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The Kalina cycle is believed to be one of the most promising technologies for power generation from low
temperature heat sources such as geothermal energy. So far, most Kalina cycle power plants are designed
with a working fluid mixture having a fixed composition, and thus normally operate at a fixed condensing
temperature. However, the ambient temperature (i.e., heat sink) varies over a large range as the season
changes over a year, particularly in continental climates. Recently, a new concept, i.e., composition-
adjustable Kalina cycle, was proposed to develop power plants that can match their condensing temper-
ature with the changing ambient conditions, aiming at improving the cycle’s overall thermal efficiency.
However, no detailed analysis of its implementation and the potential benefits under various climate
conditions has been reported. For this reason, this paper carried out a comprehensive numerical research
on its implementation and performance analysis under several different climate conditions. A mathemat-
ical model is firstly established to simulate the working principle of a composition-adjustable Kalina
cycle, based on which a numerical program is then developed to analyse the cycle’s performance under
various climate conditions. The developed numerical model is verified with some published data. The
dynamic composition adjustment in response to the changing ambient temperature is simulated to eval-
uate its effect on the plant’s performance over a year. The results show that a composition-adjustable
Kalina cycle could achieve higher annual-average thermal efficiency than a conventional one with a fixed
mixture composition. However, such an improvement of thermal efficiency strongly depends on the heat
source temperature, climate conditions, etc. The composition-adjusting system introduces extra capital
and operation costs. The economic viability of a composition-adjustable Kalina cycle power plant
depends on the balance between these extra costs and the increase of thermal efficiency.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Reducing fossil fuel consumption and greenhouse gas emissions
is particularly important for us to ensure a sustainable future.
Power generation from a variety of renewable heat sources such
as geothermal and solar thermal energy could make an important
contribution to the decarbonisation of our economy [1,2]. In partic-
ular, low-temperature geothermal energy is being used increas-
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ingly for power and heat generation [3]. Power cycles utilising
low temperature heat sources have been intensively studied and
well documented in the past several decades [4-6], amongst which
organic Rankine cycles and Kalina cycles are considered to be two
most important technologies [7,8].

In 1984, Kalina proposed a power cycle using a binary mixture
as working fluid to generate power from heat source with a rel-
atively low temperature, denoted as Kalina cycle later on [9]. The
Kalina cycle is essentially a further development of Rankine cycle.
One key difference between them is that a Kalina cycle uses a
mixture rather than a pure working fluid, so that isobaric
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Nomenclature

exergy (kW)

enthalpy (kJ/kg)

exergy destruction rate (kW)
mass flow rate (kg/s)
pressure (MPa)

heat quantity (kW)

entropy (kJ/kg K)
temperature (K)

power (kW)

ammonia mass fraction

xXgHCvOTE I

Greek letters

n efficiency

1V improvement of Cycle A relative to Cycle B
Subscripts

0 ambient condition

A B Cycles A, B

c condenser

d exergy destruction

e evaporator

ex exergy

f fan

in inlet

ml Mixer 1

m2 Mixer 2

mix mixture of the basic solution
n net

out outlet

p1 Pump 1

p2 Pump 2

re recuperator

S isentropic

s1 Separator 1

s2 Separator 2

t turbine

th thermal efficiency

tot total

v expansion valve

Acronyms

KCS Kalina cycle system

KSG Siemens’ Kalina cycle system
OO0L optimal operation line

ORC organic Rankine cycle

PPTD pinch point temperature difference

evaporation and condensation processes occur under changing
temperatures and the mixture composition varies throughout
the cycle. Compared with a Rankine cycle, the efficiency of a
Kalina cycle can be increased due to a close temperature match
with heat transfer fluids in the evaporator and condenser. For
instance, a Kalina cycle system using an ammonia-water mixture
as the working fluid to generate power from the waste heat of a
gas turbine achieved a thermal efficiency of 32.8% [10]. A Kalina
power plant normally uses components (turbine, pumps, valves,
etc.) similar to those for constructing a conventional steam
power plant. Some investigations showed that a Kalina cycle
can achieve a better thermal efficiency than ORC systems
[11-14].

The Kalina cycle attracted considerable attention in the past
decades. Fallah used an advanced exergy method to analyse a
Kalina cycle (denoted as KCS-11 hereafter) for utilising a low-
temperature geothermal source [15]. Cao et al. investigated a
biomass-fuelled Kalina cycle system with a regenerative heat
exchanger, and found the net power output and system efficiency
increases as the temperature within the separator increases [16].
The performance of a KCS-11 system for solar energy application
has also been studied. It was reported that the ammonia mass frac-
tion was an important system operation parameter and should be
optimised to reduce the system’s irreversibility [17]. Recently, Yu
et al. studied a combined system consisting of a Kalina power cycle
and an ammonia absorption cooling cycle, of which the cooling to
power ratio can be adjusted over a large range. Their theoretical
results showed that the overall thermal efficiency could be
increased by 6.6% by combining the two cycles in this way [18].
Wang et al. studied a flash-binary geothermal power generation
system using a Kalina cycle to recover the heat rejection of a flash
cycle [19]. The optimised results showed that the ammonia mass
fraction, the pressure, and the temperature at the inlet of the tur-
bine have significant effect on system’s performance. Hettiarachchi
et al. studied the performance of the KCS-11 Kalina cycle system
for utilising low-temperature geothermal heat sources and found
an optimum ammonia concentration exists for a given turbine inlet
pressure [20].

Aiming at low-temperature heat sources, Kalina et al. proposed
a power cycle which was later named KCS-34 [21], based on which
a low-temperature geothermal power plant was built in Husavik,
Iceland in 2000 [22]. Nasruddin et al. simulated a KCS-34 Kalina
cycle using Cycle Tempo 5.0 software and compared it with the
operation data of the Husavik power plant, showing a good agree-
ment [23]. Later, Arslan studied the performance of a KCS-34
Kalina cycle system using an artificial neural network and life cycle
cost analysis, and found that the most profitable condition was
obtained when the ammonia mass fraction was in the range
between 80% and 90% [24].

