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Abstract 26 

Aim: Several conditions of heart disease, including heart failure and diabetic cardiomyopathy are 27 

associated with up-regulation of cytosolic Ca2+/calmodulin-dependent protein kinase II (CaMKIIδC) 28 

activity. In the heart, CaMKIIδC isoform targets several proteins involved in intracellular Ca2+ 29 

homeostasis. We hypothesized that high intensity endurance training activates mechanisms that enable 30 

a rescue of dysfunctional cardiomyocyte Ca2+ handling and thereby ameliorate cardiac dysfunction 31 

despite continuous and chronic elevated levels of CaMKIIδC. Methods: CaMKIIδC transgenic (TG) 32 

and wild-type (WT) mice performed aerobic interval exercise training over 6 weeks. Cardiac function 33 

was measured by echocardiography in vivo, and cardiomyocyte shortening and intracellular Ca2+-34 

handling in vitro. Results: TG mice had reduced global cardiac function, cardiomyocyte shortening 35 

(47% reduced compared to WT, P<0.01) and impaired Ca2+-homeostasis. Despite no change in the 36 

chronic elevated levels of CaMKIIδC, exercise improved global cardiac function, restored 37 

cardiomyocyte shortening, and re-established Ca2+-homeostasis to values not different from WT. The 38 

key features to explain restored Ca2+-homeostasis after exercise training were increased ICaL density 39 

and flux by 79% and 85%, respectively (P<0.01), increased SERCa2a function by 50% (p<0.01) and 40 

reduced diastolic SR Ca2+-leak by 73% (P<0.01), compared to sedentary TG mice. Conclusion: 41 

Exercise training improves global cardiac function as well as cardiomyocyte function in the presence 42 

of a maintained high CaMKII activity. The main mechanisms of exercise-induced improvements in 43 

TG CaMKIIδC mice are mediated via increased L-type Ca2+ channel currents, improved SR Ca2+-44 

handling by restoration of SERCA2a function in addition to reduced diastolic SR Ca2+-leak.  45 

 46 

New & Noteworthy: The novel findings in this study is that high intensity endurance training turned 47 

the heart failure phenotype in CaMKIIδC over-expressing mice towards a more healthy phenotype. We 48 

report improved cardiac and cardiomyocyte function and Ca2+ handling by reducing diastolic Ca2+ leak 49 

and restoring SR Ca2+ content through compensatory mechanisms of restored SERCA2a function, 50 

NCX function and increased L-type Ca2+ currents. The present data extend the basis for further 51 

understanding of cardiac adaptations to exercise training. 52 
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Introduction 53 

In recent years, exercise training has arisen as an important clinical treatment strategy for 54 

cardiovascular disease. Exercise training not only reduces cardiovascular risk factors, but several 55 

studies also show beneficial effects on cardiac function along with reversal of cellular abnormalities 56 

such as hypertrophy and remodeling, and aberrant Ca2+ handling and contractile function (7, 15, 20). 57 

Furthermore, improvements in maximal oxygen uptake (VO2max) as well as cardiac function are 58 

reported more pronounced with high intensity endurance training both in experimental animal models 59 

(12) as well as in patients with cardiovascular disease (34, 37). Regulation of the protein kinase 60 

Ca2+/calmodulin-dependent protein kinase II (CaMKII), which occurs in cardiac muscle after exercise 61 

training (11, 29) could contribute to these effects since CaMKII regulates several aspects of 62 

cardiomyocyte function. 63 

In the heart, the predominant isoform of CaMKII is the cytosolic δ isoform CaMKIIδC (6, 30), 64 

which targets several proteins involved in intracellular Ca2+ homeostasis, including the sarcoplasmic 65 

reticulum (SR) Ca2+-release channel (ryanodine receptor, RyR2), the L-type Ca2+-channel (LTCC) and 66 

phospholamban (PLN), which regulates SR Ca2+-ATPase (SERCA2a) activity.  Several models of 67 

heart disease, including heart failure (9, 16) and diabetic cardiomyopathy (29) are associated with 68 

upregulation of CaMKII activity. In line with this, overexpression of the deltaC isoform CaMKIIδ 69 

(CamKIIδc) has been shown to detrimentally alter Ca2+-handling and contractility (19, 25). Especially 70 

increased RyR2 Ca2+ sensitivity that causes leaky RyR2s has received great attention in the phenotypic 71 

changes observed in cardiomyocytes with increased activity of CaMKIIδC (1, 5, 22). 72 

