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Abstract: Stem cells of various sources have been investigated in a series of small, safety and 

feasibility-focused studies over the past 15 years. Understanding of mechanisms of action has 

evolved and the trial paradigms have become focused on two different approaches – one being an 

early subacute delivery of cells to reduce acute tissue injury and modify the tissue environment in a 

direction favourable to reparative processes (for example by being anti-inflammatory, anti-

apoptotic, and encouraging endogenous stem cell mobilisation); the other exploring later delivery of 

cells during the recovery phase after stroke to modulate the local environment in favour of 

angiogenesis and neurogenesis. The former approach has generally investigated intravenous or 

intra-arterial delivery of cells with an expected paracrine mode of action and no expected 

engraftment within the brain. The latter has explored direct intracerebral implantation adjacent to 

the infarct. Several relevant trials have been conducted, including two controlled trials of 

intravenously delivered bone marrow-derived cells in the early subacute stage, and two small single-

arm phase 1 trials of intracerebrally implanted cells. The findings of these studies and their 

implications for future trial design are considered. 



Introduction: 

Stroke remains a major cause of mortality and disability worldwide, with very large healthcare and 

social costs.1 Acute stroke care has seen major advances in recent years, with the widespread 

adoption of organised stroke unit care, and reperfusion therapy for the 85% with ischaemic stroke – 

first with intravenous thrombolysis2 and more recently with endovascular mechanical 

thrombectomy3 for selected patients with large artery occlusion. Declining mortality and improved 

functional outcomes are evident in settings where these changes in care have been implemented 

systematically.4  

Despite these positive developments, it remains the case that the majority of those who survive a 

stroke have some degree of residual disability. On a global scale, the incidence of stroke has 

increased and age-standardised mortality has declined, with a consequent rise in disability-adjusted 

life years lost to stroke, and a predominant burden in low and middle-income countries.1 Advances 

in the therapeutic approaches to assist stroke recovery have notably lagged behind the gains in 

acute care. While reperfusion therapies offer very large treatment effects, these remain appropriate 

or accessible in only a minority of patients even in high-income countries. There thus remains a very 

substantial need for additional treatment approaches for stroke.     

Mechanistic understanding of cell therapies has advanced in the four years since this topic was 

reviewed previously,5,6 and changes in our understanding have been reflected to an extent in clinical 

trial design. The concept of cell replacement to restore function, a paradigm that requires 

characterisation of cell phenotype to ensure replacement by an appropriately matched stem-cell 

derived population,7,8 may be applicable to situations where specific cell populations are lost as part 

of the disease process – for example dopaminergic neurones in Parkinson’s Disease, or retinal 

epithelial cells in macular degeneration – but in stroke, ischaemia or haemorrhage results in pan-

necrosis of all cellular elements, typically on a large scale, and cell replacement as a relevant 

mechanism seems likely to be a minor factor.9 Tissue infarction due to ischaemia triggers an 

inflammatory reaction with both local and systemic effects,10,11 that may be detrimental, and there is 

a sustained period of immunodepression that may increase liability to infection. On the other side, 

there is evidence of a range of responses to tissue injury to produce a facilitatory environment for 

repair, including upregulation of growth factor genes and promoters of angiogenesis, enhanced 

plasticity, as well as mobilisation of endogenous neural stem cells.12-14 The tissue outcome of stroke 

ultimately, however, is a cystic fluid-filled space of variable volume, surrounded by a gliotic rim. 

Replacement of cells within this cystic space is feasible only with some form of bioscaffold,15,16 and 

even with this, functional benefit might be limited due to the barrier of a gliotic scar impairing 



connectivity. Most disabling strokes are of large volume and may entail the loss of several billion  

neurons, with an estimate of 1.2 billion neurons lost for a typical infarct volume of around 50ml.9 

Cell implantation on the margins of an established stroke is also likely to yield only limited benefit, 

since in most cases there is either loss of neuronal cell bodies through direct injury, or degeneration 

of axonal connections remote from the locus of the injury. A cell replacement paradigm therefore 

seems likely to have limited utility.  