In practice, the expansion ratio of the turbine for KCS-34 cycle is
relatively high and a multi-stage turbine is required. However,
Lengert changed the location of the recuperator in a KCS-34 Kalina
cycle and proposed a new power cycle, i.e., the so-called KSG-1
patented by Siemens. It can achieve high cycle efficiency and only
requires a single-stage turbine [25]. Later on, Mergner and Weimer
compared the thermodynamic performances between a KSG-1 and
KCS-34 for geothermal power generation. The results showed that
the KSG-1 achieved a slightly higher efficiency than the KCS-34
[26]. The architectures of KCS-11, KCS-34, and KSG-1 are compared
and shown in Fig. 1.

In the past decade, different approaches have been proposed to
further improve the efficiency of Kalina cycle power plants. Ibra-
him and Kovach studied a method for controlling the temperature
in the separator to adjust the ammonia mass fraction at the inlet of
the turbine, and found that this method can improve the cycle’s
thermal efficiency [27]. Nguyen et al. developed a Kalina split-
cycle that had a varying ammonia concentration during the pre-
heating and evaporation processes [28]. He et al. studied two mod-
ified KCS-11 systems, which used a two-phase expander to replace
a throttle valve [29]. Hua et al. investigated the transient perfor-
mance of a Kalina cycle for high-temperature waste heat recovery,
which can regulate the concentration of the working fluid mixture.
This method controls the on/off state of two valves to maximise
power generation when the temperature of the waste heat source
fluctuates. Controlling the concentration of the working solution
adjusts the turbine inlet pressure. It was reported that the cycle’s
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Fig. 1. Schematic of different Kalina cycle systems.

thermal efficiency was 12.8% greater than that of a conventional
method [30].

Recently, Mlcak and Mirolli proposed a method to adjust the
ammonia concentration according to the cooling source temper-
ature to improve cycle efficiency [31]. A low-pressure separator
is used at the upstream of the condenser to separate the two-
phase mixture into an ammonia-rich vapour flow and an
ammonia-lean liquid flow. Then, a drain pump is used to control
the mass flow of the lean liquid mixture so that the ammonia
mass fraction of the basic solution entering the condenser can
be regulated. A density sensor is installed at the maximum pres-
sure position of the basic solution to monitor the ammonia
mass fraction in real time, which is sent to the controller as a
feedback signal.

The thermodynamic principle of the proposed composition-
adjustable Kalina cycle is considered to be technically feasible,
but no details have been provided with regard to the implementa-
tion of such a power cycle and the potential improvement of the
cycle’s thermal efficiency under real climate conditions. Moreover,
no further research has been reported on this subject according to
our literature review. Apparently, there is a need for more insights
of the proposed composition-adjustable Kalina cycle to further
assess its technical and economic viabilities.

For this reason, this paper carried out a comprehensive numer-
ical analysis of a composition-adjustable KSG-1 Kalina cycle power
plant. The main objective is to answer several important questions
as follows: (1) How can it be implemented? (2) How much can it
improve the annual average thermal efficiency under various cli-
mate conditions? (3) What are the key factors affecting its
performance?

Moreover, although most Kalina cycle power plants in operation
usually use water-cooled condensers, large quantity of water may
be not available or too costly, especially for an inland area [32,33].
It is then necessary to use air-cooled condensers, which are more
sensitive to changing ambient temperatures. In order to maximise
the effect of the ambient temperature change on the cycle’s perfor-
mance, an air-cooled condenser is employed for the system inves-
tigated in this research.

A theoretical model is firstly established, based on which a
numerical code is developed. The effect of ammonia concentration
on the system’s performance is analysed. A case study based on
Beijing’s climate data has been carried out to demonstrate the per-
formance improvement of the composition-adjustable Kalina cycle
system. Finally, a brief performance comparison is performed for
various types of climate conditions. The results show that the
composition-adjustable Kalina cycle system can remain in the
high-efficiency regions when the ambient temperature varies.
Therefore, the system’s performance can be improved.

2. Composition-adjustable Kalina system

Based on the concept proposed in a recent patent [31], a
composition-adjustable KSG-1 Kalina cycle for low-temperature
geothermal power generation is modelled in this study, of which
the system architecture is shown in Fig. 2. An ammonia-water mix-
ture is used as the working fluid. As ammonia and water have very
different boiling temperatures, the gliding temperature of
ammonia-water mixture is large and it can be used to decrease
the irreversible losses during heat transfer processes in the con-
denser and evaporator. Fig. 3 shows the bubble and dew lines of
ammonia-water mixture at a pressure of 2 MPa. When the ammo-
nia mass fraction is 0.8, the bubble and dew temperatures are
around 60.3 and 147.3 °C, respectively; the corresponding glide
temperature is as large as 86.9 °C.

As shown in Fig. 2, the basic solution at the saturated liquid
(state 1) enters Tank 1. A density sensor is installed at its outlet
to measure the density of the ammonia-water mixture so that its
composition can be deduced and used as a feedback signal for com-
position control. The low-pressure basic solution at state 3 is pres-
surised by Pump 1 and it turns into subcooled liquid at state 4. The
basic solution is heated to state 5 by the recuperator. In the evap-
orator, the basic solution is further heated to a two-phase state 6
by a geothermal brine. For the convenience of comparison with
the data in literature [25], the temperature of the brine water is
set as 120°C in this research. As the temperature is not high
enough for the brine water to fully evaporate the basic solution,
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Fig. 2. Schematic of a composition-adjustable Kalina cycle for low-temperature geothermal power generation.
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Fig. 3. Dew and bubble lines of ammonia-water mixture at a pressure of 2 MPa.

Separator 1 has to be used to separate the two-phase solution into
an ammonia-rich saturated vapour mixture of state 7 (also called
as the work solution) and an ammonia-lean saturated liquid mix-
ture of state 8. The high-enthalpy vapour mixture expands in the
turbine and turns into a low-pressure mixture at state 9.

Meanwhile, the high-pressure liquid at state 8 is throttled through
the expansion valve to state 10 to reduce its pressure. Subse-
quently, these two low-pressure flows are mixed to a two-phase
state 11 in Mixer 1. It then flows into the recuperator, where the
temperature of the low-pressure ammonia-water mixture
decreases further after transferring its heat to the high-pressure
side.