We hypothesized that high intensity endurance training could enable restoration of dysbalanced 73 

cardiomyocyte Ca2+-homeostasis and thereby ameliorate cardiac dysfunction even in the face of 74 

continuous and chronic elevated levels of CaMKIIδC.  75 

 76 

Material and methods 77 

Animals 78 

Transgenic CaMKIIδC mice (TG) with increased CaMKII activity were generated as previously 79 

described (40). Briefly, Hemagglutinin (HA)-tagged rat wild-type CaMKIIδC cDNA were subcloned 80 
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into the SalI site of pBluescript-based TG vector between the 5.5-kb murine α-MHC promoter and a 81 

human growth hormone (HGH) polyadenylation sequences. Purified linear transgene fragments were 82 

injected into pronuclei of fertilized mouse oocytes. The resultant pups were screened for the presence 83 

of the transgene by PCR, using a CaMKII specific primer (5′-TTGAAGGGTGCCATCTTGACA-3′) 84 

and a TG vector specific primer (5′-GGTCATGCATGCCTGGAATC-3′). To determine the transgene 85 

copy number, Southern blot analysis was performed with EcoRI-digested genomic DNA and a P-86 

labeled 1.7 kb EcoRI-SalI α-MHC fragment as a probe. Founder mice were bred with C57BL/6 or 87 

Black Swiss wild-type (WT) mice to generate TG and WT offspring. Three months-old TG mice 88 

underwent aerobic interval endurance training (N=12) or remained sedentary (N=12), and were 89 

compared to age-matched sedentary WT littermate controls (N=12) aerobic interval endurance trained 90 

WT littermate control mice (N=12). 24 hours after the last training session, the mice were sacrificed 91 

and cardiomyocytes isolated to examine contractile function, Ca2+-cycling and diastolic SR Ca2+-leak. 92 

The Norwegian council for Animal Research approved the study, which was in accordance with the 93 

Guide for the Care and Use of Laboratory Animals published by the European Commission Directive 94 

86/609/EEC. 95 

 96 

Maximal oxygen uptake (VO2max) 97 

The mice warmed up for 20 min at 50-60% of the maximal oxygen uptake (VO2max), whereupon 98 

treadmill velocity was increased by 0.03 m∙s-1 every 2 min until VO2 reached a plateau despite 99 

increased workload. VO2max recordings were obtained by treadmill placed in a closed metabolic 100 

chamber according to previous validated methods (10, 35).  101 

 102 

Endurance training 103 

The aerobic interval endurance-training program was performed as previously described (13, 35). 104 

During training, the mice ran uphill (25°) on a treadmill for 80 min: following 20 min of warm-up at a 105 

speed corresponding to 50-60% VO2max the mice performed intervals during a period of 60 min, 106 

alternating between 4 min at an exercise intensity corresponding to 85-90% of VO2max, and 2 min 107 

active recovery at 50-60%; giving a total of 40 min (10 intervals) at high intensity and a total of 20 108 
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min of recovery between intervals. Exercise was performed 5 days per week over 6 weeks; controls 109 

were age-matched CaMKIIδC TG or WT mice that remained sedentary or exercised. The time frame of 110 

the intervention period was chosen on background of previous publications showing a robust change 111 

in VO2max, as well as in cardiomyocyte function and calcium handling in experimental animal models 112 

(10, 13, 35). In exercising animals, VO2max was measured every second week to adjust band speed in 113 

order to maintain the intended intensity throughout the experimental period, whereas in the sedentary 114 

group VO2max was measured before and after the experimental period. 115 

 116 

Cardiomyocytes shortening and Ca2+-cycling 117 

At the end of the exercise-training period the heart was removed during 3% Isoflurane anestesia and 118 

immediately transferred for cardiomyocyte cell isolation by retrograde Langendorff perfusion and 119 

collagenase type II (Worthington, UK) as earlier described (40). Isolated cardiomyocytes were loaded 120 

with Fura-2/AM for detection of Ca2+-handling properties (2 µmol/L, Molecular Probes, Eugene, OR). 121 

To ensure similar loading of the cardiomyocytes we incubated the cells for exactly 30 minutes and all 122 

cells were allowed at least 10 minutes in normal HEPES solution before any recordings. 123 

Cardiomyocytes were stimulated by bipolar electrical pulses with increasing frequencies 1-3 Hz on an 124 

inverted epifluorescence microscope (Nikon TE-2000E, Tokyo, Japan), whereupon cell shortening 125 

was recorded by video-based myocyte sarcomere spacing (SarcLen™, IonOptix, Milton, MA) and 126 

intracellular Ca2+-concentration ([Ca2+]i) was measured by fluorescence after excitation by alternating 127 

340 and 380 nm wavelengths (F340/380 ratio) (Optoscan, Cairn Research, Kent, UK). During the 128 

stimulation protocol, cells were continuously perfused with normal physiological HEPES based 129 

solution (1.8 mmol/L Ca2+, 37°C). In a subset of experiments, H-89 (3 µmol/L for 1 hour, Sigma, St. 130 