Concepts of cell therapy for stroke have therefore evolved towards recognition of potential 

biological effects that are not reliant on cell replacement, and are focused on two main approaches, 

dictated by the mode of cell delivery and to an extent by the origin of the cells. The first relies on 

systemic cell delivery, usually via the intravenous route, and this has been investigated 

predominantly with acute or early subacute administration intended to modulate the initial injury or 

to reinforce early reparative tissue responses, and recognition that this strategy likely does not result 

in significant cell engraftment in the brain. The second strategy has delivered cells directly into the 

brain, predominantly into undamaged tissue close to the site of injury, and the need for clinical 

stability to permit anaesthesia and neurosurgery has led to administration in late subacute or 

chronic stages. This strategy may result in some degree of cell engraftment in the brain, but there is 

now general recognition that even in this situation, cell effects are likely to be mediated largely by 

paracrine effects on the local environment.    

The Acute or Early Subacute Paradigm 

Animal experimental work has predominantly followed a paradigm typical of neuroprotectant 

strategies, with systemic cell delivery within hours or at most a few days after induction of focal 

ischaemia.17-19 There is resulting reduction in infarct volume and functional recovery has generally 

been enhanced. Publication and reporting bias is evident in the animal literature, study quality has 

been inconsistent, and effect sizes may be overestimated as a result,17,19 although meta-analysis of 

studies of mesenchymal stem cells (MSCs) in rodent stroke suggested larger effect sizes with greater 

study quality.18 There is no compelling evidence favouring one type of cell over another,20 with a 

wide range of (predominantly human) cell types having similar effects in rodent focal ischaemia 

models, including MSCs, mixed bone marrow mononuclear cell (BMMCs), CD34+ haematopoietic 

progenitor cells, umbilical cord blood cells and many others.  

It has become clear that despite some degree of cell homing to the site of an ischaemic injury, cell 

engraftment in the brain after intravascular administration is probably minimal. Intravenous delivery 

does not appear to be associated with any significant retention in the brain even within the first 24 



hours in biodistribution studies in animals using radiolabelled or bioluminescent cells,21,22 while 

intra-arterial delivery carries greater likelihood of cells reaching brain and persisting for up to 2 

weeks.22 Intravenously delivered MSCs are of small size and are predominantly distributed to the 

lungs, where they may engraft with potentially useful biological actions.23 In a human biodistribution 

study using larger bone marrow mononuclear cells labelled with technetium-99m (whose half-life is 

approximately 6 hours), no difference in brain activity was evident between intravenous and intra-

arterial delivery, and brain counts for both routes of delivery at 2 hours after administration were 

low.24  

The predominant mechanism of action is therefore assumed to be paracrine, with effects on 

inflammation, immune modulation and stimulation of endogenous recovery processes including 

neurogenesis and angiogenesis. In animal models of stroke, and also in humans,25 there is an acute 

reduction in splenic volume followed by expansion and release of cells that is postulated to mediate 

secondary inflammatory brain injury. Intravenous stem cell administration appears to modify this 

response.26  

Ten small clinical studies of intravenous or intra-arterial cell delivery, including 136 subjects, have 

reported findings.27-36 The majority of these were small, single-institution safety and tolerability 

studies. Only three included a control group, and the value of the control groups is questionable, 

since in many cases they consisted of patients deemed ineligible for the cell therapy intervention, 

were not randomised, and did not necessarily undergo any study related procedures. Allocation was 

not always concealed to either patients or investigators. Piecemeal reporting of studies24,27,28,34 

further confuses the interpretation of these reports. Since the main focus was safety, long time 

windows for cell administration (between days and several months after stroke) were typically 

permitted. The use of autologous cells in most studies presents issues for trial design since the yield 

varies among individuals and cannot be controlled. The requirement for culture expansion of some 

cell types (especially MSCs)30 introduces delay between cell harvest and administration. In addition, 

the invasive nature of procedures for cell harvest means that blinding is impossible, or at least 

difficult to achieve ethically. Allogeneic cells may therefore represent a more logical approach for 

acute use.  

