
 
 
 
 
 

Ortiz, A. et al. (2017) Mitogen-activated protein kinase 14 promotes 

AKI. Journal of the American Society of Nephrology, 28(3), pp. 823-

836.(doi:10.1681/ASN.2015080898) 

 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 

 

 
 
http://eprints.gla.ac.uk/128444/ 
     

 
 
 
 
 

 
Deposited on: 16 November 2016 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk33640 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296186409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1681/ASN.2015080898
http://eprints.gla.ac.uk/128444/
http://eprints.gla.ac.uk/128444/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


1 

MAP3K14 promotes acute kidney injury 

Alberto Ortiz**1,7, Holger Husi2, Lara Valiño-Rivas1,7, Laura Gonzalez-Lafuente1,7, Manuel Fresno3, Ana 

Belen Sanz1,6, William Mullen2, Amaya Albalat2,  Sergio Mezzano4, Tonia Vlahou5, Harald Mischak2,6, 

Maria Dolores Sanchez-Niño**1,7 

 

1 IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de 

Toledo-IRSIN, Madrid, Spain 

2 Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom 

3 Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain 

4 Unidad de Nefrología, Instituto de Medicina, Universidad Austral de Chile, Valdivia, Chile 

5 Biomedical Research Foundation Academy of Athens, Greece. 

6 Mosaiques diagnostics GmbH, Hannover, Germany. 

7 REDINREN, Madrid, Spain 

 

**Co-directed the research. 

 

Running title: MAP3K14 in AKI 

Words: 2897 

 

Correspondence and reprint requests: 

Maria Dolores Sanchez-Niño 

Fundación Jiménez Díaz 

Avda Reyes Católicos 2 

28040 Madrid, España 

Fax: +34 915 442636 

E-mail: mdsanchez@fjd.es 

or 

Alberto Ortiz 

Unidad de Diálisis 

Fundación Jiménez Díaz 

Avda Reyes Católicos 2 

28040 Madrid, España 

Fax: +34 915 442636 

E-mail: aortiz@fjd.es 



2 

ABSTRACT 
 

An improved understanding of pathogenic pathways may identify novel acute kidney injury 

(AKI) therapeutic approaches. Unbiased LC-MS/MS protein expression profiling combined with focused 

data mining identified MAP3K14 and non-canonical NFκB activation at the crossroads of the enriched 

pathways MAPK, ubiquitin-mediated proteolysis, chemokines, NFκB and apoptosis in the kidney cortex 

of experimental toxic AKI. In AKI the upstream kinase MAP3K14, the NFκB DNA binding heterodimer 

RelB/NFκB2, and proteins involved in NFκB2 p100 ubiquitination and proteasomal processing to p52, 

such as Ube2m and cullin1 were up-regulated. Immunohistochemistry localized MAP3K14 expression to 

tubular cells in experimental and human AKI. In vivo evidence of MAP3K14 activation in experimental 

folic acid-induced AKI consisted of NFκB2 p100 processing to p52, nuclear location and DNA binding 

of RelB and NFκB2. MAP3K14 activity-deficient aly/aly mice were protected from kidney dysfunction, 

inflammation and apoptosis in AKI induced by folic acid and from lethality in cisplatin-induced AKI. 

MAP3K14 siRNA targeting in cultured tubular cells decreased inflammation and cell death. Bone 

marrow transplantation experiments where consistent with a protective effect of renal cell MAP3K14 

targeting. Cell culture and in vivo studies identified chemokines MCP-1, RANTES and CXCL10 as 

MAP3K14 targets in tubular cells, thus identifying potential mediators of the deleterious effect of 

MAP3K14 in kidney injury. In conclusion, MAP3K14 promotes kidney injury through promotion of 

inflammation and cell death and is a promising novel therapeutic target. 

 

Key words: acute kidney injury, apoptosis, inflammation, MAP3K14, NIK, non-canonical NFκB, tissue 

proteomics. 
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INTRODUCTION 

The incidence of acute kidney injury (AKI) is increasing 1. However, there is currently no 

therapy that reliably prevents the progression to AKI or accelerates recovery of renal function 2;3. Thus, 

reliable biomarkers and novel therapeutic approaches are needed 4. AKI is characterized by kidney 

inflammation and tubular cell death, dedifferentiation and subsequent proliferation 5-9. However, given 

the complexity and redundancies of the process, it is unlikely that targeting a single inflammatory 

molecule provides the kind of benefit that will be clinically relevant. Thus, attention has focused on 

upstream signaling pathways that may regulate the coordinated expression of an array of inflammatory 

molecules. The combination of unbiased protein expression profiling with focused data mining is a 

powerful tool to expand our knowledge of relevant pathways and key factors in disease. Liquid 

chromatography tandem mass spectrometry (LC-MS/MS) identified ~2,000 proteins in murine renal 

cortex 10. However, its applications to the study of AKI has been limited and mainly concentrated in the 

analysis of biofluids such as urine or in the study of the metabolome rather than the proteome 11-14. To 

identify novel pathways and mediator networks active in AKI in a comprehensive manner, we used tissue 

LC-MS/MS to assess changes in the renal proteome of experimental toxic AKI. Bioinformatics analysis 

of 41235 peptides in cortical kidney tissue by LC-MS/MS proteomics allowed the identification of 6516 

unique proteins, of which 1480 were differentially expressed in samples from experimental nephrotoxic 

AKI as compared with controls 15. On this previously reported raw dataset, we have now performed novel 

pathway analysis in search of cell death or inflammatory pathways that are activated in AKI. This 

analysis indicated enrichment of proteins from the non-canonical activation pathway for transcription 

factor nuclear factor kappa-B (NFκB). NFκB promotes inflammation by modulating gene transcription 

16;17. Canonical NFκB activation is rapidly initiated through degradation of IκB proteins by the 

proteasome, thus releasing complexes that translocate to the nucleus to promote transcription of pro-

inflammatory genes and downregulate the expression of anti-inflammatory molecules such as Klotho 18;19. 