Louis, USA) to block protein kinase A (PKA), or autocamtide-2-related inhibitory peptide (AIP, 1 131 

µmol/L for 1 hour, Sigma, St.Louis, USA) to block CaMKIIδC, were added to the solutions. Cell size 132 

was measured in cardiomyocytes not introduced to FURA2-AM with a graticule on the microscope 133 

and volume was calculated with the formula: cell area (length  x cell midpoint width) μm2 x 134 

0.00759ρL/μm2, as previously established by 2D light and 3D confocal microscopy (26). 135 

 136 
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 137 

Diastolic Ca2+-leak 138 

A method similar to that established by Shannon et al.(27) was used to determine diastolic Ca2+- leak 139 

from the SR. To bring the cellular Ca2+-content to a steady state, we stimulated the cardiomyocytes 140 

electrically at 1 Hz in normal HEPES based 1.8 mmol/L Ca2+-solution for 30-60 seconds. After the last 141 

electric stimulus, we rapidly switched the perfusion to a 0Na+/0Ca2+ containing solution and measured 142 

diastolic Ca2+ concentration in quiescent non-stimulated cardiomyocytes (one minute) ± Tetracaine (1 143 

mmol/L). The 0Na+/0Ca2+ solution prevents the Na+ - Ca2+ exchange, which is the primary Ca2+-influx 144 

and efflux mechanism at rest. Tetracaine blocks the Ca2+-leak over the RyR (21, 27). The quantitative 145 

difference between diastolic Ca2+-concentration with and without tetracaine determine leak. After the 146 

one-minute period in 0Na+/0Ca2+ ± tetracaine solution, we added caffeine (10 mmol/L) to assess SR 147 

Ca2+-content. Diastolic Ca2+-leak is presented as diastolic [Ca2+]i in relation to total SR Ca2+-content. In 148 

a subset of experiments, H-89 (3 µmol/L for 1 hour) to block PKA or AIP (1 µmol/L for 1 hour) to 149 

block CaMKII, were added to the solutions. 150 

Ca2+ waves 151 
Cardiomyocytes loaded with Fluo-3/AM (10 μmol/L, Molecular Probes) were used to determine 152 

frequency of Ca2+ waves by confocal line scan (Pascal, Carl Zeiss, Jena, Germany)  153 

 154 

Voltage clamp 155 

Single isolated mouse cardiomyocytes were superfused with a HEPES-buffered Krebs-Henseleit 156 

solution containing (mM): NaCl (140), KCl (4), HEPES (5), MgCl2 (1), CaCl2 (1.8), glucose (11.1), 4-157 

aminopyridine (5mM, to block K+ currents), niflumic acid (0.1mM, to block Ca2+-activated Cl- 158 

currents), and Tetrodotoxin (5µM, to block INa), pH 7.4 with NaOH  (37ºC) in a chamber mounted on 159 

the stage of an inverted microscope. Microelectrode pipettes were filled with an intracellular solution 160 

of composition (mM): KCl (20), K aspartate (100), tetraethylammonium chloride (TEA-Cl, 20), 161 

HEPES (10), MgCl2 (4.5), disodium ATP (4), disodium creatine phosphate (1), EGTA (0.01), pH 7.25 162 

with KOH.  ICaL protocol:  Voltage clamp was achieved via whole cell ruptured patch technique using 163 

an Axoclamp 2B amplifier (Axon Instruments, CA, USA) in discontinuous (switch clamp) mode. 164 
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Pipette resistance was ~6 MΩ.  Whole cell patch clamp was performed on single isolated mouse 165 

cardiomyocytes.  The cell was clamped at -80 mV and the voltage stepped to -40 mV for 50 ms, 166 

before stepping to 0 mV for 150 ms. The protocol was repeated at 2Hz for 90s.  The last 10 L-Type 167 

Ca2+ current recordings were averaged and analyzed.   168 

 169 

Western blot analyses 170 

Cardiac tissue was homogenized in Tris buffer containing (mmol/L): 20 Tris-HCl, 200 NaCl, 20 NaF, 171 

1 Na3VO4, 1 dithiothreipol, 1% Triton X-100 (pH 7.4), PhosSTOP (Roche Diagnostics, Grenzach-172 

Wyhlen, Germany), and complete protease inhibitor cocktail (Roche Diagnostics, Grenzach-Wyhlen, 173 

Germany). Protein concentration was determined by bicinchoninic acid assay (Thermo Fisher 174 

Scientific Inc., Rockford, USA). Denatured tissue homogenates (30 min at 37°C or 5 min at 95°C, 2% 175 

beta-mercaptoethanol) were used for Western blotting (8%-15% sodium dodecylsulfate-176 

polyacrylamide gel) using anti-CaMKIIδ (1:15000, gift from D. M. Bers, University of California, 177 