Two moderate sized multicentre trials have reported.  

A phase 2 randomised, controlled trial with blinded end-point assessment undertaken at five centres 

in India delivered intravenous autologous bone marrow- mononuclear cells a median of 18 days 

after stroke onset.37 Moderate to severe ischaemic stroke in the anterior circulation was required for 



eligibility. Sixty patients were allocated to control and 60 to cell infusion. No differences in functional 

outcomes or imaging were evident over 6 months of follow-up. The mean number of cells infused 

was 281 million, of which around 1% were CD34+ cells, but cell dose varied widely among patients. 

The Athersys MultiStem study,38,39 used a donor pool of allogeneic multipotent bone marrow derived 

cells depleted of CD45 (+)/glycophorin-A (+) cells termed multipotent adult progenitor cells (MAPCs) 

by the manufacturer. This trial randomised patients within 48 hours of onset of ischaemic stroke to 

receive an intravenous infusion of MAPCs or placebo, and followed them for 6 months. The trial 

included 126 subjects (65 given MAPCs and 61 placebo) and reported a trend towards better 

functional outcomes in the MAPC group based on a subset of control subjects recruited within 36h. 

Treatment effects based upon the total control group have not been reported. Some biomarkers of 

inflammation supported the potentially anti-inflammatory action of this cell type. 

The unpublished ISIS-HERMES trial in 31 patients (including 11 controls) delivered autologous MSCs 

intravenously in subacute stroke patients has also been completed but data are not yet available.40 

A large multicentre academically funded European trial, RESSTORE (http://www.resstore.eu), uses 

adipose-derived donor MSCs delivered intravenously within 14 days of ischaemic stroke and will 

commence in late 2016 with the intention of including 400 patients. 

The Prasad trial delivered far lower numbers of cells than other trials of intravenous cells (eg 0.6-1.6 

x108 cells in a bone marrow-derived MSC study30 or 400-1200 million cells in the Athersys trial39). 

Dosing comparisons among different studies are of uncertain validity, since cell populations are 

likely to differ substantially in their biological properties.  

Late Subacute or Chronic Stroke 

The high prevalence (an estimated 25.7 million survivors of stroke globally in 2013) and major global 

burden of stroke disability mean that there is a substantial unmet need for those with chronic 

stroke. There is considerable biological doubt, however, regarding the plausibility of modifying 

disability via cell engraftment, as noted above, and the justification for studying this group of 

patients has initially been based on stable neurological deficits offering a suitable environment for 

detection of any adverse effects. Older trials in this setting have used modified teratocarcinoma 

derived cells41,42 or porcine xenografts,43 neither cell type being developed further. The protocols 

from these older studies have formed the template for recent trials of direct intracerebral delivery. 

Two relevant recent trials have reported findings. 

http://cordis.europa.eu/project/rcn/198791_en.Html


The Pilot Investigation of Stem Cells for Stroke (PISCES 1) trial implanted a single dose of between 2 

and 20 million cells by stereotaxic intraputaminal injection to the ipsilesional hemisphere of patients 

6-60 months after disabling ischaemic stroke.44 This was undertaken as a single centre study with no 

control group. Safety was the primary outcome and patients were followed for 2 years post-implant. 