By contrast, non-canonical NFκB activation is a delayed response that is engaged by a limited number of 

stimuli and involves activation of the mitogen-activated protein kinase kinase kinase 14 

(MAP3K14)/NFκB-inducing kinase (NIK), proteasomal processing of NFκB p100 to p52 and nuclear 

translocation of p52/RelB complexes 16;20. The role and regulation of MAP3K14 in AKI is poorly 

understood. 
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The combined proteomic and bioinformatics approach enabled identification of evidence for 

MAP3K14 activation and the upregulation of several proteins of the non-canonical NFκB activation 

pathway in AKI that were confirmed by Western blot and immunohistochemistry. Functional studies 

identified chemokine expression and cell death and proliferation as novel MAP3K14-regulated processes 

in tubular cells. Furthermore, MAP3K14 was overexpressed during human AKI and genetically modified 

mice confirmed the key role of MAP3K14 in AKI. 

 

RESULTS 

 

Kidney tissue proteomics bioinformatics analysis identifies upregulation of MAP3K14 and non-

canonical NFκB components in AKI 

Experimental AKI is characterized by increased serum creatinine (0.53±0.25 vs 0.10±0.02 mg/dl 

at 24h, p<0.05), tubular cell death and interstitial inflammation 15. As previously described, unbiased 

proteomics combined with focused data analysis was conducted in 24h kidney cortex control and AKI 

samples 15. LC-MS/MS identified 41235 peptides in the kidney cortex corresponding to 6516 unique non-

redundant, proteins (Supplementary Figure 1) 15. The present study represents a new complimentary 

analysis of this previously generated dataset. KEGG pathway analysis identified the enrichment of several 

pathways based on the up-regulation of key proteins in AKI samples (Table 1). NFκB was at the 

crossroads of several of these pathways. NFκB activation is regulated by MAPK, requires ubiquitination 

and proteasomal processing or degradation, and regulates apoptosis and chemokine secretion. Canonically 

activated NFκB signaling has long been implicated in kidney injury 16. However, there is much less 

information on non-canonical NFκB activation and its components. A targeted data mining approach 

searched for components of the non-canonical NFκB pathway. A KEGG generated NFκB signaling 

pathway map (Supplementary Figure 2) summarizes the expression of non-canonical NFκB signaling 

pathway components and of NFκB2 (p100/p52) ubiquitination and proteasomal activation. Upregulation 

was observed for MAP3K14, the essential upstream kinase activating the non-canonical NFκB pathway 

21;22, for proteins required for NFκB2 p100 ubiquitination and proteasomal processing to active NFκB2 

p52, such as Ube2m/Ubc12 (E2) and cullin-1 (E3), and for the two main components of non-canonical 

NFκB DNA-binding heterodimers, NFκB2 and RelB (Table 2). 
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Validation of non-canonical NFκB pathway activation in AKI 

The proteomics findings of increased MAP3K14, RelB and NFκB2 p100/p52 were validated by 

Western blot and immunohistochemistry and the mechanisms by which the system is up-regulated were 

explored by assessing mRNA expression. Kidney MAP3K14, RelB and NFκB2 mRNA expression was 

increased in AKI, suggesting transcriptional up-regulation (Figure 1.A, 2.A, 2.C). Western blot 

confirmed increased kidney MAP3K14, RelB, NFκB2 p100 and NFκB2 p52 in AKI (Figure 1.B, 2.B, 

2.D, 2.E). Immunohistochemistry localized the increased expression of these proteins to tubular cells 

(Figure 1.C). In addition, NFκB2 p52 and RelB DNA-binding activity was increased in nuclear extracts 

from AKI kidneys (Figure 2.F). Thus, evidence for increased activation of MAP3K14 includes 

processing of NFκB2 p100 to NFκB2 p52 and nuclear translocation and increased DNA binding activity 

of the RelB/NFκB2 p52 transcription factor. The expression of the ubiquitination pathway Cullin-1 

protein was also confirmed to be increased in AKI (Supplementary Figure 3). 

Given the poor understanding of its role in kidney injury and its upstream situation in the 

pathway, we further explored the role of MAP3K14 in AKI. In this regard, extensive MAP3K14 

immunostaining was also observed in kidney tubules in human AKI (Figure 3). 

 

MAP3K14 deficient mice were protected from AKI 

To explore the role of MAP3K14 in AKI, we used MAP3K14 activity-deficient alymphoplasia 

(MAP3K14aly/aly) mice, which carry a point mutation causing an amino acid substitution in the carboxy-

terminal interaction domain of MAP3K14 23;24. MAP3K14+/aly heterozygote mice and MAP3K14+/+ mice 

were used as controls. 

MAP3K14+/+ or MAP3K14+/aly heterozygote mice developed AKI characterized by increased 

serum creatinine and urea levels (Figure 4.A,B and supplementary figure 4) and increased kidney 

NFκB2 activation (Figures 4.C,D and supplementary figure 4), expression of chemokines (Figure 4.E-

G and supplementary figure 4) and interstitial macrophage. 

MAP3K14 deficient mice were protected from AKI. Serum creatinine and urea (Figure 4.A,B 

and supplementary figure 4) and kidney expression of NFκB2 p100/52 protein and mRNA (Figure 

4.C,D and supplementary figure 4), MCP-1 (Figure 4.E and supplementary figure 4), RANTES 

(Figure 4.F and supplementary figure 4), CXCL10 (Figure 4.G and supplementary figure 4) and 
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CCL21a mRNA expression (Figure 4.H and supplementary figure 4) were lower than in control 

MAP3K14+/+  mice or MAP3K14+/aly heterozygote mice with AKI. 

Immunohistochemistry confirmed the lack of RelB (Fig 5.A) and NFκB2 p52 expression in 

MAP3K14 deficient mice with AKI (Fig 5.B) and disclosed decreased F4/80 macrophages and CD3 T 

lymphocytes (Fig. 6.A and B) and TUNEL positive tubular cells representing dying cells (Fig 6.C) in 

MAP3K14 deficient mice than in heterozygous controls with AKI. 

We next induced AKI in bone marrow chimeras to test whether MAP3K14 deficiency in kidney 

cells or in bone marrow derived cells was responsible for nephroprotection. Mice on a MAP3K14alyaly 

background were protected from AKI-induced death when compared to MAP3K14+/+ mice and this was 

independent of the bone marrow genotype (Supplementary figure 5). 

