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The nonlinear 1-D plasma electrostatic oscillation is formulated in an analytic framework that

allows closed-form analytic solutions along the characteristics, and solved numerically in con-

figuration space. Additionally, a novel iterative analytical form for the finite-amplitude oscilla-

tion solution is derived, which compares favourably with the other two techniques. A fresh

insight into the evolution of the oscillation is gained, including defining the least achievable

density in the nonlinear oscillation as half of the equilibrium value, and relating the associated

maximum density achievable in terms of that minimum. VC 2016 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4968520]

I. INTRODUCTION

The electrostatic plasma oscillation is arguably the

defining characteristic of that medium: the unique balance

between conduction and particle currents that produces the

distinctive “ring” that can only happen in a plasma. Such a

central feature has attracted significant attention from both

theorists and experimentalists, particularly since the oscilla-

tion plays a key role in laser-plasma interactions: mathemati-

cal descriptions of its nonlinear evolution are vital to

understanding wave breaking and energy transport in ener-

getic processes.1–4

The main motivation for revisiting this classic problem

is the unique context of cold plasma oscillations in pulsar

crusts, where the magnetic field strength is so high that the

associated material compression ensures that the positive

ions can truly be considered to be stationary, while the abun-

dant free electrons are constrained by the Landau levels to

have momenta entirely aligned with the internal field direc-

tion.5 The wave-breaking of such oscillations is alleged to

eject electrons from the metallic crust into the pulsar atmo-

sphere immediately above it, thus, populating the environ-

ment with energetic electrons, the radiation from which can

then create the electron-positron pairs, which are the defining

characteristic of the pulsar envelope.

Given that nonlinear effects are crucial in this context,

we present a reworked analytical framework in which we

demonstrate a novel insight into the solution, motivated by

the method of characteristics but extended by incorporating

recursive solutions to reveal the full nonlinear evolution in

closed form. While there have been several reformulations

of the wavebreaking problem in both the classical and rela-

tivistic limits4,6–9 there is a focus on either driven oscilla-

tions (forced by the imposed laser pulse electric field profile)

or by beam-plasma interactions (in which the beam profile is

assumed); the analytical techniques used involve Lagrangian

coordinates and sometimes phase mixing, where an imposed

inhomogeneity in the underlying density is forced either as

an analytical formula or as spatial fourier series. The

approach in this paper is to formulate the equations using the

theory of characteristics, and solve directly for the electric

and velocity field, and the density, along the characteristic

without making assumptions about the nature of the initial

wave profile. The natural solutions that arise on the charac-

teristics are explored fully, analytically and numerically.

These solutions, arising from independent methods, are

mapped back to configuration space to confirm the validity

and accuracy of our analytical formulation, and together

these approaches allow new insight into how such processes

evolve. While there is a clear motivation in the pulsar con-

text for revisiting this description, the analysis holds for all

plasmas in which the approximations are sufficiently valid.

II. MODEL EQUATIONS

Consider a cold electron plasma, in the absence of a

magnetic force. Let the uniform number density of positive

ions be denoted n0, and for simplicity, assume that the equi-

librium number density of electrons is also n0 (that is,

assume that the atoms are only singly ionized). Let the total

number density of electrons be

n ¼ n0 þ ~nðx; tÞ; (1)

where the single spatial coordinate is x, and time is denoted

by t. Further, let the advective derivative be denoted by D, so

that

D ¼ @

@t
þ u

@

@x
; (2)

where u is the (fluid) electron plasma velocity component in

the x-direction. The relevant fluid equations for the electrons

are then as follows:

D~n ¼ �ðn0 þ ~nÞu0; (3)

Du ¼ �ðe=mÞE; (4)

E0 ¼ �~ne=�0; (5)a)declan.diver@glasgow.ac.uk
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where E is the electric field, m is the electron rest mass, and 0

denotes @/@x. Noting that

Du0 ¼ ðDuÞ0 � u02; (6)

a homogeneous equation for the evolving density can be

formed

D2~n ¼ �ðn0 þ ~nÞDu0 � u0D~n

¼ �ðn0 þ ~nÞ½ðDuÞ0 � u02� þ u0½ðn0 þ ~nÞu0�

¼ 2ðn0 þ ~nÞu02 � ðn0 þ ~nÞ~nx2
p=n0

¼ �ðn0 þ ~nÞ~nx2
p=n0 þ 2ðD~nÞ2=ðn0 þ ~nÞ; (7)

where Eq. (3) has been used to eliminate u0, and where xp

¼ ½n0e2=ð�0mÞ�1=2
is the usual plasma frequency, a constant

here.