Davis, USA), anti-phospho-CaMKII (1:1000, Thermo Fisher Scientific Inc., Rockford, USA), anti-178 

RYR2 (1:10000, Sigma, St.Louis, USA), Anti-RYR2 Phospho Serine-2814 (1:5000, Badrilla, Leeds, 179 

UK), anti-glyceraldehyde-3-phosphate dehydrogenase (1:20000, Biotrend Chemikalien, Köln, 180 

Germany) as primary, and horseradish peroxidase conjugated donkey anti-rabbit and sheep anti-mouse 181 

immunoglobulin G (1:10,000, Amersham Biosciences, Freiburg, Germany) as secondary antibodies. 182 

Chemiluminescent detection was performed with Millipore Immobilion Western (Millipore, Billerica, 183 

USA). For SERCA2a and L-type Ca2+channel determination, primary antibodies were anti-SERCA2a 184 

(1:2000, Badrilla, Leeds, UK), and for L-type Ca2+ channel the primary antibody was anti-CACNA1C 185 

(1:350, Abcam, Cambridge, UK ) and anti-GAPDH (1:2000, ThermoFisher MA5-15738). 50µg 186 

protein was separated on Bis-Tris SDS-PAGE ready gels and transferred to PVDF membranes 187 

(Thermo Fisher Scientific Inc., Rockford, USA). Secondary antibodies used were IRDye 800CW goat 188 

anti-mouse (1:10000, Li-Cor Biotec, Nebraska, USA) and IRDye 680LT donkey anti-rabbit (1:30000, 189 

Li-Cor Biotec). Protein bands were visualized using an Odyssey fluorescence imaging system and 190 

band intensities quantified using Li-Cor Image Studio 3.1 (Li-Cor Biotec). 191 

 192 
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 193 

Statistical analysis 194 

Data are shown as mean±SD, except where indicated. One-way ANOVA with Bonferroni post-hoc 195 

test adjusted for multiple comparisons was used to identify the statistical differences between the 196 

groups and Mann-Whitney U was used when appropriate. P<0.05 was considered statistically 197 

significant. 198 

 199 

Results 200 

Total CaMKIIδ protein expression was increased seven-fold in TG mice compared to WT, whereas 201 

CaMKII phosphorylation at the auto-activation site threonine-286 increased two-fold. Exercise did not 202 

modify either of these parameters (Figure 1A-C). However, despite no effect of exercise training on 203 

regulation of these proteins, we observed that the TG mice adapted to high intensity exercise training 204 

such that parameters of several aspects of in vivo cardiac and ex vivo cardiomyocyte function 205 

improved or restored to levels comparable to basal levels (WT untrained). Moreover, the training 206 

response with regards to aerobic capacity and cardiac and cardiomyocyte function followed the same 207 

pattern as seen after exercise training in the WT group. Exercise was well tolerated in all groups and 208 

we did not observe any adverse effects in any of the animals. No mortality was observed during the 209 

experimental period. 210 

 211 

Aerobic capacity, cardiac function and response to exercise training 212 

The increased expression of CaMKIIδC led to a significant reduction in aerobic capacity as maximal 213 

oxygen uptake (VO2max) in sedentary TG mice was 75% to that of WT mice. However, six weeks of 214 

exercise training restored VO2max in TG mice to levels similar to WT mice (Figure 1D). As aerobic 215 

capacity is closely related to cardiac pump function, we measured cardiac parameters by 216 

echocardiography. Cardiac output, stroke volume, and ejection fraction were significantly reduced in 217 

sedentary TG mice, suggesting cardiac dysfunction, whereas parameters of left ventricle (LV) lumen 218 

dimensions indicated dilation (Table 1). Exercise training improved cardiac output, stroke volume, and 219 

ejection fraction significantly  (p<0.01, Table 1). Hence, deficits in both aerobic capacity and global 220 
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cardiac function were improved by exercise training in TG mice. Similar effects were seen after 221 

exercise in WT mice. 222 

 223 

Cardiomyocyte size and contractility 224 

We found significantly larger cardiomyocyte size in TG mice compared to WT mice; exercise training 225 

reduced the volume significantly (Figure 1E), indicating a reversal of the pathologic hypertrophy. In 226 

the WT exercise group, we observed the opposite scenario with increased cardiomyocyte size, 227 

indicating a physiologic hypertrophy that commonly is observed after exercise in healthy individuals. 228 

Cardiomyocyte contractility, measured as fractional shortening, was reduced by ~47% in TG mice 229 

compared to WT mice, whereas exercise training fully restored cardiomyocyte fractional shortening 230 

(Figure 2A&B). Also, time to 50% re-lengthening was prolonged in isotonically contracting 231 

cardiomyocytes from TG mice, but exercise training normalized this (Figure 2C).  232 