Finally, we tested a different model, cisplatin-induced AKI. MAP3K14 deficient mice were 

protected from mortality associated with cisplatin-induced AKI: 0/5 (0%) survival in MAP3K14+/+ AKI 

mice vs 5/5 (100%) survival in MAP3K14 deficient AKI mice at day 3. 

 

MAP3K14 function in tubular cells 

Following the findings of MAP3K14 upregulation and of evidence for MAP3K14 activation 

(NFκB2 p100 processing to p52) in tubular cells in vivo, and a beneficial effect of MAP3K14 deficiency 

in vivo, the function of MAP3K14 was explored in cultured murine tubular epithelial cells by siRNA 

targeting (Figure 7.A,B). Since KEGG pathway analysis had identified chemokine signaling and 

apoptosis as enriched pathways and MAP3K14 deficiency indeed resulted in lower inflammation and 

tubular cell death in vivo, we explored the potential regulation of chemokine secretion and cell death by 

MAP3K14 in tubular cells. For this we took advantage of TWEAK, the only cytokine characterized to 

date to activate the non-canonical NFκB pathway in tubular cells 25. In order to assess for further 

functions of MAP3K14 we explored canonical NFκB targets, including CXCL10, whose expression was 

recently related to MAP3K14 polymorphisms in human lymphoblastoid cells, but that had not previously 

been linked to MAP3K14 by functional studies 26. MAP3K14 silencing by specific siRNAs prevented 

TWEAK-induced upregulation of CXCL10 mRNA (Figure 7.C) and protein (Figure 7.D) as well as of 

canonical NFκB targets such as MCP1 and RANTES 27 (Figure 7.E, F, Suppl fig 6). Differences in 

MCP-1 expression, which peaks earlier than RANTES were more evident at earlier time points (Suppl fig 

6). In this regard some genes are targeted by both canonical and non-canonical NFκB, while others such 
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as CCL21 are specifically targeted by non-canonical NFκB activation in tubular and extrarenal cells 

25;28;29. 

Deprivation of the survival factors from serum is a classical inducer of apoptosis 30. MAP3K14 

targeting decreased apoptosis in tubular cells cultured in the absence of survival factors (Figure 8).  

 

Discussion 

For the first time we have uncovered evidence that MAP3K14 is a therapeutic target in kidney 

injury. A non-biased proteomics characterization of AKI kidneys disclosed enrichment for components of 

the non-canonical NFκB activation, chemokine and apoptosis pathways. Further studies evidenced 

activation of the apical kinase of the non-canonical NFκB pathway, and showed that in kidney tubular 

cells MAP3K14 regulates the expression of chemokines not previously associated with non-canonical 

NFκB, such as CXCL10, and cell survival. In vivo MAP3K14 targeting protected from AKI, improving 

renal function and decreasing inflammation and tubular cell death. 

NFκB is a family of structurally homologous proteins, including NFκB1, NFκB2, RelA, RelB, 

and c-Rel, which form homo- or hetero-dimers that bind to κB enhancers in DNA to promote or inhibit 

gene transcription 16. Two main pathways for NFκB activation are known. Canonical NFκB activation is 

usually a rapid, protein synthesis-independent and transient response to a wide range of stimuli that 

involves proteasomal degradation of cytosolic IκB inhibitory proteins leading to the release of RelA/p50 

and other dimers that then migrate to the nucleus. NFκB-driven IκBα re-synthesis contributes to a fast 

turn-off of the response. By contrast, non-canonical NFκB activation requires MAP3K14 activation and 

NFκB2 p100 processing to p52 by the proteasome, resulting in a delayed nuclear translocation of 

RelB/p52 heterodimers and in prolonged activation of NFκB target genes 31-33. Increased transcription of 

NFκB2 and RelB may contribute to persistence of the response 34. By contrast to the canonical pathway, 

only a limited number of stimuli are known to activate the non-canonical NFκB pathway. These include 

advanced glycosylation end-products 33 and TNF receptor superfamily members such as lymphotoxin-β 

receptor, B-cell activating factor (BAFFR), CD40, receptor activator for NFκB (RANK), CD27 and the 

TWEAK receptor Fn14 20;25;35. None of these receptors or their ligands was identified in the proteomic 

analysis of kidney cortex. However, some of them had been previously shown to contribute to AKI. A 

literature search revealed a role in AKI for CD27 and TWEAK/Fn14 36-38. CD27 was localized to 

sloughed cells in tubular lumens post-ischemia and CD27-deficient mice were protected from AKI and 
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tubular cell apoptosis 36;37. By contrast to this single report, multiple studies from several institutions have 

provided evidence for a role of TWEAK/FN14 in kidney injury 39. Furthermore, TWEAK targeting 

decreased the expression of the non-canonical NFκB target CCL21 in tubular cells 25. Thus for cell 

culture studies we chose TWEAK as a pathophysiologically relevant activator of the non-canonical NFκB 

pathway. 

There is evidence for a role of canonical activation of NFκB in kidney injury 16. However, no 

therapeutic approach specifically targeting NFκB systemically is undergoing clinical trials, suggesting a 

fundamental lack of understanding of the system. In this regard, the role of MAP3K14 and non-canonical 

NFκB activation in AKI has not been well characterized. There is very little and scattered information on 

activation of this pathway in kidney disease. MAP3K14 was phosphorylated in tubular cells during 

kidney ischemia-reperfusion 40 and levels were increased in experimental diabetic nephropathy and 

human delayed graft function 40;41. TWEAK-dependent nuclear translocation of RelB and p52 was 

observed in tubular cells in nephrotoxic AKI 25. In the present report, kidney tissue proteomics identified 

upregulation of several proteins in the non-canonical NFκB pathway, upregulation of these proteins was 

confirmed and localized to tubular cells, the contribution of transcriptional regulation was identified and 

the role of MAP3K14 in tubular cell injury was characterized. In this regard, MAP3K14 activity deficient 

mice were protected from AKI. Thus, MAP3K14 represents a key regulated step promoting AKI that may 

potentially be subject to therapeutic manipulation, although at present there are no satisfactory MAP3K14 

inhibitors 42.  