The cells used in PISCES 1 were human foetal neural stem cells genetically modified by insertion of a 

c-mycER transgene that expresses the c-myc growth factor when activated by 4-hydroxytamoxifen, 

allowing cells to be maintained indefinitely in culture.45 Removal of 4-hydroxytamoxifen leads cells 

to differentiate into neural lineages. Preclinical stroke model data reported dose dependent 

improvements in sensorimotor recovery over 12 weeks post-implantation when delivered 3-5 weeks 

after middle cerebral artery occlusive stroke in the rat.46 In PISCES 1, eleven male patients 

underwent implantation a median of 22 months after stroke. No cell-related safety issues were 

observed, with serious adverse events being related either to the neurosurgical procedure or to 

long-term consequences of stroke comorbidities. Modest improvements in motor function occurred 

within the first 2 months after implantation and were maintained thereafter, an unexpected 

observation in this group of patients. A phase 2 study using the highest cell dose at late subacute 

stages 3-12 months after stroke is underway (PISCES 2, NCT02117635). 

A similar trial design was utilised in a SanBio sponsored trial of modified donor human bone marrow-

derived MSCs (transiently transfected with Notch1 to enhance cell viability).47 Eighteen male or 

female subjects were implanted with 2.5, 5 or 10 million cells between 6 and 60 months after 

ischaemic stroke (median 22 months). Safety issues were again limited to consequences of 

neurosurgery or long-term comorbidities of stroke. The study also reported modest improvements 

in several scales of neurological function and motor scales over the initial 2-3 months after 

implantation that were maintained up to 12 months in 16 of the 18 patients, two having been lost to 

follow-up.  

Both studies reported the development of hyperintensities around the needle tracts on T2-weighted 

Fluid Attenuated Inversion-Recovery (FLAIR) scans in a high proportion of patients. These were most 

striking at 1 week after implantation in the SanBio study, a time point not investigated by this 

modality in PISCES 1, and had substantially resolved by 1-2 months. PISCES 1 reported more modest 

T2 FLAIR hyperintensities at 1 month post implantation that persisted by 12 months. In the SanBio 

study, greater extent of T2 hyperintensity  correlated with improvement in motor impairment at 12 

months by the Fugl-Meyer motor scale. 

These two studies raise the possibility that there might be therapeutic potential in the population 

with chronic disabling stroke, although to what extent the observed modest motor changes might 



lead to enhanced functional status is unclear. Considerable caution is also needed in the 

interpretation of the studies in the absence of a concurrent control group, although the correlation 

with objective MRI changes in the SanBio study makes it more plausible that this represents a 

biological effect. Nonetheless, lack of blinding to treatment allocation on the part of investigators 

and patients may confound serial functional assessments. If modest functional improvements are 

indeed a biological effect then the timescale for their evolution (peak improvements in both PISCES 

1 and SanBio studies at around 3 months post-implantation, but change evident even at 1 month 

assessments) is unexpectedly early if the mechanism involves stimulation of endogenous 

neurogenesis or angiogenesis predominantly.  The transient reaction to cell implantation evident on 

MRI may reflect, among other possibilities, an inflammatory response, a specific biological response 

to cell components, or a response to factors released by the cells, but the possibility that the 

location of the injection itself modifies motor function cannot be excluded either. 

Animal studies using the experimental allergic encephalomyelitis model for multiple sclerosis raised 

concern about the potential for MSCs transplanted to the central nervous system to form mass 

lesions in the context of severe local inflammation.48,49 The relevance of this to stroke, where 

inflammatory responses are likely to be less intense, or indeed absent by late times after the 

incident, is unclear, and no clinical evidence of such a response has been observed to date.   

Other Trial Paradigms 

Studies have reported safety data from intrathecal delivery of cells or combined intravenous and 

intracerebral delivery, but characterisation of the cells involved has been limited and the number of 

subjects involved small. 

Conclusion: Where Next for Clinical Trials? 

The paradigm of acute or early subacute allogeneic cell therapy by intravascular delivery is 

essentially a well-trodden one, following a path laid out in numerous (albeit unsuccessful) 

neuroprotectant trials. Double-blind randomised controlled trials are feasible in this setting, but 

more invasive procedures such as intracerebral implantation represent a challenge with respect to 

control groups.  