 233 

L-type Ca2+ current (ICaL) 234 

Since transmembrane Ca2+ -flux initiates cardiomyocyte excitation-contraction coupling and 235 

contractility, we examined the ICaL. Exercise training in TG mice increased the ICaL density and flux 236 

significantly by 79% and 85%, respectively (p<0.01, Figure 3). Similar alterations were observed in 237 

exercised WT mice. The increased L-type Ca2+ channel current after exercise training was at least 238 

partly explained by the significantly increased protein expression in exercised TG mice compared to 239 

TG sedentary (p<0.05, Figure 3). 240 

 241 

Ca2+ transients and SR Ca2+content  242 

The Ca2+-transient amplitude was ~58% lower in TG mice compared to WT mice, but this difference 243 

was absent after exercise training, indicating that the Ca2+-transient amplitude was corrected by 244 

exercise training (Figure 4A&B). This increase in Ca2+-transient amplitude in response to exercise 245 

training was comparable to the effect observed in WT mice. Reduced Ca2+-transient amplitude in TG 246 

has been suggested to result from reduced SR Ca2+ content compared to that observed in 247 
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cardiomyocytes from WT mice (19, 25). We confirmed that caffeine-evoked SR Ca2+ content was 248 

reduced in TG compared to WT; exercise training restored the SR Ca2+-content to sedentary WT levels  249 

(Figure 4C).  250 

 251 

Diastolic Ca2+-control 252 

Diastolic Ca2+ levels during twitch contractions were lower in TG mice compared to WT mice, 253 

whereas exercise training restored diastolic Ca2+ to levels comparable to WT mice (Figure 5A). 254 

Time to 50% Ca2+-transient decay was significantly prolonged in TG mice compared to WT, 255 

whereas exercise training abolished this difference (Figure 5B). To further analyze the characteristics 256 

of diastolic Ca2+ handling, we examined the rate constants of cytoplasmic Ca2+ removal (Figure 5C). 257 

During a normal twitch-induced Ca2+-transient, Ca2+ is removed by the SERCA2a, NCX, and the 258 

plasma membrane Ca2+ ATPase (PMCA), and the rate constant of Ca2+ decline in this situation (Ktw) 259 

can be described as the sum of the rate constants associated with each efflux mechanism. During 260 

caffeine-induced Ca2+-transients, the contribution from SERCA2a is abolished, and the decay rate 261 

constant thus depends only upon NCX and PMCA. To derive the rate constant of NCX (KNCX), the 262 

rate constant of Ca2+ removal during caffeine-induced Ca2+ transients in a solution containing 0 Na+ 263 

and 0 Ca2+ was measured and subtracted from the rate constant in the presence of these ions (3). First, 264 

the rate constant attributed to PMCA was negligible small and there were no differences between 265 

groups. The rate constant of Ca2+ removal during a caffeine-induced Ca2+ transient (SERCA2a 266 

contribution thus abolished) was significantly higher in TG mice, indicating an increased NCX 267 

function (Figure 5D). To quantify the contribution from SERCA2a, a simple model was used based on 268 

the following assumptions: SERCA2a transport rate is KSERCA2a = KTW – KNCX, and the relative 269 

contribution by SERCA2a is KSERCA2a/KTW. Thus, for WT mice the Ktw = 0.91 s-1, KNCX = 0.06 s-1 and 270 

KSERCA2a = 0.85 s-1, and 93% of the total Ca2+ removal was attributed to SERCA2a (Figure 5E). In TG 271 

mice, Ktw (0.58 s-1) was reduced and KNCX (0.09 s-1) was increased, resulting in a KSERCA2a of 0.49 s-1.  272 

This implies that SERCA2a was responsible for 84% of the total Ca2+ removal, which was 273 

reduced by 42% when compared to WT mice (from 0.85 s-1 to 0.49 s-1). In contrast, NCX function was 274 

increased by ~50% (from 0.06 s-1 to 0.09 s-1) in the TG group. After exercise training in TG mice, Ktw 275 
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= 0.8 s-1, KNCX=0.06 s-1 and KSERCA=0.74 s-1, which indicates that both SERCA2a and NCX functions 276 

were restored to normal levels (Figure 5C-E). At the protein level SERCA2a was 26% lower in TG 277 

mice compared to WT. SERCA2a protein expressions was 28% higher in exercised TG mice (Figure 278 

5F, NS) compared to sedentary TG, which is in agreement with functional SERCA2a data from 279 

isolated cardiomyocytes. 280 

  281 

Diastolic SR Ca2+-leak 282 

In TG mice, the diastolic SR Ca2+-leak was higher (19±3% of total SR Ca2+ in TG vs. 3±2% in WT, 283 

P<0.01, Figure 6A), which associated with a significant reduction in the total SR Ca2+-content 284 

compared to WT mice. Exercise training normalized SR Ca2+-leak to levels comparable to WT mice. 285 