For the small-amplitude disturbance, the density satisfies

the usual plasma oscillation

@2~n

@t2
þ x2

p~n � 0; (8)

but the role of density gradients in the non-linear evolution is

clear, particularly if the density evolution equation is written

in the form

D2~n þ ~x2
p~n ¼ 2

D~nð Þ2

n0 þ ~n
; (9)

where ~x2
p ¼ ð1þ ~n=n0Þx2

p is the square of the effective

plasma frequency, which tends to zero as ~n ! �n0; this

same limit produces a singularity in the right-hand side of

Eq. (9).

Since the focus of this article is the plasma oscillation,

the electrostatic condition can be assumed

�nuþ _E ¼ 0; (10)

where we have set the constants e, m, and �0 to unity, for

clarity (and so making x2
p ¼ n0). Combining Eq. (5) with

Eq. (10) yields

DE ¼ _E þ uE0

¼ nu� ~nu

¼ n0u: (11)

Using the same convention on constants in Eq. (4), we have

a closed set of operator equations governing the electrostatic

dynamics

Du ¼ �E; (12)

DE ¼ n0u: (13)

Applying D to the equations for u and E yields simple

coupled equations in the operator notation

D2uþ n0u ¼ 0

D2Eþ n0E ¼ 0: (14)

Note that u and E are interchangeable in Eq. (14); moreover,

there are no singularities in these equations. It is also notable

that the velocity and electric field engage in oscillations at the

original plasma frequency, along the characteristics; this is in

keeping with other authors;3,6 however, the plasma density

equation is non-linear along the characteristic, as can be seen

from Eq. (9), and its spatio-temporal behaviour is less

straightforward than either of the electric or velocity fields.

The density equation (9) does, in fact, have an explicit singu-

larity, though only when the total density approaches zero,

which is physically problematic in any event, and is in fact

impossible, as the analysis in Sec. III will show.

III. THE DENSITY CALCULATION ON THE
CHARACTERISTIC

The density fluctuation ~n can be calculated via the elec-

tric field gradient (in configuration space), or can be evalu-

ated directly on the characteristic from the homogeneous

equation given in Eq. (9). The beauty of the latter approach

is that the extremal values of the density are identical in both

co-ordinate systems, but it is easier to solve directly on the

characteristic, even if the precise path of the characteristic

(in configuration space) remains unspecified. Let y¼ n/n0,

and set x̂2
p ¼ 1. Taking the coordinate along the characteris-

tic to be z, so that D can be replaced everywhere by d/dz, the

normalised density equation can be written in the form

d2y

dz2
þ y yþ 1ð Þ ¼ 2

yþ 1

dy

dz

� �2

; (15)

which has the solution

y ¼ f zð Þ
1� f zð Þ

; (16)

where d2f=dz2 þ f ¼ 0. Hence the normalised density solu-

tion along the characteristic takes the form

c1 sin zþ c2ð Þ
1� c1 sin zþ c2ð Þ

; (17)

for arbitrary constants c1, c2. Given the general condition

that f 02 þ f 2 ¼ n2, where n is a constant (n¼ c1 in the sample

form for f), then since f¼ y/(1þ y), we have

y02

1þ yð Þ4
þ y2

1þ yð Þ2
¼ n2; (18)

for all y. Hence in particular, at a critical turning point,

where y0 ¼ 0; y ¼ yc we have

y2
c

1þ ycð Þ2
¼ n2: (19)

Now if 2ycþ 1< 0, then n> 1, otherwise 0< n< 1.

