing a possible
further constraint on the BNS redshift [69], allowing for
more precise measurements.
A further element that deserves future investigation is

the effect of detection thresholds. We give a formal solution
to the problem of the inference of the cosmological
parameters in the Appendix. However, we did not explore
the details of its practical implementation, which we defer
to a future study.
We ignored the effects of the detector calibration

uncertainties over the inference of the GWevent parameters
as well as their impact over the global inference of ~Ω. At the
end of the first observing run of Advanced LIGO, typical
amplitude uncertainties (which are relevant for the deter-
mination of DL) and phase uncertainties (relevant for the
estimation of z) were estimated at ∼10% and 10 degrees,
respectively [70]. Simulations indicate that ignoring the
presence of such calibration errors does not lead to
significant bias in the estimation of the GW parameters,
as long as the SNR is not very large [71]. However, data
analysis models for GW analysis that marginalize over
calibration uncertainties are now available [72] and rou-
tinely utilized for the actual analysis [10]. The additional
calibration uncertainty increases the statistical uncertainty
of the inferred parameters by a similar amount. In our case,
the largest source of uncertainty would come from the
amplitude calibration and thus on the determination of DL
for the GW sources. Assuming, naively, an ET uncertainty
budget of ∼10%, we estimate a similar degradation of our
inference over ~Ω.
We also ignored the effects of weak lensing. Weak

lensing is a zero mean process [73]; thus, when averaging
over thousands of sources, it will not induce an overall bias
in the estimate of ~Ω. A proper account of the lensing
uncertainty would lead to similar conclusions as for the
detector calibration uncertainty.
Even with the caveats discussed above, our study shows

that even considering exclusively information coming from
GW alone (with no input from any EM association) ET is
capable of fully probing the evolution of the Universe
and determine the value of ~Ω with reasonable accuracy.
We emphasize that our results apply to a pure GW-based

inference of ~Ω. A more accurate determination of ~Ω from
GW-EM joint detections may be possible; thus the results
presented in this study should be regarded as a lower limit
to what the actual potentiality of ET is as a cosmological
probe. Nevertheless, we showed that GW alone can be a
feasible complementary and cross-validating route to probe
the dynamics of the Universe.
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APPENDIX: INFERENCE OF THE
COSMOLOGICAL PARAMETERS

IN THE PRESENCE OF
CENSORED DATA

We want to infer the value of the cosmological param-

eters ~Ω≡ ðH0;Ωm;ΩΛ;…Þ given a set of gravitational
wave observations. Consider a catalog of gravitational
wave events E ≡ fϵ1;…; ϵNg. Each event is defined as a
stretch of data diðtÞ given by the sum of noise niðtÞ and a

gravitational wave signal hið~Θ; tÞ, where ~Θ indicates the set
of all parameters of the signal and such that the SNR ρ is
greater than a given threshold ρth.
The likelihood to observe the event ϵi is given by

pðϵij ~Θ; S; ρth; IÞ where S is the signal model that relates

the signal parameters ~Θ to a gravitational wave signal h.
The posterior distribution for the parameters in our
signal model S comes from the application of Bayes’
theorem

pð~Θjϵi; S; ρth; IÞ ∝ pð~ΘjS; IÞpðϵij ~Θ; S; ρth; IÞ ðA1Þ

where pð~ΘjS; IÞ is the prior probability distribution for

the parameters ~Θ. Given a certain cosmic coalescence rate

Rð ~Ω; zÞ, there will be a certain number M ≡Mð ~Ω; zÞ of
gravitational wave events that will not be registered as
events since their SNR will be below the selected
threshold. Nevertheless, they encode information regard-
ing the Universe and they must be taken into account in
our inference. The likelihood L−

k for a nondetected event
ϵ−k is given by

L−
k ðϵ−k ; ρthÞ≡ pðϵ−k j ~Ω; Rð ~Ω; zÞ; ρth; IÞ ðA2Þ

¼
Z

ρth

0

pðϵ−k ; ρkj ~Ω; Rð ~Ω; zÞ; ρth; IÞdρk: ðA3Þ

For a set of M nondetected events, the likelihood will be
given by

L−ðϵ−; ρthÞ ¼
YM
k¼1

L−
k ðϵ−k ; ρthÞ ðA4Þ

¼ ½L−
k ðϵ−k ; ρthÞ�M: ðA5Þ

The number of nondetected eventsMð ~Ω; zÞ is a nuisance
parameter which depends on ~Ω; the rate Rð ~Ω; zÞ; the
detection threshold ρth; the observation time T; and the

observed volume Vð ~Ω; ρthÞ as

Mð ~Ω; zÞ ¼ Rð ~Ω; zÞVð ~Ω; ρthÞT − N: ðA6Þ

We are now in the position of writing the posterior

distribution for the cosmological parameters ~Ω:

pð ~ΩjE; N; ρth; S; IÞ ∝ pð ~ΩjS; IÞ

×
Z

Rmaxð ~Ω;zÞ

0

dRð ~Ω; zÞpðRð ~Ω; zÞj ~Ω; S; IÞ

×
YN
i¼1

Lðϵi; ~ΩÞ
X∞
M¼0

½L−
k ðϵ−k ; ρthÞ�MpðMj ~Ω; Rð ~Ω; zÞ; ρthÞ:

ðA7Þ

It is interesting to verify that Eq. (A7) reduces to Eq. (10)
in the limit of ρth → 0. In this limit we have also

M → 0 ðA8Þ

pðMj ~Ω; Rð ~Ω; zÞ; ρthÞ → δM;0 ðA9Þ

Z
ρth

0

pðϵ−k ; ρkj ~Ω; Rð ~Ω; zÞ; ρth; IÞdρk → 0: ðA10Þ

Therefore the term

½L−
k ðϵ−k ; ρthÞ�M → 1 ðA11Þ

and the nondetection part of the likelihood reduces to

X∞
M¼0

δM;0 ¼ 1: ðA12Þ

Assuming that the rate Rð ~Ω; zÞ is given by the integral of
Eq. (12), we recover the form of the likelihood (10) which
we used in our study.
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