The increased Ca2+-leak in TG mice was related to the overexpression of CaMKIIδC, since inhibition 286 

of CaMKIIδC by autocamtide 2-inhibitory peptide (AIP) reduced the leak to levels of WT mice (Figure 287 

6B). To control for a PKA-related effect on Ca2+-leak , separate cells were incubated with H-89, but 288 

under these conditions no effect on SR Ca2+-leak was observed (Figure 6B). None of the CaMKII or 289 

PKA inhibitors had any effect on Ca2+-leak in sedentary WT, exercise trained WT mice or exercise 290 

trained TG mice; however, in these groups, the baseline Ca2+ leak was already minimal (Figure 6A). In 291 

line with this, Ca2+ wave frequency was increased in TG mice compared to WT mice, but exercise 292 

training reduced the wave generation to WT levels (Figure 6C). 293 

Finally, we examined the mechanism of reduced diastolic SR Ca2+ leak by analyzing protein 294 

phosphorylation of RyR2 at the CaMKII-specific residue Serine-2814. We found that the 295 

phosphorylation was increased by over 100% in sedentary TG mice compared to WT mice (p<0.05) 296 

(Figure 6D) and that this increase remained despite normalization of the SR Ca2+ leak. The Serine-297 

2814 phosphorylation status was neither changed by exercise training in WT mice. 298 

 299 

Discussion 300 
The present study demonstrates for the first time that exercise training suppresses the detrimental 301 

cardiac-based effects of transgenic CaMKIIδC overexpression in vivo and in vitro without significantly 302 

changing the CaMKIIδC expression level or its phosphorylation. After exercise training the following 303 
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aspects of cardiac function were improved or restored to levels similar to that observed in the WT 304 

(untrained) animals: (1) global cardiac function in vivo and cardiomyocyte contractility; (2) ICaL; (3) 305 

diastolic Ca2+ levels and twitch Ca2+ transient amplitude; (4) propensity for spontaneous SR Ca2+ 306 

release; (5) SR Ca2+ content; (6) SERCA2a mediated SR Ca2+ uptake and; (7) Ca2+ efflux by NCX.  307 

Cardiomyocyte function and Ca2+ transients 308 

This study show that overexpression of CaMKIIδC leads to cardiac dysfunction reminiscent of heart 309 

failure, with depressed Ca2+ cycling, cardiomyocyte malfunction and increased diastolic SR Ca2+ leak. 310 

The data confirm as such previous findings in this model (19, 25, 40), with a functionally detrimental 311 

effect of chronically increased CaMKII signaling. The prolonged time to Ca2+ removal was mainly due 312 

to the ~42% reduction in SERCA2a function in TG mice. NCX function was increased by ~48%, 313 

which would favor Ca2+ extrusion across the sarcolemma and a reduction of diastolic Ca2+- 314 

concentration (19). This is not unexpected since commonly reduced SERCA2 activity is accompanied 315 

by increased NCX activity in models of cardiac pathology (8, 18, 23). Increased activity of CaMKIIδC 316 

would normally be expected to chronically enhance SERCA2a function by augmenting 317 

phosphorylation of threonine-17 PLN (40), but as previously reported, SERCA2a expression is 318 

reduced in the TG model (19, 40), an effect that dominates over the stimulation of SERCA2a activity 319 

from enhanced CaMK phosphorylation.  As previously reported in CaMKIIδC TG mice (39), SR Ca2+ 320 

content is reduced, this can be linked to the reduced SERCA2a activity and the NCX-linked reduction 321 

of diastolic Ca2+ levels, both of which will reduce SERCA2a activity and subsequent SR Ca2+ content. 322 

Therefore, the exercise training effect in TG mice, with reduced extrusion of Ca2+ across the plasma 323 

membrane via the NCX combined with increased L-type Ca2+ currents would in combination with the 324 

increased SERCA2a activity enable more SR Ca2+ loading and explain the restored Ca2+ homeostasis 325 

observed after exercise training.  326 

SR Ca2+ leak 327 

Increased diastolic SR Ca2+ leak via the RyR2 and increased spontaneous Ca2+ wave 328 

generation observed in TG mice has previously been linked to reduced Ca2+ transient amplitude and 329 
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reduced SR Ca2+ content, i.e. changes that would limit contractility (2, 33). A recent study of the same 330 

TG mice found a higher frequency of delayed afterdepolarizations and increased propensity to 331 

arrhythmias as a result of increased SR Ca2+ leak (25).  The increased SR Ca2+ leak is believed to 332 

result from the increased activity of CaMKII leading to hyper-phosphorylation of the RyR2 at Serine-333 