In order to improve the condensation process of ammonia-water
mixture in the condenser, Separator 2 is employed to separate the
two-phase flow (state 12) into saturated vapour (state 13) and sat-
urated liquid (state 14). The liquid stream from Tank 2 is then pres-
surised by Pump 2 and sprayed into Mixer 2, further condensing the
ammonia-rich vapour stream. The mixture is cooled and condensed
in the condenser, turning into the saturated liquid (state 1).

The corresponding T-s and h-x diagrams are given in Fig. 4,
where the numbers are the corresponding states as shown in
Fig. 2. The black dashed lines represent the bubble lines of states
8 and 14, respectively; while the yellow dashed lines are the
dew lines of states 7 and 13, respectively. It can be seen that the
temperature glides during the processes 5-6, 11-12, and 17-1.

For the composition-adjustable Kalina cycle system as shown in
Fig. 2, the control unit detects the pressure of the work solution in
Separator 1 as a feedback signal to regulate the mass flow rate of
Pump 1. The temperature of the basic solution at the inlet of Pump
1 is detected to control the air mass flow rate. The density of the
basic solution at the inlet of Pump 1 is adjusted by varying the
mass flow rate of Pump 2.

In this composition-adjustable Kalina cycle system, the density
sensor is installed at the inlet of Pump 1 rather than at the outlet of
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Fig. 4. Phase diagrams of the composition-adjustable Kalina cycle: (a) T-s diagram, (b) h-x diagram.

Pump 1 as proposed in Mlcak and Mirolli’s patent [31]. Hereby, the
operating pressure of the density sensor can be reduced. Further-
more, in Mlcak and Mirolli’s patent, the system thermal efficiency
is used as the performance indicator to optimise the ammonia
mass fraction. However, in this paper, both the thermal efficiency
and the exergy efficiency are used as the performance indicators.

3. Numerical modelling and validation

To evaluate the thermodynamic performance of the
composition-adjustable Kalina cycle system, a mathematical
model is established based on the mass and energy balance
equations.

The power consumed by Pump 1 can be expressed as
W1 = rit3(hy — hs) = it (has — hs) /1. (1)

where process 3 — 4s is the corresponding isentropic pumping
process of process 3 — 4.
The heat transfer in the recuperator is determined by

Qre = ta(hs — hy) = g1 (hyy — hyy).

The heat transfer in the evaporator is modelled as

(2)

Qe ms(hs - hS) = mwater(hls - h19)-

3)

For Separator 1, the equations of the ammonia mass fraction,
the total mass, and the energy are represented by

MgXg = MyX7 + MgXs, 4)
Mg = 17 + M, (5)
m6h6 = m7h7 -+ mghg. (6)

Here, x; is the ammonia mass fraction at state i. The ratio of the mass
flow rate of state 7 to the total mass flow rate at state 6 is defined as

(7)

_Xs*Xg

Iy = .
X7 — X8

The output power of the turbine is written as
W[ = rh7(h7 — hg) = Th7(h7 — hgs)?]t. (8)

The expansion through the expansion valve is modelled as an
isenthalpic throttling process, so

hg = h]o.

The mixing process in Mixer 1 can be represented by

9)

1M1X11 = MgXg + 110X 10, (10
1My = Mg + 1y,
tiy1hyy = mghg + Myoho.

Similar to Separator 1, the mathematical model of Separator 2 is
expressed as

Mi2X12 = M13X13 + M14X14, (13)
1My = Tiy3 + Mg, (14)
and

tzhiy = 1shis + 1ighag. (15)

Accordingly, the ratio of the mass flow rate of state 13 to the
total mass flow rate at state 12 is defined as

X12 — X14
o =—-_"7 16
' X13 — X14 (16)
The input power of Pump 2 is calculated by
sz = fiig(his — his) = g (ies — Mis)/7,- (17)

The mass and energy equations of Mixer 2 can be expressed as

MM17X17 = Mi3X13 + heX1s, (18)
147 = 1ily3 + T, (19)
and

1i7h17 = fishis + riehie. (20)

The heat transfer in the air-cooled condenser is determined by

m17(h17 - h]) = mair(h21 - hZO)- (21)

Q=
The power consumption of the fans of the air-cooled condenser
is calculated by [34,35]
N
. . m
W, = NiWi, <7f> , (22)
mf()
where Nris the number of the fans, iy, iy are the actual and rated

fan air mass flow rates, respectively. Wfo is the rated fan power
consumption.
The air mass flow for each fan is determined by

tiy = ritgir/Ny. (23)
The net power output of the Kalina cycle system is
Wy=W,—-W, —W, —W,. (24)
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The thermal efficiency of the Kalina cycle is defined as

Moy = Wi/ Qe. (25)

Exergy analysis is based on the second law of thermodynamics
to estimate the irreversibility of a process. In this model, only the
physical exergy is taken into account, while the chemical exergy
for steady flowing fluid is neglected. The exergy of a steady state
can be defined as

Ei = m,[(hl — ho) - TO(Si - 50)]7 (26)

where the subscript 0 denotes the ambient conditions. Similar to
the energy equation, the exergy equation can be expressed by

=3 B =S Eou — W. 27)
Therefore, the exergy destruction rate for each component of

the Kalina cycle system can be determined.
The exergy destruction rate of Pump 1 is represented by

Iy =Es —Es+ Wy, (28)
For the recuperator,

Ie =E4 —Es +Ejy —Epa. (29)
For the evaporator,

13 = Es - Ee + EIS - Ew- (30)
For Separator 1,

I = Es — E; — Es. (31)
For the turbine,

I =E; —Es — W, (32)
For the expansion valve,

I, = Eg — Eqo. (33)
For Mixer 1,

Iy = Eo + E1o — Eqy. (34)
For Separator 2,

isZ = E12 - E13 - E14~ (35)
For Pump 2,

Iy = Eis — Ers + Wia. (36)
For Mixer 2,

Imy = Ex3 + E16 — En7. (37)