Use of autologous cells in either trial approach compromises blinding since invasive procedures are 

required to acquire cells from bone marrow or adipose tissue, and it is ethically uncertain that this 

could be justified if the patient is subsequently randomised to placebo. As undertaken in the trial of 

Prasad and colleagues,37 bone marrow harvest may be undertaken a few hours prior to 

administration of cells in the cell therapy arm of a trial, but this permits only use of poorly 



characterised cells. Ex-vivo culture expansion of more precisely characterised cell types incurs delay 

that both modifies the potential trial population (to survivors likely to remain hospitalised 1-2 weeks 

after stroke) and the possible therapeutic effect.30  

For intracerebral implantation, placebo surgery might maintain blinding and control for the placebo 

effect, but cannot control for any non-specific biological effects from “lesioning” the target site for 

implantation.50 The placebo surgery approach also cannot identify overall harm from surgery itself, 

so there is an argument in favour of a non-operated control group in order to compare standard 

care against intervention, where the intervention arm will be judged on the net effect, including 

both benefit and harm (if present). Invasive delivery of cells carries definite procedural risk.51  

The intravenous route is more feasible and acceptable, and justified on the basis of changes in our 

understanding of the biology of cell therapy in the acute or early subacute time window. The intra-

arterial route may allow modest (although likely transient) engraftment of cells but comes at the 

probable expense of greater complications52 and more challenging recruitment unless piggy-backed 

on hyperacute endovascular thrombectomy. Whether this is feasible or not remains to be 

established. 

How long should the time window be? While there may be biological rationale for time windows of 

up to several days after stroke onset if the proposed mechanisms of anti-inflammatory, 

immunomodulatory or endogenous cell mobilisation actions are correct, this group has proved very 

difficult to enrol in clinical trials,53 and any treatment effects seem likely to be modest. Anti-

inflammatory strategies using drug treatments in acute stroke have not been successful to date,54 

raising the possibility that this mechanism may be less important than proposed. The group with less 

severe stroke typically follow a rapid recovery trajectory and smaller proportions of patients fail to 

improve. The early time window strategy of the Athersys trial seems most likely to succeed both 

with patient recruitment, and biological credibility. Whether the current outcome measures are 

appropriate for recovery trials is less clear. There may be gains from adoption of more focused scales 

such as the Fugl-Meyer motor scale,56 but this inevitably limits recruitment to patients with motor 

deficits. Restricting recruitment to specific deficits dictated by the outcome measurement chosen 

will inevitably restrict recruitment (eg only 6% of screened patients were eligible for an upper limb 

rehabilitation study57). Even for non-invasive interventions in chronic stroke disability such as upper 

limb robot-assisted physiotherapy, trials have failed to recruit to target,55,58 so restrictive entry 

criteria dictated by the specificity of an outcome measure may prove counter-productive. More 

general scales of disability such as the modified Rankin Scale are both better characterised, arguably 

more relevant to patients, and likely to be necessary to persuade both regulators and clinicians of 



the value of any intervention in definitive phase 3 trials. General scales of this kind are unlikely to 

assist in phase 2 trials where proof of concept and potential effect size estimates are sought, 

however, so phase 2 studies using motor scale end-points may be more feasible when combined 

with broad entry criteria. 

More invasive delivery of cells is being further explored in PISCES 2 (NCT02117635), and the ultimate 

target population for these allogeneic cell therapies at present appears to be later subacute or 

potentially chronic stroke. The acceptability and feasibility of direct intracerebral implantation at 

early stages post-stroke remains to be established, but there are concerns over safety for 

anaesthesia and neurosurgery in the initial weeks to months after stroke, and since this is the period 

when most patients are experiencing their most rapid recovery, willingness to consider invasive 

procedures may be limited unless compelling biological selection criteria can identify with high 

specificity which patients will fail to improve under conventional approaches. Clinical criteria alone 

do not appear to be sufficient to prognosticate,59 Whether late subacute intervention (intended to 

enhance endogenous recovery during the first months after stroke) has the same biological basis as 

the observed apparent effects in chronic patients on average two years or more after stroke is 

unknown. 