Consider the possible extremal values of the density profile:

yc¼6 n/(1 7 n). If n> 1, then both possible values for yc

are negative; hence, the physically correct constraint must be

n< 1, and consequently y> –1/2 everywhere along the
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characteristic. Since mapping the solution into configuration

space cannot change the values of the solution, but only its

gradient, then this analysis establishes as physically correct

that the minimum plasma density is half of the background

density, as noted by Davidson and Schram,2 (see Fig. 1 for

examples of the profile for various amplitudes), and apparent

in a variety of subsequent treatments (for example, see Fig. 2

of Ref. 10, where the density profile is very similar to that

given here in Fig. 1, and also suggested by Figs. 3–6 in

Ref. 11). It is simple to infer that the extrema of the density

profile given by Eq. (16) imply that the normalised density

y must lie in the interval

ym < y < � ym

1þ 2ym
; (20)

where �1/2< ym< 0 is the minimum density depression pro-

duced by the disturbance. These extremal values have been

calculated without requiring any prior assumption about

the shape of the characteristic in configuration space: these

results are, therefore, general. The extra insight into the

extrema of density afforded by direct solution on the charac-

teristic, rather than grappling with the evident nonlinearity of

the Lagrangian transformation into configuration space, is an

important novel aspect of this work.

IV. ITERATIVE ANALYTICAL SOLUTION IN
CONFIGURATION SPACE

We now turn to solving the whole system in configura-

tion space, by using the method of characteristics.12,13 The

system to be solved is as follows:

ut þ uux ¼ E; (21)

Et þ uEx ¼ �n0u; (22)

subject to the initial conditions

uðx; 0Þ ¼ f ðxÞ; (23)

Eðx; 0Þ ¼ gðxÞ; (24)

for some initial spatial profiles f(x), g(x) of the disturbance.

Analysing this system by the method of characteristics, we

choose new variables n, s in place of x, and t, respectively.

The characteristic equations are then

xs ¼ u ts ¼ 1; (25)

us ¼ E Es ¼ �n0u; (26)

where the initial conditions for both characteristics and

dependent variables are xðn; 0Þ ¼ n; tðn; 0Þ ¼ 0; uðn; 0Þ
¼ f ðnÞ, and Eðn; 0Þ ¼ gðnÞ, and subscript s denotes @/@s.

Eliminating E from Eq. (26) yields

uss þ n0u ¼ 0; (27)

which has general solution

uðn; sÞ ¼ A cosð
ffiffiffi
n
p

0sÞ þ B sinð
ffiffiffi
n
p

0sÞ; (28)

in which A and B are independent of s. A simple solution

consistent with initial conditions is given by A¼ f(n), B¼ 0

(this minimises the algebra, but can be generalised later) so

that the solutions for u and E along the characteristics can be

given as

uðn; sÞ ¼ f ðnÞ cosðxpsÞ; (29)

Eðn; sÞ ¼ �xpf ðnÞ sinðxpsÞ; (30)

where xp ¼
ffiffiffi
n
p

0. The equations of the characteristic curves

themselves can then be expressed as2,14,15

xðn; sÞ ¼ nþ
ðs

0

uðn; yÞdy ¼ nþ ½f ðnÞ=xp� sinðxpsÞ; (31)

tðn; sÞ ¼ s: (32)

In contrast to Section III, we have an expression for the

shape of the characteristics in configuration space, which we

can explore.

A. A full recursive analysis

For illustrative purposes, we can consider the simple

case f ðnÞ ¼ u0 sinðknÞ, which corresponds to a simple sinu-

soidal spatial disturbance in the velocity field at t¼ 0. The

characteristic equation is then

n ¼ x� ðu0=xpÞ sinðknÞ sinðxptÞ ¼ x� l sinðknÞ; (33)

where l ¼ u0 sinðxptÞ=xp, we can proceed as follows. Using

the trigonometric product rule to simplify the representation

for u, we can express the zeroth iterate u(0) as the case where

n is simply replaced by x

uð0Þ ¼ ½u0 cosðkn� xptÞ�n¼x ¼ u0 cosðkx� xptÞ: (34)

The next step in the recursion u(1) is to replace the first

occurrence of n with the expression x� l sinðknÞ as follows:

uð1Þ ¼ fu0 cos½kðx� l cosðknÞÞ � xpt�gn¼x; (35)

¼ u0 cos½kðx� l cosðkxÞÞ � xpt�: (36)

FIG. 1. Examples of the normalised density profile along the characteristic,

for various choices of amplitude c1, as given in Eq. (17), with c2¼ 0. Note

the localised strong profile steepening at for z<p, and the flattening for

p< z< 2p, where the solution does not decrease below �1/2.
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The procedure can be repeated to yield nested formulae to

the nth degree: for example, the fourth recursion is given by

uð4Þ ¼ u0 cos½kðx� l cosðkðx� l cosðkðx
� l cosðkðx� l cosðkðxÞÞÞÞÞÞÞÞÞ � xpt�: (37)