2814. This would increase the RyR2 sensitivity to Ca2+ and thereby increase the open probability of 334 

RyR2 (1, 19, 25). The data from the present study showing AIP to abolish the high SR Ca2+ leak 335 

observed in sedentary TG mice support this concept. However, despite compelling evidence 336 

considering RyR Serine-2814 phosphorylation to be causal in SR Ca2+ leak, the exercise training-337 

induced reduction in SR Ca2+ leak was not due to a reduction in overall CaMKII activity or 338 

phosphorylation status of the RyR at the serine-2814. Changes in antioxidant enzymes activity and 339 

oxidative stress following the exercise training period could possibly alter the activation state of 340 

CaMKII, as oxidation of  CaMKII increases its activity and consequently causes more leaky RyR 341 

channels (32). Our data identifying no exercise-induced changes in the phosphorylation status of either 342 

the threonine-286 site of CaMKII or the serine-2814 site of RyR2 does, however, indicate that it is 343 

unlikely that oxidation of CaMKII could be a central player in modulating the exercise-induced 344 

reduction in RyR2-associated SR Ca2+ leak, at least in this model of continuous TG overexpression of 345 

CaMKIIδC. Further analyses are therefore needed to determine the compensatory mechanisms by 346 

exercise that counteracts the chronic high levels of CamKII and serine-2814 phosphorylation upon SR 347 

Ca2+ -leak in these TG mice.  348 

A link between increased RyR2-mediated SR Ca2+ leak and increased propensity for 349 

arrhythmias has received attention lately, especially in heart failure (4, 23, 28, 31, 38), and novel Ca2+ 350 

release channel-stabilizing drugs have been proposed on this basis (17). The finding that exercise 351 

training reduces diastolic SR Ca2+ leak is interesting since it ameliorates a deleterious defect in failing 352 

hearts through a physiological adaptation mechanism, and may therefore provide an alternative route 353 

to the same outcome. This mechanism has also been suggested to be activated by exercise training in 354 

the post-myocardial infarction heart failure model (14). It is also important to note that exercise 355 

training reverses the increased NCX activity. Thus, these effects suggest that exercise training may 356 

have the potential to reduce delayed afterdepolarizations that potentially trigger ventricular 357 
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arrhythmias, by synergistically improving diastolic intracellular Ca2+ homeostasis via reduced 358 

spontaneous SR Ca2+ release and reduced NCX activity. The data on reduced frequency of 359 

spontaneous Ca2+ waves after exercise training in TG CaMKIIδC mice does indeed support reduced 360 

potential for triggering of ventricular arrhythmias.  361 

 362 

Functional cardiac and cardiomyocyte properties 363 VO2max is regarded as the best indicator of cardio-respiratory endurance, where cardiac output is 364 a key determinant of VO2max  as it set the upper limit for O2- supply to working muscles (24). 365 Chronic overexpression of CaMKIIδC has previously been shown to cause a significant depression of 366 

cardiac function and remodeling of the heart, similar to observations in heart failure (19, 40), our 367 findings of significantly reduced VO2max in TG mice was therefore in agreement with our hypothesis. 368 

Reduced cardiac function in the TG CaMKIIδC overexpression model has previously been explained 369 

by pathological remodeling of the heart and breakdown of normal Ca2+-handling via phosphorylation 370 

of Ca2+ regulatory proteins (19, 40), which was confirmed in the present study. The improvements 371 

observed in VO2max after exercise training are furthermore in line with improvements in cardiomyocyte 372 

functional properties as well as improvements observed in stroke volume and cardiac output. In 373 

addition to restoring cardiomyocyte contractility, exercise training also reduced the pathological 374 

cellular hypertrophy in TG mice, although it did not completely normalize cell size. Improvements in 375 

cardiomyocyte function followed the same pattern as changes in Ca2+ cycling and are consistent with 376 

previous studies using the same exercise training model in animals with post-myocardial infarction 377 

heart failure (36) and diabetic cardiomyopathy (29). LV ejection fraction increased from ~20% to 378 

30%, which has an important clinical value. However, the improvements of in vivo cardiac function 379 

measured by echocardiography are less pronounced compared to findings in isolated cardiomyocytes. 380 

This may suggest that structural remodeling in the TG mice with continuously activated CaMKII mice 381 

cannot be completely normalized by exercise training under the current conditions. The comparisons 382 

between single cell contractility and that of the whole heart are made complex because of the 383 

additional factors that apply to the intact myocardium including: (1) isometric and isotonic 384 

components to the contractile event in whole heart (only isotonic in single cell), (2) Interstitial fibrosis 385 
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in whole hearts and (3) changes in system peripheral resistance. Our data reflect the physiological 386 

relevance of in vivo measurements in addition to in vitro assessments of isolated cardiomyocytes 387 

contracting in non-isometric conditions. Further work is required to investigate the basis of the 388 

differences between whole heart and single cell contractility parameters 389 

 390 

Conclusions 391 

Exercise training improved in vivo cardiac function, restored cardiomyocyte function, plasma 392 

membrane and sarcolemmal and intracellular Ca2+ fluxes and abolished the abnormally high diastolic 393 