MAP3K14 is the essential upstream serine/threonine kinase of the non-canonical NFκB pathway 

that binds to TRAF2 and participates in NFκB signaling in response to the TNF superfamily and 

interleukin 1 receptors.22. MAP3K14 protein concentrations are low in quiescent cells as a result of rapid 

degradation. Cytokines and oxidative stress may increase MAP3K14 protein stability, leading to 

MAP3K14 activation 20. In addition to this universal mechanism of MAP3K14 regulation, we now found 

increased steady-state MAP3K14 mRNA levels as an additional regulatory mechanism of MAP3K14 

expression in tubular epithelium that also takes place in vivo during AKI. MAP3K14 induces IκB kinase-

α (IKK-α)-mediated phosphorylation of NFκB2 p100, a prerequisite for p100 ubiquitination and 

subsequent proteasomal processing to active NFκB2 p52 32. 

Ubiquitination is required for targeting of specific proteins to the proteasome. F-box proteins 

provide specificity for substrate recognition in the S-phase kinase associated protein 1 (SKP1)-cullin 1 
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(CUL1)-F-box protein (SCF) family of the Cullin-RING ligases (CRL) E3 ubiquitin ligase superfamily 43. 

The F-box protein β-transducin repeat containing (β-TrCP; FBW1A) provides substrate specificity for 

MAP3K14-phosphorylated p100, allowing ubiquitination by SCFβ-TrCP 44-47. Efficient NFκB2 p100 

ubiquitination requires Uba3 (ube1c) and Ube2m (UBC12), ube2d3 (UBCH5c) and intact Cullin1 in 

SCFβ-TrCP 45. Interestingly, the Ube2m E2 ubiquitin conjugating enzyme and cullin-1 of the SCFβ
-TrCP E3 

ubiquitin ligase were found to be upregulated in AKI. 

Evidence for MAP3K14 activation in vivo in AKI included increased MAP3K14 levels, NFκB 

p100 processing to NFκB p52, increased nuclear localization and DNA binding activity of p52/RelB and 

decreased kidney inflammation and cell death and preserved renal function in MAP3K14 activity 

deficient mice. Protection from AKI may depend on systemic MAP3K14 deficiency (e.g. leukocyte 

MAP3K14 deficiency) and/or kidney MAP3K14 deficiency. Bone marrow transplantation experiments 

results are consistent with the hypothesis that renal cell MAP3K14 targeting is important for 

nephroprotection. In this regard the fact that non-renal cells also express MAP3K14 may result in 

undesired side effects when targeting MAP3K14 with small molecules. MAP3K14 and non-canonical 

NFκB gene targets have been characterized in the immune system, but there is little information on 

kidney cells 16. We now provide evidence of a role of MAP3K14 in the regulation of the inflammatory 

and cell death/proliferation responses in tubular cells that together with the upregulation of MAP3K14 in 

tubular cells in AKI suggest at least a partial contribution of MAP3K14 targeting in tubular cells to the 

therapeutic responses. 

The p52/RelB heterodimers characteristic of MAP3K14-initiated non-canonical NFκB activation 

share a number of gene targets with RelA-containing, classically activated NFκB complexes 16;29. Since 

canonical NFκB activation is an early transient response peaking at around 1-3h while and non-canonical 

NFκB activation is delayed and peaks at around 24h, non-canonical NFκB activation by contribute to 

sustained NFκB-dependent gene expression 16;28;48. In this regard, the CC genotype of the MAP3K14 SNP 

rs7222094 was recently associated with increased mortality and renal dysfunction in septic shock patients 

26. CXCL10 was the gene with the greatest difference in expression between major and minor MAP3K14 

genotypes. The rs7222094 genotype strongly associated with decreased CXCL10 levels in 

lymphoblastoid cell lines and in septic shock patients 26. Urinary CXCL10 is increased in AKI patients 

49;50 and, as shown here, in AKI kidney tissue. We now provide for the first time direct functional 

evidence that persistent CXCL10 expression in response to TWEAK is regulated by MAP3K14. CXCL10 
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(IP-10) had long been associated to kidney injury in animals and humans 51;52. MCP-1 and RANTES, 

which are targets of canonical NFκB activation 53 were also found to be MAP3K14-dependent in tubular 

cells. CCL21a was previously shown to be MAP3K14-dependent in this cell system 27. Thus, a wide 

spectrum of chemokines, both commonly considered as canonical NFκB targets or non-canonical NFκB 

targets, is regulated by MAP3K14 in cultured tubular cells and during AKI. 

KEGG pathway analysis also disclosed apoptosis pathways as overrepresented in the AKI 

proteome. MAP3K14 had been identified as a cell death regulator in cancer cells. Indeed, MAP3K14 

siRNA targeting reduced serum deprivation-induced death in tubular cells. These results were consistent 

with decreased tubular cell apoptosis in vivo in MAP3K14 activity-deficient mice during AKI. These 

results are also consistent with observations targeting another component of the non-canonical NFκB 

pathway, RelB. Thus, RelB targeting by siRNA protected mice against lethal kidney ischemia 54 and in 

cultured proximal tubular cells, knockdown of RelB abrogated the excess apoptosis induced by TNF in 

combination with cisplatin 55. 

In conclusion, preclinical functional studies in cell culture and in vivo identified MAP3K14 as a 

promising therapeutic target in kidney injury. In this regard MAP3K14 was upregulated during human 

kidney injury, suggesting that experimental findings may be applicable to the clinical settings. This 

information sets the stage for the exploration of the potential of MAP3K14 as a therapeutic target in 

humans. 

 

Materials and methods 

Animal model 

Studies were conducted in accord with the NIH Guide for the Care and Use of Laboratory 

Animals. Folic acid nephropathy is a classical model of AKI that shares several features with human AKI, 

including tubular cell death, compensatory tubular cell proliferation, activation of an inflammatory 

response and eventual progression to mild fibrosis 27;56-58. Indeed, folic acid nephropathy has been 

reported in humans 59. C57/BL6 female mice (12- to 14-week-old) from the IIS-Fundacion Jimenez Diaz 

animal facilities received a single i.p. injection of folic acid (Sigma) 250 mg/kg in 0.3 mol/L sodium 

bicarbonate or vehicle and were sacrificed 24 h or 72 h after injection (n=6 per group). The kidneys were 

perfused in situ with cold saline before removal. Half-kidney from each mouse was fixed in buffered 

formalin, embedded in paraffin and used for immunohistochemistry and the other half was snap-frozen in 
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liquid nitrogen for RNA and protein studies. The cortex from one kidney obtained 24h after folic acid or 

vehicle injection was carefully separated and snap-frozen for proteomics analysis.  