These recursive expressions quickly become difficult to

interpret analytically, but are very revealing graphically. The

first four velocity recursions after the zeroth are plotted in

Fig. 2, for the particular value of xpt ¼ p=2, with u0¼ k¼ 1

and l¼ 1. The characteristic steepening of the solution near

x¼ p and x¼ 3p, and to a lesser extent near x¼ 0 and x¼ 2p
is consistent with the onset of wave breaking. This is clearest

in Fig. 3, where the profile of the solution becomes markedly

steeper as time progresses; the parameters are consistent

with Fig. 2, having extracted the time t from parameter

l ¼ ðu0=xpÞ sinðxptÞ by setting u0/xp¼ 1.2 and evaluating

for various choices of xpt¼ q.

Additional insight comes from an analysis of the gradi-

ent (in configuration space coordinate x) of the recursive sol-

utions. The zeroth iterate u(0) has derivative ku0 times the

envelope function that defines the overall shape of the solu-

tion. For the gradient of u(1), the factor d1 multiplying the

envelope solution is ku0ð1� klÞ cosðkxÞ, and so we have for

the ith iterate di, i¼ 1,…, 4

d0 ¼ ku0; (38)

d1 ¼ ku0ð1þ kl sinðkxÞÞ; (39)

d2 ¼ ku0ððk2l2 sinðkxÞ þ klÞ sinðkl cosðkxÞ � kxÞ � 1Þ;
(40)

d3 ¼�ku0ðððk3l3 sinðkxÞ þ k2l2Þ sinðklcosðkxÞ � kxÞ þ klÞ
� sinðklcosðklcosðkxÞ � kxÞ � kxÞ þ 1Þ;

(41)

d4 ¼ ku0ððððk4l4 sinðkxÞþ k3l3ÞsinðklcosðkxÞ� kxÞ� k2l2Þ
� sinðklcosðklcosðkxÞ� kxÞ� kxÞþ klÞ
� sinðklcosðklcosðklcosðkxÞ� kxÞ� kxÞ� kxÞ� 1Þ:

(42)

Given that the graphs show the largest gradient in the vicin-

ity of kx¼p/2, consider the gradient multiplier dn of the nth

iterate evaluated there

Dn ¼
dn

ku0

¼
Xn

i¼0

klð Þi ¼ klð Þnþ1 � 1

kl� 1
; kl 6¼ 1; (43)

where Dn is the additional multiplicative factor over the lin-

ear case (that is, the zeroth recursion) for the gradient of the

nth recursion. Note that the gradient only converges with

recursion number if kl< 1; hence a critical condition for

wave steepening is ku0/xp� 1, at which point the gradients

cannot converge. In reality, the recursive solution shows a

phase drift away from the simple assumption that the maxi-

mum gradient occurs at the same position in the higher iter-

ates as for the zeroth (namely, at q¼p/2); however, Eq. (43)

is an adequate guide to the envelope of the gradient, as

shown in Fig. 4. Under the envelope approximation, it is

clear that the gradient will not converge with iteration num-

ber unless jklj ¼ jku0 sinðxptÞj=xp < 1, that is, ku0/xp< 1,

in which case the limit of the maximum gradient is given by

FIG. 2. Graphs of recursive iterations 0 to 4 of the velocity solution, for the

particular choice of u0¼ 1, k¼ 1, l¼ 1 and xpt¼p/2.

FIG. 3. Graphs of u(4) as a function of x for various values of q¼xt showing

the onset of wave steepening, keeping u0¼ k¼ 1, and u0/xp¼ 1.0.

FIG. 4. Contour plot of @u(4)/@x as a function of kx (horizontal axis) and

q¼xpt (vertical axis) with kl¼ 1.2, and u0/x¼ 1, showing the gradient

extrema occurring around kx�p/2.
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D1 ¼
X1
i¼0

klð Þi

¼ 1

1� kl
; jklj < 1

� 1

1� ku0=xp
: (44)

Since the electric field is just the time derivative of the veloc-

ity field (from Eq. (30)), then the maximum electric field gra-

dient can be approximated by

���� @E

@x

���� � xk

1� ku0=x
; jku0=xj < 1; (45)

for the case where the recursion process converges. Note

that the gradient of the electric field is directly proportional

to the number density fluctuation, from Poisson’s equation.