For the air-cooled condenser, assuming all the heat transfer to
the air is discharged to the environment, the exergy destruction
rate is calculated by

I =Ey7 — By + W (38)

The overall exergy destruction rate of the Kalina cycle is deter-
mined as

Iroe = Zii =Eig —Eo + Wp1 + sz +We - W, (39)
Therefore, the exergy efficiency of the Kalina cycle is
W,
Hoxeye = - (40)
FY Eig —Eo

In this study, some assumptions are made as follows: all the
working processes are steady; the pressures at all the states during
the operation are constant; the thermodynamic properties at states
1, 2, and 3 are the same; the states 14 and 15 are the same. In

Table 1
Input parameters of the composition-adjustable Kalina cycle system.
Item Parameter Values
Heat source Temperature T;g 120°C
Mass flow rate ryqter 141.8 kg/s
Pressure P;g 2 MPa

Evaporator Minimal pinch AT, pprp 5K
Maximum output temperature Tg 107.3 °C
Maximum output pressure Pg 2.28 MPa
Pressure drop (HT side) AP, ,/P1g 1.95%
Pressure drop (LT side) AP, ;/Ps 1.94%
Recuperator Minimal pinch ATye pprp 5K
Pressure drop (HT side) APy /P11 0.63%
Pressure drop (LT side) AP,.;/Pa 2.8%
Condenser Minimal pinch AT pprp 10K
Pressure drop (HT side) AP, /P17 1.93%
Number of fans 40
Power of fan 34 kW
Air mass flow rate 120 kg/s per fan
Turbine Isentropic efficiency 7, 0.85
Pump Isentropic efficiency 1, 0.8

addition, the turbine is assumed to operate with a constant isen-
tropic efficiency across the range of mass flow rates presented to
it, and this assumption is believed to be feasible [36]. That allows
us to apply the model to analyse the cycle performance when the
mass flow rates of the turbine varies as the ambient temperature
changes from one season to another. The present research assumed
that the brine from a geothermal production borehole has a fixed
flow rate and temperature, and thus the design target is to max-
imise the power production.

A program was developed using Matlab. In this model, the ther-
modynamic properties of the ammonia-water mixture need to be
determined. These values are computed by Refprop 9.1 based on
the Helmholtz free energy method. The uncertainties of the equa-
tion of state are 0.2% in density, 2% in heat capacity, and 0.2% in
vapour pressure [37]. The performance of a conventional KSG-1
Kalina cycle was computed at first. The main input parameters
are listed in Table 1. The mass flow rate of the brine is set to
141.8 kg/s, the same as that used in the patent [25]. As there are
two-phase states of the ammonia-water mixture in the heat
exchangers, where the temperature of the mixture glides with
the heat transfer quantity, a pinch analysis method [38] is used
to determine the pinch point position and the overall heat transfer.

In order to verify the model, the computed results are compared
with some published data [25] as listed in Table 2. The absolute
errors of the heat transfer for all the heat exchangers are less than
1.6%, verifying the computing program developed in this research.

4. Simulation of a Kalina cycle with composition adjustment

The verified program is then used to analyse the performance of
the tested composition-adjustable Kalina cycles. The air tempera-
ture data of Beijing in 2015 shown in Fig. 5 are used as the ambient
conditions for this analysis. The cycle is optimised according to the
average air temperature of each month. The flow chart for the opti-
misation algorithm is shown in Fig. 6. Firstly, the temperature and
mass flow rate of the brine are specified. The temperature and
pressure of state 6 are then set. Next, the pressures at all other
states are determined based on the pressure drops. Then, the min-
imum temperature of the ammonia-water mixture at state 1 is cal-
culated according to the ambient temperature and the pinch point
temperature difference. The minimum mass fraction of ammonia
in the basic solution corresponding to P, and T, is computed. Based
on the mathematical model, the working process for each compo-
nent of the Kalina cycle system is computed. Both the thermal and
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Table 2

Model validation with the results of Lengert [25].
State T/°C P/MPa h/k] kg™ m/kgs™!

Our results Lengert Our results Lengert Our results Lengert Our results Lengert
7 107.3 106.7 2.28 223 18234 1507.8 27.339 27.59
9 55.52 56.51 0.6664 0.7158 1663.3 1355.9 27.339 27.59
3 13.62 13.13 0.651 0.69 353.8 24.8 28.104 27.6
5 51.66 53.52 2.392 2.326 539.3 2214 28.104 27.6
18 120 119.9 2 2 505.08 -1997.8 141.8 141.8
19 61.29 57.45 1.961 1.961 258.22 —-2250.6 141.8 141.8
Heat exchanger Power/kW
Our results Lengert

Evaporator 35.01 34,5
Recuperator 5.22 53
Condenser 31.27 31

Ambient temperature (°C)

Month

Fig. 5. Average monthly temperature profiles for different regions: A-Beijing
(China); B-Husavik (Iceland); C-Rome (Italy); D-Lima (Peru); E-Turpan (China).

exergy efficiencies are then determined. An iterative algorithm is
used to compute the heat transfer within the recuperator, the
evaporator, and the condenser according to a predefined pinch
point temperature difference. In addition, according to the working
pressures of Separators 1 and 2, the corresponding bubble and dew
lines are determined. Consequently, the ammonia mass fractions at
the outlets of the separators can be obtained based on the Lever
rule of zeotropic mixtures [39].

In this research, in order to study the effect of composition
adjustment on the system’s performance, a conventional KSG-1
Kalina cycle represented by Cycle B was also simulated. The results
are compared with the composition-adjustable Kalina cycle
denoted as Cycle A.

In Cycle A, the composition of its ammonia-water mixture can
be adjusted according to the ambient temperature. As a bench-
mark, Cycle B, a conventional Kalina cycle, has a fixed composition
of the working fluid mixture, and thus a fixed condensing temper-
ature. To allow Cycle B to operate over a year when the ambient
temperature fluctuates from the minimum in winter to the maxi-
mum in summer, it has to be designed based on the maximum
ambient temperature in a year. For this reason, the maximum tem-
perature over a year was selected to model Cycle B. As a result, it
will have a constant thermal efficiency throughout a year.