 

To assess the role of MAP3K14 in AKI, MAP3K14 aly/aly mice deficient in MAP3K14 and 

MAP3K14 +/aly heterozygote or MAP3K14 +/+ mice used as controls received a single intraperitoneal 

injection of folic acid (Sigma) 250 mg/kg in 0.3 mol/L sodium bicarbonate or vehicle and were sacrificed 

72 h after injection (n=5 per group). MAP3K14 aly/aly mice deficient in MAP3K14 were from the CBM, 

Madrid, Spain animal facilities 23. 

A different model of AKI was induced by the intraperitoneal injection of a single dose of 

25  mg/kg cisplatin (Sigma) dissolved in 0.9% saline solution. The cisplatin dose was based on literature 

analysis and results of preliminary experiments, showing renal function impairment at day 3 after 

cisplatin injection. MAP3K14 aly/aly mice (n=5) and MAP3K14 +/+ mice (n=5) were used in these 

experiments and sacrificed at 72h. 

 

Generation of bone marrow chimera 

Recipient MAP3K14+/+  mice and MAP3K14 aly/aly mice at age 6 weeks were γ-irradiated with 2 

doses of 5 Gy for ablation of endogenous bone marrow cells. For bone marrow transplantation, bone 

marrow cells were isolated (donor) by flushing the femurs and tibias using a 25G needle with Dulbecco’s 

modified Eagle medium (DMEM; Invitrogen). After resuspension, bone marrow cells were centrifuged 

(300  ×  g, 5  min, 4  °C). After resuspension with ice-cold DMEM, bone marrow cells were filtered through 

a 35-µm filter. Irradiated recipient MAP3K14+/+  and MAP3K14 aly/aly mice were injected intravenously 

with 4  ×  106 donor bone marrow cells (in 100  µL per recipient) within 4  h after the last irradiation dose. 8 

weeks after bone marrow transplantation, bone marrow chimeric mice (4 groups of 5 mice: recipient 

MAP3K14+/+ with donor MAP3K14+/+,   recipient MAP3K14+/+ with donor MAP3K14aly/aly,  recipient 

MAP3K14aly/aly with donor MAP3K14+/+ and recipient MAP3K14aly/aly with donor MAP3K14aly/aly) were 

subjected to folic acid nephropathy and killed at 72 h. 

 

Sample preparation and mass spectrometry analysis 

Tissue samples were weighed out and extracted using the Filter Aided Sample Preparation 

(FASP) method 60, as described previously 15. Briefly, tissue samples were homogenised in SDS-lysis 
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buffer (1:10 sample to buffer ratio) (0.1 M Tris-HCl pH 7.6 supplemented with 4% SDS and 0.1 M DTT) 

using an Ultra-Turrax T 25 (IKA, Staufen, Germany), incubated at 95 ºC for 3 minutes and clarified by 

centrifugation at 16,000 g for 5 min at room temperature. An aliquot of the supernatant was taken and 

placed in a Micron YM-30 filter device (Millipore, Watford UK). 8 M Urea buffer (UA) was added to the 

protein extract and then centrifuged at 14,000 g for 15 minutes and then repeated. The protein extract was 

then mixed gently for 1 minute with 0.05 M iodoacetamide buffer (IAA) and incubated for a further 20 

minutes prior to centrifugation. UA buffer was again added and centrifuged (twice). Ammonium 

bicarbonate buffer (50 mM NH4HCO3, pH 8) (ABC) was added and centrifuged (twice) before incubating 

overnight with trypsin. The trypsin homogenate was centrifuged and washed with ABC buffer prior to 

acidification with 10% formic acid. Sample volumes were adjusted to match final concentration of protein 

prior to analysis by LC-MS/MS. 

Tissue extracts were separated on a Dionex Ultimate 3000 RSLS nano flow system (Dionex, 

Camberly UK). A 5 µl sample was loaded in 0.1% formic acid and acetonitrile (98:2) onto a Dionex 100 

µm x 2 cm, 5 µm C18 nano trap column at a flow rate of 5µl/min. Elution was performed on an Acclaim 

PepMap C18 nano column 75 µm x 50 cm, 2 µm, 100 Å with a linear gradient of solvent A, 0.1% formic 

acid and acetonitrile (98:2) against solvent B, 0.1% formic acid and acetonitrile (20:80) starting at 1% B 

for 5 minutes rising to 30% at  400 minutes then to 50% B at 480 minutes. The sample was ionized in 

positive ion mode using a Proxeon nano spray ESI source (Thermo Fisher, Hemel, UK) and analyzed in 

an Orbitrap Velos FTMS (Thermo Finnigan, Bremen, Germany). The MS was operated in a data-

dependent mode (top 40) to switch between MS and MS/MS acquisition and parent ions were fragmented 

by collision-induced dissociation (CID). Data files were searched against the IPI mouse non-redundant 

database using SEQUEST with enzyme specified as trypsin. A fixed modification of 

carbamidomethylation was set and oxidation of methionine and proline as variable modifications were 

selected. Mass error windows of 20 ppm and 0.8 Da were allowed for MS and MS/MS, respectively. In 

SEQUEST, only peptides that showed mass deviation of less than 10 ppm were passed, the peptide data 

were extracted using high peptide confidence and top one peptide rank filters. Statistical p-value analysis 

was performed using the Wilcoxon Mann Whitney test. 

 

Bioinformatics analysis 
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Protein identification and a significant dataset of 1480 entries with p-values <0.05 and fold 

changes of >2 have been previously described 15. This dataset was used for metabolic and signaling 

pathway analysis using the KEGG web-resource (www.genome.jp/kegg-bin/) or with PathVisio 

(www.pathvisio.org). Focused data mining was then amplified to all molecules with a p-value≤0.05. 