In any event, it is clear that u0¼xp/k is the limiting velocity

amplitude (since otherwise the gradient is unbounded), with

E ¼ x2
p=k as the limiting electric field magnitude—in agree-

ment with the published literature, which offers the maxi-

mum electric field amplitude as n0e=ðk�0Þ ¼ mex2
p=ðkeÞ, in

dimensioned units. The iterative method, thus provides

straightforward (if cumbersome) analytical expressions for

the longitudinal electric field, velocity and number density,

the accuracy of which can be assessed in comparison with

the full numerical solutions presented in Sec. IV, but it is

useful to compare the profiles generated in this way with

results in the literature, particularly,10 Fig. 2; our analytic

expressions that are given in Fig. 5, agree closely with the

advanced simulations in Ref. 10.

Given that u0<xp/k means the velocity gradient multi-

plier D1 converges to ð1� ku0=xpÞ�1
, it is still possible to

consider a practical limit on the maximum amplitude of the

velocity disturbance before unacceptably steep gradients

develop. If h¼ ku0/xp� 1, then the gradient does not con-

verge with recursion number, and wavebreaking must fol-

low, since the slope of the velocity approaches vertical.

However, the threshold value for the velocity gradient above

which wave steepening is deemed to approach breaking

point may well be reached for values of h< 1. For example,

if h¼ 0.8, then D1¼ 5. Hence the practical limit to the mag-

nitude u0 of the velocity before wave-breaking sets in may

be achieved with u0<xp/k.

V. DIRECT NUMERICAL SOLUTION OF THE
CHARACTERISTIC EQUATIONS

In order to compare the iterated analytical solutions with

the full, unapproximated ones, the differential equations for

the characteristics themselves, and for the physical variables

along those characteristics, can be solved numerically, with

the solutions mapped back into the configuration space for

comparison. The numerical packages in the computer alge-

bra system Maxima were used in accordance with the char-

acteristic solution method given by Whitham.15

Numerical simulations of the velocity and electric fields

are presented in this section, for the case xp¼ 2, and for an

FIG. 5. Plots of the longitudinal electric field (E), velocity (u) and electron

number density (n) for the nonlinear case of Ref. 10, Fig. 2.

FIG. 6. Surface plot of the velocity field from direct numerical simulation

using the characteristic equations, for the case where xp¼ 2, and the ampli-

tude of the initial disturbance is B¼ 0.5. Note that the surface is a spline

interpolation to a uniform x, t grid from the characteristic curves.

FIG. 7. The set of characteristics for the case B¼ 1.5; the solutions for the

velocity and electric fields are computed along these curves, and then inter-

polated onto a uniform x, t-grid. Note that the characteristics become very

close together in the region around x¼ 2, t¼ 1, showing that gradients are

becoming very steep here.
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FIG. 8. Left plot: Surface plot of the velocity field from direct numerical simulation using the characteristic equations, for the case where xp¼ 2, and the

amplitude of the initial disturbance is B¼ 1.5. Note that the surface is a spline interpolation to a uniform x, t grid from the characteristic curves. Right plot:

The recursive solution for the same parameters as in the left hand picture.

FIG. 9. Left plot: Surface plot of the electric field from direct numerical simulation using the characteristic equations, for the case where xp¼ 2, and the ampli-

tude of the initial disturbance is B¼ 1.5. Note that the surface is a spline interpolation to a uniform x, t grid from the characteristic curves. Right plot: The

recursive solution for the same parameters as in the left hand picture.

FIG. 10. Left: The normalised density plot in configuration space for the case B¼ 1.5 and xp¼ 2, calculated via numerical simulation along the characteristics

of the electric field, which is first mapped onto the configuration space grid and smoothed by cubic splines before being differenced to yield the derivative (and

hence the number density). Notice that the minimum density saturates at half of the equilibrium value, consistent with the analysis in Section III. Right: The

normalised density plot in configuration space for the same parameters, but calculated using the derivative of the analytical iterative formula for the electric

field; there is no smoothing applied. Although the correlation between the two solutions is not exact, the essential features are recovered. The iterative formulae

are limited in Fourier harmonics, and this becomes more evident when differentiated.
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initial disturbance in the electric field of the form Eðx; t ¼ 0Þ
¼ B sinðxÞ, with the accompanying uðx; t ¼ 0Þ ¼ B cosðxÞ.
The calculation of the velocity surface is shown in Fig. 6.