5. Results analysis
5.1. Effect of composition tuning

Based on the developed numerical model, an optimisation
procedure as shown in Fig. 6 was used to analyse the effect of

adjusting ammonia mass fraction in the basic solution on the per-
formance of Cycle A. The ambient temperature in October at
13.76 °C was used as a sample case. Figs. 7-9 show the system’s
performance as a function of the ammonia mass fraction in the
basic solution x,. The mass flow rate of the basic solution is given
in Fig.7(a). It decreases from 57.69 kg/s to 31.67 kg/s as x,
increases from 0.502 to 0.792. This can be attributed to that the
evaporated mass flow of the basic solution increases with the
increase of x,, but the heat transfer of the brine in the evaporator
cannot increase proportionally. The temperatures at the inlet and
outlet of the recuperator are shown in Fig. 7(b). The temperature
at the inlet of Pump 1 decreases with the increase of x;, due to a
constant pressure at the inlet of Pump 1. The temperature differ-
ence at the inlet and outlet of the recuperator is small. The temper-
ature at the outlet of the high temperature side of the recuperator
has a similar tendency because the temperature at the inlet of the
high temperature side decreases. The temperatures of the brine at
the inlet and outlet of the evaporator are shown in Fig. 7(c). For the
convenience of comparing the results with some published data,
the inlet temperature of the brine is fixed at 120 °C. The tempera-
ture of the brine at the outlet of the evaporator decreases gradually
because the basic solution becomes easier to evaporate as X
increases, and thus the heat transfer in the evaporator also
increases.

Fig. 7(d) shows the temperatures in the turbine and Mixer 1.
The temperature at the inlet of the turbine remains 107.3 °C, the
same as the outlet of the evaporator. Because the temperature,
the pressure, and the ammonia mass fraction of the work solution
at the inlet of the turbine remain constant when x; increases, the
temperature at the outlet of the turbine remains constant accord-
ingly. The temperature of the ammonia-lean solution at the outlet
of the expansion valve also remains constant. However, after these
two streams are mixed in Mixer 1, the temperature at the outlet of
Mixer 1 decreases gradually as x, increases.

The mass flow rates at the outlet of Separator 1 are given in
Fig. 8(a). As x,, increases, the mass flow rate of the ammonia-rich
work solution increases, but the mass flow rate of the ammonia-
lean solution decreases. The mass flow rates at the outlet of
Separator 2 are shown in Fig. 8(b), and they have similar tenden-
cies to those shown in Fig. 8(a). As shown in Fig. 8(c), both the tem-
peratures of the basic solution at the inlet and outlet of the
condenser decrease as x;, increases. It can be seen in Fig. 8(d), the
mass flow rate of air increases significantly as x;, increases. Accord-
ingly, the air temperature at the outlet of the condenser drops
gradually.

The power consumption of each component is shown in Fig. 9
(a). When the ammonia fraction x;, increases, the power consump-
tion of both Pumps 1 and 2 decreases gradually because the



E. Wang, Z. Yu/Applied Energy 180 (2016) 834-848 841

| Specify P, T, T

—>| Specify minimal value T, |

| Calculate minimal value x, |
v
4>| Assume X, |
v
| Calculate properties at states 1 and 4 |
v
| Calculate pressures for other states |

v

| Calculate properties for separator 1 |

| Calculate properties at states 9, 10 and 11 |
4>| Assume T, |
Calculate pinch point temperature difference
AT inside the recuperator

N

Y

and m

18> water |

| Calculate properties at states 5 and 12 |

v

| Calculate properties for separator 2 |

A
| Calculate properties at states 15, 16 and 17 |

v

| Assume T,

v

Calculate pinch point temperature difference
AT, inside the evaporator

N

Y

Calculate properties at state 19 and mass
flow rate of the basic solution

v

Assume T,,

v

Calculate pinch point temperature difference
AT, inside the condenser

N

Y

:

Calculate properties at state 21 and mass
flow rate of the air

'

Calculate energy load of each component
and system thermal efficiency

x1 reaches the maximum value?

Are all months finished ?

Fig. 6. Flow chart of the optimisation process.

enthalpy of the solution decreases with the increase of x, if the out-
let pressures of the pumps are kept constant. The power consump-
tion of the fans increases rapidly because the mass flow rate of the
air rises significantly as x,, increases. The heat transfer rates within
the evaporator and the condenser are shown in Fig. 9(b). Both of
them increase evidently as x;, increases. When x; is 0.502, the heat
transfer rate of the evaporator and the condenser is 19.15 MW and
18.35 MW, respectively. However, when x, further increases to
0.792, they increase to 29.12 MW and 26.19 MW, respectively.
The power output of the turbine and the net power output of the
cycle are presented in Fig. 9(c). The total power consumption of
the pumps and the condenser fans is also shown in this figure.

The power output of the turbine rises as x; increases due to the
increase of the mass flow rate of the work solution. The total power
consumption also increases as x;, increases, and it increases signif-
icantly when x; is above 0.79. As a result, the net power output
firstly increases and then decreases. The maximum net power out-
put occurs when x,, is around 0.782.

The cycle’s thermal and exergy efficiencies are shown in Fig. 9(d).
Both of them firstly increase and then decrease when x,, increases
from 0.502 to 0.792. The maximum thermal efficiency and exergy
efficiency occur when x,, is around 0.762 and 0.772, respectively.
The ammonia mass fractions corresponding to the maximum points
of the thermal and the exergy efficiencies are very close.
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5.2. Performance comparison with conventional Kalina cycle

The efficiencies of Cycles A and B defined in Section 4 were then
computed according to the monthly average temperature through-
out a year in Beijing. Cycle A is designed to match the ambient air
temperature during a year. In spring or autumn, the ambient tem-
perature is moderate, and it is represented as T,; in Fig. 10. The

temperature of the liquid ammonia-water mixture at the outlet
of the condenser (i.e., state 1 in Fig. 2.) is denoted as Point A in
Fig. 10. The temperature difference between state 1 and the ambi-
ent AT is constrained by the pinch point temperature difference.
When the season shifts to winter, the ambient temperature
decreases from T,; to T,,. State 1 moves from Point A to Point B.
During this shifting process, only the ammonia mass fraction is
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Fig. 10. Composition adjustment process of the ammonia mass fraction of the basic
solution.

adjusted, while the condensation pressure of the ammonia-water
mixture is kept as constant. If the season shifts to summer, state
1 will move from Point A to Point C according to the increase of
ambient temperature from T,; to T,3. Under these conditions, the
condensation pressure of Cycle B is the same as Cycle A. The tem-
perature at state 1 of Cycle B must be determined based on the
maximum month-average temperature over a year.