 

Cells and reagents 

MCT cells are a cultured line of proximal tubular epithelial cells harvested originally from the 

renal cortex of SJL mice and have been extensively characterized 61. MCT cells were cultured in RPMI 

1640 (GIBCO, Grand Island, NY, USA), 10% decomplemented fetal bovine serum (FBS), 2 mM 

glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin, in 5% CO2 at 37 ºC 61. Recombinant human 

soluble TWEAK (Millipore, Billerica, MA) was used at 100 ng/ml. 

 

Western blot analysis 

Tissue and cell samples were homogenized in lysis buffer 62 then separated by 10% or 12% SDS-

PAGE under reducing conditions and transferred to PVDF membranes (Millipore, Bedford, MA, USA), 

blocked with 5% skimmed milk in PBS/0.5% v/v Tween 20 for 1 h, and washed with PBS/Tween. 

Primary antibodies were rabbit polyclonal anti-p100/52 (1:500, Cell Signaling, Danvers, MA), anti-RelB 

(1:500, Santa Cruz, CA, USA), anti-MAP3K14 (1:1000, Cell Signaling), anti-Cyclin D1 (1:1000, Cell 

Signaling) and anti-cullin-1 (1:500 Santa Cruz, CA, USA). Antibodies were diluted in 5% milk 

PBS/Tween. Blots were washed with PBS/Tween and subsequently incubated with appropriate 

horseradish peroxidase-conjugated secondary antibody (1:2000, GE Healthcare/Amersham, Aylesbury, 

UK). After washing, the blots were developed with the chemiluminescence method (ECL). Blots were 

then re-probed with monoclonal anti- mouse α-tubulin antibody (1:2000, Sigma, St. Louis, MO, USA) 

and levels of expression were corrected for minor differences in loading. 

 

Quantitative reverse transcription-polymerase chain reaction 

One µg RNA isolated by Trizol (Invitrogen, Paisley, UK) was reverse transcribed with High 

Capacity cDNA Archive Kit and real-time PCR was performed on a ABI Prism 7500 PCR system 

(Applied Biosystems, Foster City, CA) using the DeltaDelta Ct method 63. Expression levels are given as 

ratios to GAPDH. Pre-developed primer and probe assays were from Applied Biosystems, Foster City, 
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CA.  

 

Immunohistochemistry 

Immunohistochemistry was carried out as previously described on paraffin-embedded 5 µm thick 

tissue sections 62. Primary antibodies were rabbit polyclonal anti-RelB (1:50, Santa Cruz, CA, USA), anti- 

NFκB2 p100/p52 (1:20, Santa Cruz, CA, USA), anti-MAP3K14 (1:100, Cell Signaling), rat polyclonal 

anti-F4/80 antigen (1:50; Serotec, Oxford, UK), rabbit monoclonal anti-CD3 (1:100, Dako, Denmark) and 

anti-Cullin-1 (1:80, Santa Cruz, CA, USA). Sections were counterstained with Carazzi`s hematoxylin. 

Negative controls included incubation with a non-specific immunoglobulin of the same isotype as the 

primary antibody. 

Apoptosis was assayed by deoxynucleotidyl-transferase-mediated dUTP nick-end labeling 

(TUNEL) (In Situ Cell Death Detection Kit; Roche) according to the manufacturer’s instructions 63.  

For human kidney immunohistochemistry, control kidney tissue from nephrectomy specimens 

(n=4) and AKI tissue (n=7) diagnosed as “acute tubular necrosis” was studied. Mean age was 36-4±18.6 

years, four patients were females and serum creatinine ranged from 1.7 to 10.0 mg/dl (5.7±3.5 mg/dl). 

Immunohistochemistry was performed as described above by using anti-human MAP3K14 from Abcam. 

 

Transfection with small interfering RNA 

Cells were grown in six-well plates (Costar, Cambridge, MA) and transfected with a mixture of 

20 nmol/mL MAP3K14 siRNA (Santa Cruz, CA, USA), Opti-MEM I Reduced Serum Medium and 

Lipofectamine 2000 (Invitrogen) 64. After 18 hours, cells were washed and cultured for 6 hours in 

complete medium, and serum-depleted for 24 h before addition of stimulus. This time point was selected 

from a time-course of decreasing MAP3K14 protein expression in response to siRNA. A negative control 

scrambled siRNA provided by the manufacturer did not reduce MAP3K14 protein. 

 

Cell death and apoptosis 

Cells were cultured to subconfluence in six-well plates and transfected with MAP3K14 siRNA 

as previously described 65. Apoptosis was assessed by flow cytometry of DNA content. For assessment of 

the cell cycle and apoptosis, adherent cells were pooled with spontaneously detached cells, and stained in 

100 µg/mL propidium iodide, 0.05% NP-40, 10 µg/mL RNAse A in PBS at 4°C for >1 hour. This assay 
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permeabilizes the cells. Permeabilization allows entry of propidium iodide into all cells, dead or alive. 

Apoptotic cells are characterized by a lower DNA content (hypodiploid cells) because of nuclear 

fragmentation. Thus, this assay is not based on the known ability of propidium iodide to enter dead cells. 

The percentage of apoptotic cells with decreased DNA content (Ao) was counted 30. 

 

ELISA 

Cells were transfected with MAP3K14 siRNA and stimulated with 100 ng/ml TWEAK. Murine 

CxCL10 in the supernatants was determined by ELISA (BD Pharmingen, San Diego, CA). 

 

NFκB DNA-binding activity 

RelB and NFκB2 p52 subunits in nuclear extracts from kidney tissue were assessed by their 

binding to an oligonucleotide containing the NFκB consensus site using TransAM NFκB Family Kit 

(Active Motif, Carlsbad, CA). 

 

Statistics 

Statistical analysis was performed using SPSS 11.0 statistical software (IBM, NY, USA). Results 

are expressed as mean ± SD. Significance at the p<0.05 level was assessed by Student´s t test for two 

groups of data and ANOVA for three of more groups. 
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Figure legends 

Figure 1. Increased kidney mRNA and protein expression of MAP3K14 in experimental 

AKI. Kidney mRNA levels were assessed by quantitative RT-PCR and protein levels by Western blot. A) 

MAP3K14 mRNA *p<0.009 vs vehicle. B) MAP3K14 protein *p<0.005 vs vehicle. C) MAP3K14 

immunohistochemistry. Increased MAP3K14 expression was localized to tubular cells in AKI samples 

from wild type mice at 24 h. Original magnification 40. N= 6 animals per group. 