Increasing the amplitude causes the evolution of sharp fea-

tures: for example, changing from B¼ 0.5 to B¼ 1.5 produ-

ces a significantly distorted set of characteristic curves,

shown in Fig. 7. The associated velocity and electric field

surfaces are given in Figs. 8 and 9; in each case, the numeri-

cally integrated solution is shown on the left, and the analytic

solution (for the same parameters) on the right. Given that

the numerical solution is smoothed and interpolated from the

characteristics, and that the analytic expressions are trun-

cated at a finite iteration, the correspondence between the

solution forms is encouraging. Indeed, the direct calculation

of the density, which is given by the gradient of the electric

field, shows as similar agreement between numerical and

analytical forms, even under additional differencing opera-

tions; these are shown in Fig. 10.

VI. CONCLUSIONS

There are a number of novel aspects presented here.

The operator form of the equations allows the direct,

analytic solution of the density along the characteristic

curve. The analytical solution Eq. (16) of the oscillation

equations in characteristic form shows why the plasma den-

sity cannot fall below one half of its initial value anywhere:

a restriction attributed initially to an artefact of the

Lagrangian method2 to avoid singularities, but now demon-

strated to be an asymptotic limit to the density depression

caused by an oscillation. The corollary is that the maximum

value of the normalised density can be expressed in terms of

its minimum, with an indicative maximum spatial gradient n0

in configuration space given by

n0 � 2n0kq
1� q

1� 2q
; (46)

where q ¼ jymj is the absolute value of the normalised den-

sity minimum. Plotting Eq. (46) to give the maximum den-

sity gradient as a function of the minimum density produces

the graph in Fig. 11; comparing the values here with those

apparent in Fig. 5 for the density show the utility of the itera-

tive analysis.

Despite the underlying simplicity in the formalism, the

iterative solution recovers the intrinsic behaviour of the full

numerical solution, remarkably well, via the method of char-

acteristics; Figures 8–10 show the similarities, albeit the lim-

itations of a finite number of harmonics is evident in the

electric field and density analytic solutions.

The iterative solution is a powerful, closed-form

approximation to the full numerical solution for finite

amplitude perturbations. No continuum solution technique

can carry an analytical solution through the breaking point

itself, since the equations change their character at such a

point, but the 4th order iterated solution is a very good

approximation to the full solution for both the velocity and

the electric field.

At this point, we can return to the original motivation:

the emission of electrons from the pulsar crust. From

Eq. (45) it is clear that strong gradients in electric field can

produce electrons with an energy gain DE of magnitude

DE � e

���� @E

@x

����=k2 � e
x=k

1� x=k
; (47)

where the limiting wave velocity amplitude is u0¼x/k, at

which point wave breaking occurs. Hence, the non-linear

self-field in the oscillation dynamics would appear to be

capable of delivering the requisite Fermi Energy5 to enable

electron escape from the crust near wave-breaking

conditions.

Finally, we note that the method of characteristics used

here for numerical solution is formally a more general tech-

nique than the Lagrangian methods used in earlier literature

to make progress: the latter are restricted to a physical inter-

pretation of the Lagrangian trajectory, namely, that this con-

stitutes a velocity streamline for the fluid, and so must

remain unidirectional. There is no such constraint on the

more abstract characteristics, since higher-order systems can

have multiple characteristics passing through the same points

in space and time.15 Indeed, we are preparing a more general

analysis of the oscillation problem that relaxes the electro-

static condition imposed here, and gives rise to precisely

such a scenario.

1W. L. Kruer, “Wavebreaking amplitudes in warm, inhomogeneous

plasmas,” Phys. Fluids 22, 1111–1114 (1979).
2R. W. C. Davidson and P. P. J. M. Schram, “Nonlinear oscillations in a

cold plasma,” Nucl. Fusion 8(3), 183 (1968).
3W. B. Mori and T. Katsouleas, “Wavebreaking of longitudinal plasma

oscillations,” Phys. Scr. T30, 127–133 (1990).
4S. V. Bulanov, T. Z. Esirkepov, M. Kando, J. K. Koga, A. S. Pirozhkov,

T. Nakamura, S. S. Bulanov, C. B. Schroeder, E. Esarey, F. Califano, and

F. Pegoraro, “On the breaking of a plasma wave in a thermal plasma.

II. Electromagnetic wave interaction with the breaking plasma wave,”

Phys. Plasmas 19(11), 113103 (2012).
5D. A. Diver, A. A. da Costa, E. W. Laing, C. R. Stark, and L. F. A.