The thermal efficiency of Cycle A as a function of both x;, and the
ambient temperature is shown in Fig. 11(a). It can be seen that the
ambient temperature has a strong effect on the cycle thermal effi-
ciency. For a given value of x,, the thermal efficiency increases as

the ambient temperature decreases. Fig. 11(b) gives the corre-
sponding results of the thermal efficiency against x, for each
month. The solid line represents the thermal efficiency for each
month, while the dashed line represents the optimal operation line
(0O0L), i.e., maximum thermal efficiency. It can be seen that for
each month the thermal efficiency first increases then decreases
as xp increases. This is because the power output of the turbine
increases as x, increases, but the power consumption of the cooling
fans of the condenser increases too, especially when x, is high. The
optimised x, based on the thermal efficiency is in the range of
0.603-0.95, and the corresponding thermal efficiency is in the
range of 6.12-9.24%.

Fig. 11(c) shows the thermal efficiency of Cycles A and B as a
function of ambient temperature. The results of Cycle A corre-
sponding to the optimal operation line of the thermal efficiency
are shown in Fig. 11(a). The thermal efficiency of Cycle B is con-
stant at 6.12%. However, the thermal efficiency of Cycle A increases
from 6.12% to 9.24% because, as the ambient temperature
decreases, the power output of the turbine increases significantly
by matching the condensation temperature of ammonia-water
mixture with the ambient air temperature.

Fig. 11(d) shows the calculated exergy efficiency of Cycle A as a
function of both x, and ambient temperature. The variation of the
exergy efficiency has a similar tendency to that of the thermal effi-
ciency as shown in Fig. 11(e). The heat source of the 2 MW Kalina
power plant in Husavik is a low-temperature geothermal brine at
120°C, and its x;, of the Kalina cycle is 0.82. This case is denoted
as a red! line in Fig. 11(b) and (d), and it is close to the optimal
results at the ambient temperature of 2.94 °C according to the pre-
sent simulation. It should be noted that, in this research, an air-
cooled condenser is used instead, and its pinch point temperature
difference is greater than that of a water-cooled condenser. There-

! For interpretation of color in Fig. 11, the reader is referred to the web version of
this article.
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fore, the corresponding ambient temperature is about 2 °C less than
that of the Husavik’s geothermal power plant.

The exergy efficiencies of Cycles A and B are given in Fig. 11(f).
The exergy efficiency of Cycle A increases from 30.7 to 36.5% as the
ambient temperature decreases from 26.6 to —1.3 °C. In contrast,
the exergy efficiency of Cycle B decreases from 30.7 to 16.5%
because the net power output of Cycle B is constant while the
exergy of the brine increases as the ambient temperature
decreases.

5.3. Optimal results based on thermal efficiency

In this section, we assume the system operates along the opti-
mal operation line of the cycle’s thermal efficiency (see Fig. 11
(a)). In this case, the mass flow rate of the geothermal brine is fixed
as 141.8 kg/s. The net power outputs corresponding to the maxi-
mum thermal efficiency are given in Fig. 12(a). The net power out-
put increases significantly with the decrease of the ambient
temperature. The average ambient temperature of Beijing in July
reaches a maximum of 26.6 °C, and the corresponding net power
output is 1.366 MW. In contrast, the lowest temperature is

—1.3 °C in January, and the net power output is 3.145 MW, which
is 2.3 times of that in July. This demonstrates the benefit of match-
ing the cycle with ambient conditions by adjusting the composi-
tion of the mixture. The corresponding thermal efficiency and
exergy efficiencies are shown in Fig. 12(b). As the ambient temper-
ature decreases from the maximum (26.6 °C) to the minimum
(=1.3°C), the thermal efficiency increases from 6.12% to 9.24%.
Accordingly, the exergy efficiency increases from 30.7 to 36.5%.
Fig. 12(c) shows the optimised x,, as a function of the ambient tem-
perature, which increases as the ambient temperature decreases.
As shown in Fig.12(d), the corresponding density of the
ammonia-water mixture decreases from 780 kg/m> to 640 kg/m?
as the ambient temperature drops. Density sensors having an accu-
racy of 0.1 kg/m> are widely available in the market, which is suf-
ficient for the real-time control of the ammonia mass fraction as
required by the system modelled in this paper.

Fig. 13(a) shows the power consumption of the pumps and the
condenser fans. The power consumption of Pump 1 is of the same
order as the fans, while the power consumption of Pump 2 is
much less than them. As the ambient temperature decreases,
the power of Pump 1 decreases from 134 kW to 114 kW, while
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the power consumption of the fans firstly increases and then
decreases slightly. The power output of the turbine and the net
power output of the cycle are shown in Fig. 13(b). Since the
power output of the turbine is far greater than the total power
consumed, the tendency of the net power output is similar to
that of the power output of the turbine. The mass flow rates of
the basic solution and the cooling air are shown in Fig. 13(c).
As the ambient temperature drops, the mass flow rate of the
basic solution decreases but the mass flow of the air increases.
The mass ratios in the two separators are also given in Fig. 13
(d). The mass ratio of Separator 2 is lower than that of Separator
1 because the operation temperature of Separator 1 is higher
than that of Separator 2.