Figure 2. Increased kidney RelB and NFκB2 expression and evidence for non-canonical 

NFκB activation in experimental AKI. Kidney mRNA levels (A;C) were assessed by quantitative RT-

PCR and protein levels by Western blot (B;D). A) RelB mRNA, *p<0.009 vs vehicle. B) RelB protein, 

*p<0.03 vs vehicle. C) NFκB2 mRNA, *p<0.006 vs vehicle. D) NFκB2 p100 and p52 proteins, 

representative Western blot. E) NFκB2 p100 and p52 protein quantification, *p<0.03 and **p<0.05 vs 

vehicle. NFκB2 p100 is processed to NFκB p52 by the proteasome. F) Increased nuclear DNA-binding 

activity of NFκB2 p52 and RelB in experimental AKI. A DNA-binding ELISA was used to quantify 

DNA-binding activity of NFκB2 p52 and RelB in nuclei obtained from kidneys 24 h following induction 

of AKI or vehicle administration. *p<0.009 vs vehicle. N= 6 animals per group. 

Figure 3. MAP3K14 expression in human kidney tissue. Immunohistochemistry was 

performed in human control and AKI tissue. Increased tubular cell immunostaining for MAP3K14 was 

observed in AKI. Original magnification x20, detail x100. 

Figure 4. MAP3K14 deficient mice were protected from experimental AKI. A) Serum 

creatinine. *p<0.015 vs heterozygous mice. B) Serum urea. *p<0.0001 vs heterozygous mice. C) NFκB2 

p100 and p52 proteins (representative Western blot). D) NFκB2 mRNA. *p<0.01 vs heterozygous AKI 

mice. E) Decreased whole kidney MCP-1, F) RANTES and G) CXCL10 mRNA expression in 

MAP3K14 deficient mice with AKI compared to heterozygous mice. *p<0.02 vs heterozygous AKI mice. 

H) CCL21a mRNA expression. Mean±SD of 6 mice per group at the 72 h time-point. *p<0.03 vs 

heterozygous AKI mice.  

Figure 5. MAP3K14 deficient mice are protected from tubular non-canonical NFκB 

pathway activation in AKI. A) RelB and B) p100/52 immunohistochemistry. Nuclear p52 is observed in 

renal tubules from heterozygous mice with AKI (arrows) while no staining was observed in MAP3K14 

deficient mice with AKI. Immunohistochemistry does not discriminate between NFκB2 p100 and NFκB2 

p52. However, Western blot shown in figure 4.C shows the presence of the active NFκB2 p52 protein. 
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Images representative of 6 animals per group at the 72 h time-point. Original magnification x40. Detail 

x400.  N= 6 animals per group. 

Figure 6. MAP3K14 deficient mice were protected from experimental AKI-induced 

inflammation and cell death. A) F4/80 macrophage and B) CD3 immunohistochemistry. Macrophage 

infiltration is milder in MAP3K14 deficient mice with AKI than in heterozygous mice with AKI. * 

p<0.001, ** p<0.02. Original magnification ×20. C) TUNEL for fragmented DNA characteristic of 

apoptosis was frequently positive in tubular cells in heterozygous mice with AKI. The rate of apoptosis 

was lower in MAP3K14 deficient mice with AKI. * p<0.03. Original magnification x20. Mean±SD of 6 

mice per group at the 72 h time-point. 

Figure 7. Functional characterization of MAP3K14 actions on cultured proximal tubular 

cells: chemokine expression. A) MAP3K14 siRNA silencing in cultured murine proximal tubular cells 

suppressed MAP3K14 protein expression. Representative Western blot. B) MAP3K14 siRNA silencing 

in cultured murine proximal tubular cells suppressed MAP3K14 mRNA expression. C) MAP3K14 

siRNA silencing prevents CXCL10 mRNA upregulation induced by a 24h stimulation by the non-

canonical NFκB activator TWEAK (100 ng/ml). qRT-PCR. *p<0.005 vs control, **p<0.005 vs TWEAK 

alone. D) MAP3K14 siRNA silencing prevents the increase in culture supernatants of the CXCL10 

chemokine induced by exposure for 24h to 100 ng/ml TWEAK (ELISA) *p<0.001 vs control, **p<0.01 

vs TWEAK alone. E) MAP3K14 siRNA silencing prevent MCP1 mRNA upregulation induced by the 

non-canonical NFκB activator TWEAK. qRT-PCR. *p<0.0001 vs scrambled, **p<0.0001 vs TWEAK 

alone. F) MAP3K14 siRNA silencing prevents RANTES mRNA upregulation induced by TWEAK. qRT-

PCR. *p<0.002 vs scrambled, **p<0.003 vs TWEAK alone. Cells were treated with scramble or 

MAP3K14 siRNA prior to addition of 100 ng/ml TWEAK for 24h. Mean±SD of 3 independent 

experiments.  

Figure 8. Functional characterization of MAP3K14 actions on cultured proximal tubular 

cells: cell death. A) MAP3K14 siRNA silencing decreases spontaneous apoptosis of serum-deprived 

tubular cellsγ. Representative flow cytometry diagrams of cell DNA content. Hypodiploid cells consistent 

with apoptosis are indicated by a horizontal bar. B) Quantification of hypodiploid apoptotic cells. 