The role of adjunctive physical therapies remains unclear, with some biological evidence favouring 

this as a necessary accompaniment of recovery enhancement strategies that enhance brain 

plasticity. In this model, the biological therapy modifies the brain environment in a more favourable 

direction but in itself this does not lead to recovery of function, and specific physical therapy is 

required to exploit the facilitative environment.60 Since delivery of physical therapies to enhance 

stroke recovery varies widely across healthcare systems and the evidence base to guide specific 

components of physical therapies is limited, it may be necessary for trials to mandate an arbitrary 

minimum level of physical therapy. 

Immunosuppression, although commonly given in animal models since these most often evaluate 

human cell xenografts, has not been administered in recent human allogeneic cell studies since 

immunosuppressant therapy carries significant risks to the patients, and the immunogenicity of the 

cells has been considered likely to be low, especially in the context of intracerebral delivery. The 

intravenous delivery of allogeneic cells is postulated to have a predominantly immunological effect 

in itself and again, immunosuppression has not been co-administered. 

Neither clinical outcome criteria nor the optimal timing of measurement are  yet well defined, as 

noted above, and proposed trials to date have sample sizes too small to detect anything other than 



large effects. An apparent plateau of clinical change by 3 months after intracerebral implantation in 

both the PISCES and SanBio trials was observed, but the chronic and severely disabled stroke 

population recruited to these trials is not representative of likely future trial populations, where 

enhancement of endogenous recovery is likely to target earlier stages post-stroke. The rate of 

change of different assessment scales will also differ, and several are likely to exhibit ceiling effects. 

Invasive or high-cost interventions such as cell therapy may of course be justified only if treatment 

effects are large: however, the smaller the study, the greater the risk of a type 2 error and the 

abandonment of potentially valuable treatment in the face of considerable global unmet need. 

Imaging offers the potential for better patient selection as well as a biomarker for outcome, and may 

represent an important strategy when faced with moderate sample size of clinical trials. As a 

minimum, this may offer evidence of a biological effect in circumstances where clinical assessments 

alone may be confounded (for example by difficulties in blinding to treatment allocation or by 

marked heterogeneity of baseline prognostic markers). Imaging criteria may inform patient selection 

by identifying patients with unfavourable natural history of motor recovery, using predictors such as 

the extent of corticospinal tract integrity, although additional functional assessment (for example 

using transcranial magnetic stimulation) may further stratify patients.59 

Consensus recommendations on trial development largely recognise that clinical data to inform key 

issues such as dosing, time windows, end-points, biomarkers, and follow-up duration are very 

limited, and also that animal data may translate poorly to human use.61 The mechanistic 

understanding of cell therapies in stroke has advanced and clinical trial designs have adapted to 

these changes in concepts. Clinical trials have established basic safety information about a range of 

cell types and routes of delivery, at least in limited populations, and planned clinical trials will deliver 

preliminary evidence of efficacy. The two largest completed trials to date, using intravenous cell 

delivery of bone marrow-derived cells, have not shown evidence of significant benefit, but larger 

trials are required to establish effects. 
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Table 1: features of recent major clinical trials in stem cell therapy for stroke. 

Trial Year Cell Type Window for 
intervention 

Delivery Route Patient 
number 

Prasad37 2014 Autologous bone marrow 
mononuclear cells 

7-30 days Intravenous 120 

Athersys38 2015 Allogeneic bone marrow-
derived multipotent adult 
progenitor cells 

48 hours Intravenous 126 

SanBio47 2016 SB623 genetically 
modified human bone 
marrow-derived 
mesenchymal stem cells 

6 – 60 months  Intracerebral 18 

PISCES44 2016 CTX0E03-DP genetically 
modified human neural 
stem cells 

6 – 60 months  Intracerebral 11 
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