Fig. 13(e) shows the heat transfer between the geothermal
brine and the ammonia-water mixture in the evaporator. As the
ambient temperature decreases from 26.6 °C to —1.3 °C, the heat
transfer increases from 22.34 MW to 34.03 MW. The temperature
of the brine at the outlet of the evaporator is also given in this fig-
ure, and it decreases as the ambient temperature decreases. The
heat transfer within the evaporator increases evidently due to
the temperature drop at the inlet of the low-temperature side. As
shown in Fig. 13(f), the heat transfer of the condenser increases
as the ambient temperature decreases. It can be seen that the air
temperature at the outlet of the condenser decreases as the ambi-
ent temperature decreases.

From the viewpoint of thermal efficiency, the benefits of match-
ing the condensing temperature to the ambient condition via com-
position adjustment are further analysed and summarised in
Table 3. It should be noted that Cycle A operates along the OOL
of thermal efficiency. However, for Cycle B, x, and T; are fixed as
0.603 and 36.6 °C, respectively, according to the ambient tempera-
ture in July. The annual average values of the net power output, the
heat transfer of the evaporator, and the thermal efficiency are cal-
culated using Egs. (41), (42), and (43), respectively.

_ 1M

W, = N;wn(z) (41)

_ 1M,

Q.= N;Qe(i) (42)
1 N

New = NZ”Im(i) (43)

i=1

Here N is the total months of a year. The annual average improve-
ment of Cycles A relative to Cycle B is determined by Egs. (44) to
(46), respectively.

Yy = Wia=Was 1009 (44)
n.B
v = 22— 100y (45)
eB
Y, = 1A = ks, 009 (46)

7]th.B

The annual average thermal efficiency of Cycle A is 7.86%, and it
is about 28.39% higher than that of Cycle B at 6.12%. On the other
hand, the annual average heat transfer of the evaporator of Cycle A
is also 26.23% higher than that of Cycle B. As a result, the annual
average net power output of Cycles A and B is 2.267 and
1.366 MW, respectively. The former is 65.99% higher than the
latter.

The computed results of the Kalina cycle based on the annual
average air temperature of Beijing are listed in Table 4. The ther-
mal efficiency is 8.10% and the exergy efficiency is 24.27%. The
corresponding exergy destruction rate for each component is
shown in Fig. 14. The condenser causes the largest exergy
destruction rate at 1726 kW, followed by the evaporator
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Fig. 13. Performance of the components as a function of the ambient temperature: (a) power consumption by Pumps 1, 2, and the condenser; (b) the turbine power output
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Table 3

Performance comparison between the two cycles.
Month Cycle A Cycle B Improvement

Wn/MW Qe/MW Nenl% Wn/MW Qe/MW Nenl% Yw Vo v

1 3.145 34.03 9.24 1.366 22.34 6.12 130.23 52.31 50.98
2 3.057 33.44 9.14 1.366 22.34 6.12 123.79 49.65 49.35
3 2.665 30.80 8.65 1.366 22.34 6.12 95.10 37.86 41.34
4 2.146 27.32 7.85 1.366 22.34 6.12 57.10 22.28 28.27
5 1.718 24.54 7.00 1.366 22.34 6.12 25.77 9.82 14.38
6 1.501 23.18 6.48 1.366 22.34 6.12 9.88 3.74 5.88
7 1.366 22.34 6.12 1.366 22.34 6.12 0.00 0.00 0.00
8 1.425 22.72 6.27 1.366 22.34 6.12 432 1.67 2.45
9 1.800 25.06 7.18 1.366 22.34 6.12 31.77 12.17 17.32
10 2.293 28.29 8.10 1.366 22.34 6.12 67.86 26.60 3235
11 2.973 32.87 9.05 1.366 22.34 6.12 117.64 47.08 47.88
12 3.120 33.87 9.21 1.366 22.34 6.12 128.40 51.58 50.49
Annual average 2.267 28.21 7.86 1.366 22.34 6.12 65.99 26.23 28.39

Cycle A: Kalina cycle with composition adjustment.
Cycle B: Conventional Kalina cycle without any regulation.

(916 kW) and the turbine (881 kW). If the irreversibility loss of The potential of performance improvement for different climate
the condenser can be reduced further, the system performance conditions are also evaluated. In addition to Beijing, four other
can be further improved. locations are considered, including Lima (Peru); Husavik (Iceland),
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Table 4
Thermodynamic properties of the composition-adjustable Kalina cycle system
operating at the annual average ambient temperature of Beijing.

State T/°C  P/MPa h/kJkg™' s/kjkg™'K™' ri/kgs ' x/% Quality
1 25.14 0.738 217.61 1.399 32.505 0.766 0

2 25.14 0.738 217.61 1.399 32.505 0.766 0

3 25.14 0.738 217.61 1.399 32.505 0.766 0

4 25.48 2.392 220.50 1.401 32.505 0.766 0

5 63.89 2.325 416.70 2.019 32.505 0.766 0

6 107.3 2.28 1287.0 4476 32.505 0.766 0.621

7 107.3 2.28 1823.4 6.005 20.184 0.964 1

8 107.3 2.28 408.38 1.970 12.321 0441 0

9 60.76 0.760
10 7445 0.760
11 68.88 0.760
12 50.88 0.753
13 50.88 0.753
14 50.88 0.753
15 50.88 0.753
16 5091 0.953

1679.2 6.082
408.40 2.007
1197.5 4.539
1001.3 3.952
1717.6 6.214
146.25 1.252
146.25 1.252
146.56 1.252

20.184 0.964 0.957
12.321 0.441 0.117
32.505 0.766 0.633
32.505 0.766 0.544
17.687 0994 1
14.818 0494 0
14.818 0494 0
14.818 0494 0

17 50.95 0.753 1002.2 3.955 32.505 0.766 0.544
18 120 2 505.08 1.526 141.8 - -
19 72.61 1.961 305.58 0.986 141.8 - -
20 13.76 0.118 287.09 6.778 1679.0 - -
21 28.83 0.113 302.28 6.842 1679.0 - -
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Fig. 14. The exergy destruction rates of the components when the system operates
at the annual average ambient temperature.

Table 5
Thermodynamic performance comparison for different locations.