Teodoro, “On the surface extraction of electrons in a pulsar,” Mon. Not.

R. Astron. Soc. 401, 613–620 (2010).

FIG. 11. Plot of the maximum density gradient as a function of the mini-

mum normalised density depression. Comparing with Fig. 5, and choosing

the modulus of the minimum normalised density to be 0.45 yields a maxi-

mum gradient of 5, which is comparable with the density profile in the vicin-

ity of x¼ 1 in Fig. 5.

122103-7 D. A. Diver and E. W. Laing Phys. Plasmas 23, 122103 (2016)

http://dx.doi.org/10.1063/1.862704
http://dx.doi.org/10.1088/0029-5515/8/3/006
http://dx.doi.org/10.1088/0031-8949/1990/T30/018
http://dx.doi.org/10.1063/1.4764056
http://dx.doi.org/10.1111/j.1365-2966.2009.15684.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15684.x


6P. S. Verma, S. Sengupta, and P. K. Kaw, “Nonlinear evolution of an arbi-

trary density perturbation in a cold homogeneous unmagnetized plasma,”

Phys. Plasmas 18(1), 012301 (2011).
7S. Sengupta, P. Kaw, V. Saxena, A. Sen, and A. Das, “Phase mixing/wave

breaking studies of large amplitude oscillations in a cold homogeneous

unmagnetized plasma,” Plasma Phys. Controlled Fusion 53(7), 074014

(2011).
8R. M. G. M. Trines and P. A. Norreys, “Wave-breaking limits for relativis-

tic electrostatic waves in a one-dimensional warm plasma,” Phys. Plasmas

13(12), 123102 (2006).
9J.-G. Wang, G. L. Payne, and D. R. Nicholson, “Wave breaking in cold

plasma,” Phys. Fluids B 4, 1432–1440 (1992).

10V. V. Goloviznin and T. J. Schep, “Onset of nonlinear regime in beam-

plasma interactions,” J. Phys. D: Appl. Phys. 34, 1367–1373 (2001).
11A. Grassi, L. Fedeli, A. Macchi, S. V. Bulanov, and F. Pegoraro, “Phase

space dynamics after the breaking of a relativistic Langmuir wave in a

thermal plasma,” Eur. Phys. J. D 68(6), 178 (2014).
12Y. Pinchover and J. Rubinstein, Introduction to Partial Differential

Equations (Cambridge University Press, 2005).
13T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas (Cambridge

University Press, 2003).
14N. Chakrabarti and M. S. Janaki, “Nonlinear evolution of ion-acoustic

waves in unmagnetized plasma,” Phys. Lett. A 305(6), 393–398 (2002).
15G. B. Whitham, Linear and Nonlinear Waves (Wiley, 1974).

122103-8 D. A. Diver and E. W. Laing Phys. Plasmas 23, 122103 (2016)

http://dx.doi.org/10.1063/1.3535383
http://dx.doi.org/10.1088/0741-3335/53/7/074014
http://dx.doi.org/10.1063/1.2398927
http://dx.doi.org/10.1063/1.860105
http://dx.doi.org/10.1088/0022-3727/34/9/313
http://dx.doi.org/10.1140/epjd/e2014-50153-0
http://dx.doi.org/10.1016/S0375-9601(02)01501-3

	s1
	s2
	d1
	d2
	d3
	d4
	d5
	l
	n1
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	s3
	d15
	d16
	d17
	d18
	d19
	d20
	s4
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	d29
	d30
	d31
	d32
	s4A
	d33
	d34
	d35
	d36
	f1
	d37
	d38
	d39
	d40
	d41
	d42
	d43
	d44
	f2
	f3
	f4
	d45
	s5
	f5
	f6
	f7
	f8
	f9
	f10
	s6
	d46
	d47
	c1
	c2
	c3
	c4
	c5
	f11
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15