*p<0.05 vs control, **p<0.03 vs TWEAK/TNFα/INFγ alone. Mean±SD of 3 independent experiments.  
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Supplementary figure 1. Proteomics and bioinformatics approaches. LC/MS-MS proteomics 

of kidney cortex from 6 AKI or 6 control samples identified 41235 peptides belonging to 6516 unique 

proteins, of which 1480 were significantly differentially expressed. A bioinformatics analysis of this 

dataset identified several processes and protein functions enriched in upregulated proteins in AKI. NFκB 

activation was found at the crossroads of several of these processes, including MAPK, ubiquitin-mediated 

proteolysis, chemokines, NFκB and apoptosis. Since canonical NFκB activation in kidney injury has been 

studied in depth, we focused on non-canonical NFκB activation and validated changes in the expression 

of components of the pathways identified by proteomics. For functional studies we used key target cells 

in AKI, tubular cells, to explore the function of the apical kinase of the non-canonical NFκB pathway 

(MAP3K14) in processes that are known to be involved in AKI pathogenesis and that were identified as 

overrepresented in AKI sample proteomics by KEGG database searching, that is, chemokines and 

apoptosis. The function of MAP3K14 in AKI was validated in vivo in MAP3K1 activity-deficient mice. 

 

Supplementary figure 2. NFκB signaling and ubiquination pathway map. Map shows an 

integration of KEGG-generated NFκB signaling and ubiquitination proteasome pathways. TWEAK, a 

known activator of non-canonical NFκB signaling was added manually. Non-canonical NFκB is elicited 

by a limited set of extracellular ligands and requires MAP3K14 activation. MAP3K14 induces IκB 

kinase-α (IKK-α)-mediated phosphorylation of NFκB2 p100. F-box proteins provide specificity for 

substrate recognition in the S-phase kinase associated protein 1 (SKP1)-cullin 1 (CUL1)-F-box protein 

(SCF) family of the Cullin-RING ligases (CRL) E3 ubiquitin ligase superfamily. IKK-α-phosphorylated 

NFκB2 p100 is recognized by the F-box protein β-transducin repeat containing (β-TrCP; FBW1A) 

allowing ubiquitination by SCFβ-TrCP. Efficient NFκB2 p100 ubiquitination requires Ube2m (UBC12) and 

Cullin1 in SCFβ-TrCP. SCFβ-TrCP-ubiquitinated NFκB2 p100 is processed by the proteasome to active 

NFκB2 p52.  NFκB2 p52/RelB heterodimers migrate to the nucleus to regulate transcription. Red: over-

expressed >2, orange: over-expressed >1 and <2 (p<0.05), grey: identified in the sample, but not 

statistically significant differences. 

 

Supplementary figure 3. Increased mRNA and protein expression of Cullin-1 in 

experimental AKI. A) Quantification and representative Western blot of Cullin-1 protein *p<0.02 vs 
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vehicle. B) Cullin-1 immunostaining in 24 hours AKI and vehicle samples. Note increased Cullin-1 

expression in tubular cells from AKI samples. Images representative of 6 animals per group. 

 

Supplementary figure 4. MAP3K14 deficient mice were protected from experimental AKI. 

A) Serum creatinine. *p<0.015 vs MAP3K14+/+ mice. B) Serum urea. *p<0.0001 vs MAP3K14+/+ mice. 

C) NFκB2 mRNA. *p<0.01 vs MAP3K14+/+ AKI mice. D) MCP-1, E) RANTES and F) CXCL10 mRNA 

expression in MAP3K14 deficient mice with AKI compared to MAP3K14+/+ mice. *p<0.02 vs 

MAP3K14+/+ AKI mice. G) CCL21a mRNA expression. Mean±SD of 6 mice per group at the 72 h time-

point. *p<0.03 vs MAP3K14+/+ AKI mice. In F-G vehicle injected mice were considered to have 100% 

mRNA expression levels and data are presented as percentage change over those values. 

 

Supplementary figure 5. Renal cell MAP3K14aly/aly were protected from folic acid-induced 

AKI. Four groups of 5 chimeric mice were studied: MAP3K14aly/aly mice with MAP3K14aly/aly bone 

marrow (BM), MAP3K14aly/aly mice with MAP3K14+/+ BM, MAP3K14+/+ mice with MAP3K14aly/aly BM 

and MAP3K14+/+ mice with MAP3K14+/+ BM. A) Mouse survival: 40% of MAP3K14+/+ mice with either 

MAP3K14+/+ or MAP3K14aly/aly BM died. No deaths were recorded in MAP3K14aly/aly mice, 

independently of the BM characteristics. B) Among surviving mice no differences in serum creatinine 

were observed. However, the most severely affected mice had died. 

 

Supplementary figure 6. Functional characterization of MAP3K14 actions on cultured 

proximal tubular cells: regulation of MCP-1 mRNA expression. Cells were treated with scramble or 

MAP3K14 siRNA prior to addition of 100 ng/ml TWEAK for 3h. *p<0.0001 vs scrambled, **p<0.007 vs 

MAP3K14 siRNA alone. 
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Table 1. Signaling pathways modulated in AKI samples and identified by pathway analysis using 

KEGG database searching. NFκB activation is at the crossroads of the pathways marked in bold. 

KEGG map
number 
of hits

mmu04151 46

mmu04010 29

mmu04910 27

mmu04020 22

mmu04120 21

mmu04062 19

mmu04310 17

mmu04630 16

mmu04660 15

mmu03320 13

mmu04064 13

mmu04370 11

mmu04912 11

mmu04210 11

mmu04722 10

GnRH signaling pathway

Neurotrophin signaling pathway

Name

Apoptosis

Wnt signaling pathway

Jak-STAT signaling pathway

T cell receptor signaling pathway

PPAR signaling pathway

NF-kappa B signaling pathway

VEGF signaling pathway

PI3K-Akt signaling pathway

MAPK signaling pathway

Insulin signaling pathway

Calcium signaling pathway

Ubiquitin mediated proteolysis

Chemokine signaling pathway
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Table 2. Non-canonical NFκB signaling pathway and ubiquitination and proteasomal degradation 

proteins significantly modulated in AKI. Data represent focused data mining following non-biased 

analysis of the significant dataset. 

Non-canonical NFkappaB pathway
Nuclear factor NF-kappa-B p100 subunit Nfkb2 1.46 0.03
Mitogen-activated protein kinase kinase kinase 14 (NIK) Map3k14 1000 0.05
Transcription factor RelB Relb 3.33 0.01

Ubiquitination system
Cullin-1 Cul1 1000 0.02
NEDD8-conjugating enzyme Ubc12 Ube2m 3.01 0.01

Name gene
fold 

change p-value

 

 

 