Location Tmax/oc Tmin/OC Trnean/OC Tdif/oc '/’W /% WQ /% l//,, /%
Lima 234 16.5 19.8 6.9 16.58 7.11 8.61
Husavik 9.8 —3.2 35 13 13.09 7.50 5.06
Rome 27.6 8.3 16.4 19.3 61.09 2322 2893
Beijing 26.6 -1.3 13.3 27.9 65.99 26.23 2839
Turpan 341 -3.7 16.3 37.8 154.02 38.08 76.11

Rome (Italy), and Turpan (China). Their monthly average ambient
temperatures in 2015 are shown in Fig. 5 [40]. The maximum
and minimum monthly averaged temperatures (Tpnax and Tpin),
the annual mean temperature (Tmean), and the annual temperature
variation (Tgif = Tmax — Tmin) are also listed in Table 5. Based on Egs.
(44)-(46), the calculated results of the five selected locations are
shown in Table 5. The annual average improvement of the thermal
efficiency is nearly proportional to the annual temperature varia-
tion. The larger the annual temperature variation, the higher the
annual average improvement. Furthermore, the annual mean tem-
perature also affects the performance improvement. A lower
annual mean temperature leads to a higher thermal efficiency of

Cycle B. For example, the improvement of thermal efficiency of
Husavik is slightly less than that of Lima.

6. Discussion

In a composition-adjustable Kalina cycle, there exists an
optimal ammonia mass fraction of the basic solution for a given
ambient temperature, leading to a maximum thermal efficiency.
Below the optimal value, the mass flow rate of the working solu-
tion decreases as the ammonia mass fraction decreases, leading
to lower power output from the turbine. Above this optimal value,
the power consumption of the fans of the condenser increases sig-
nificantly as the ammonia mass fraction increases, reducing the
power output too.

The composition-adjustable Kalina cycle can change the ammo-
nia mass fraction of the basic solution in response to ambient tem-
perature so that the condensation temperature of the ammonia-
water mixture can be regulated to match the changing ambient
temperature. When the ambient temperature rises, the system
reduces the ammonia mass fraction, so the condensation tempera-
ture of the mixture increases. When the ambient temperature
drops, the system enriches the concentration of ammonia, reduc-
ing the condensation temperature. During the operation, the con-
densation pressure is maintained constant.

According to the analysis above, a composition-adjustable
Kalina cycle can achieve a higher annual-average thermal effi-
ciency than a conventional Kalina cycle operating on a fixed com-
position (ultimately a fixed condensing temperature). For a typical
continental climate (e.g., Beijing), the calculated annual-average
thermal efficiency can be improved significantly, the heat addition
within the evaporator can also be increased accordingly. As a
result, the annual net power production can be increased
significantly.

However, such an improvement of the thermal efficiency
strongly depends on the heat source temperature and annual tem-
perature variation. For a given heat source temperature, the larger
the annual temperature variation, the higher the improvement of
thermal efficiency. For a given annual temperature variation (i.e.,
a given climate condition), the higher the heat source temperature,
the less the improvement of thermal efficiency. This can be attrib-
uted to the fact that the thermal efficiency of the conventional
Kalina cycle (Cycle B) increases as the heat source temperature
increases (see Eq. (46)). For high temperature heat sources, the
cycle is less sensitive to the variation of condensing temperature
(ultimately the heat sink temperature).

The present research assumed that the brine from a geothermal
production borehole has a fixed flow rate and temperature, and
thus the design target is to maximise the power production. Based
on this assumption, the system power output and components
sizes of a conventional Kalina cycle (Cycle B) are designed accord-
ing to the highest ambient temperature in summer. On the con-
trary, the components sizes of a composition-adjustable Kalina
cycle (Cycle A) should be specified according to the lowest ambient
temperature in the winter. A composition adjustment control sys-
tem needs to be added. The mass flow rate and ammonia concen-
tration of the basic solution of the composition-adjustable Kalina
cycle are then regulated according to the changing ambient tem-
perature. In this case, the overall power output varies as the ambi-
ent temperature changes.

For the convenience of cost comparison, power output can be
fixed as the same. In this case, the capital cost of a composition-
adjustable Kalina cycle power plant will be slightly more than
that of a conventional Kalina cycle mainly due to the introduc-
tion of a composition adjusting system that consists of a density
sensor, a control unit, and a tank (see Fig. 2). There will be a
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break-even point where the additional capital and operation
costs can be compensated by the gain of annual-average thermal
efficiency, which however strongly depends on operation condi-
tions such as the scale of the power plant, annual temperature
variation, heat source temperature, etc. Qualitatively speaking, a
combination of large annual temperature variation, low heat
source temperature, and large rated power output could lead to
an economically viable case.

7. Conclusions

This paper presents a comprehensive numerical analysis of a
composition-adjustable Kalina cycle system. An advanced numeri-
cal model taking into account the heat transfer processes within
the evaporator and condenser has been developed to demonstrate
and analyse the working mechanism of this cycle in detail, and it
has been verified by some published data.

Air-cooled condenser has been used in this research to max-
imise the effect of the ambient temperature on the cycle’s perfor-
mance. The effect of both air temperature and flow rate on the
cycle’s thermal efficiency has been analysed in detail.

The obtained results are compared with a conventional Kalina
cycle with fixed composition and condensing temperature, show-
ing a significant improvement in annual-average thermal effi-
ciency. However, such an improvement of the thermal efficiency
strongly depends on the heat source temperature and annual tem-
perature variation. For a given heat source temperature, the larger
the annual temperature variation, the higher the improvement of
thermal efficiency. For a given annual temperature variation, the
higher the heat source temperature, the less the improvement of
thermal efficiency.

Extra components and a control system are required to imple-
ment such composition-adjustable Kalina cycle, and they introduce
extra costs. The additional capital and operation costs can be com-
pensated by the improvement of annual-average thermal effi-
ciency (i.e., more power generation). In general, a combination of
large annual temperature variation, low heat source temperature,
and large rated power output is preferred for a composition-
adjustable Kalina cycle. In order to quantitatively identify the
break-even point, a combined thermodynamic - economic model
is required, and it will be studied in detail in the future.
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