SR Ca2+ leak in mice with TG overexpression of CaMKIIδC. Thus, despite a continuous background of 394 

abnormally high CaMKIIδC, exercise training triggers mechanisms such as improved L-type Ca2+ 395 

channels, SR Ca2+-handling by restoration of SERCa2a function in addition to reduced diastolic SR 396 

Ca2+-leak thereby restoring cardiomyocyte Ca2+-homeostasis.  397 

 398 

 399 

 400 
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Figure legends: 420 
 421 

Figure 1 422 

 A, CaMKII total protein levels and B, phosphorylated CaMKII at Threonine-286. Protein 423 

measurements are presented as mean ± SEM (number of animals each group (N=4). C, Examples of 424 

western blots of protein regulation. D, Maximal oxygen uptake was measured in all animals included 425 

in the study. (VO2max) was reduced in transgenic (TG) CaMKIIδC overexpressing mice (N=12) 426 

compared to WT sedentary (N=12); exercise increased VO2max in both TG (N=12) and WT (N=12). E, 427 

Cardiomyocyte volume was significantly larger in TG mice (N=5) compared to WT (N=5); exercise 428 

reduced cell volume in TG (N=5), but increased cell volume in WT (N=5). Data in D and E are 429 

presented as mean ± SD.  † P<0.01 vs. WT sedentary, * P<0.05 vs. sedentary WT, # P<0.05 vs. 430 

sedentary TG. 431 

 432 

Figure 2 433 

 A, representative sample tracings of cardiomyocyte fractional shortening from sedentary and exercise 434 

trained transgenic (TG) CaMKIIδC overexpressing mice, and sedentary and exercised WT mice. B, 435 

fractional shortening was significantly reduced in TG, whereas exercise training in TG restored this to 436 

WT levels. C, time to 50% relengthening was longer in TG and restored after exercise training, with a 437 

comparable response to that of exercise training in WT. ** P<0.01 vs. other groups. There were no 438 

significant differences between exercise trained TG and WT mice. n=25-30 cells per group) 439 

 440 

 441 
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Figure 3 442 

A, Ca2+ flux through ICaL was reduced in sedentary TG compared to trained TG. B, Representative L-443 

type Ca2+ current (ICaL) recordings from sedentary transgenic (TG) CaMKIIδC overexpressing mice 444 

(red), trained TG (blue), sedentary WT (green), and trained WT (black). C, ICaL density was reduced in 445 

sedentary TG compared to trained TG. C, WT sedentary: n=14 cells; WT exercise: 14 cells; TG 446 

sedentary: 19 cells; exercise TG: n=14 cells. D, Protein expression on L-type Ca2+-channel was 447 

significantly increased after exercise training in TG mice (number of mice in each group, N=4). Data 448 

are presented as mean ± SEM. * P<0.05 vs. trained TG.  # P<0.5 between exercise trained WT vs. 449 

Sedentary WT. 450 

 451 

Figure 4 452 

A, representative traces of Ca2+-transients by Fura-2/AM ratio (F340/380) recordings. B, twitch-453 

stimulated Ca2+- transient amplitude (Fura-2/AM ratio F340/380) was reduced in transgenic (TG) 454 

CaMKIIδC overexpressing mice compared to WT. Exercise training increased the Ca2+- transient 455 

amplitude in both TG and WT; in TG to levels comparable to WT mice. C, caffeine-evoked Ca2+-456 

transient amplitude (SR Ca2+-content) was reduced in TG mice compared to WT. Exercise training 457 

increased the SR Ca2+ content in both TG and WT; in TG to levels comparable to sedentary WT. ** 458 

P<0.01 vs. other groups, *P<0.05 vs. other groups. There were no significant differences between 459 

exercise trained TG and sedentary WT mice. Cells in each group (n=25-30) 460 

 461 

Figure 5 462 

A, diastolic Ca2+- levels were lower in sedentary transgenic (TG) CaMKIIδC overexpressing mice, but 463 

this was raised to sedentary WT levels by exercise training; exercise training had, however, no effect 464 

in WT. B, time to 50% Ca2+-decay was prolonged in TG mice compared to WT, but reduced by 465 

exercise training to WT levels; exercise training also reduced time to 50% Ca2+-decay in WT. C, 466 

example traces of Ca2+-transients evoked by twitch-stimulations and Caffeine-stimulations.  467 

D, calculated NCX rate constant of Ca2+ removal in; the NCX rate was increased in TG whereas 468 

exercise training normalized the rate; exercise training had no effect in WT.  E, calculated SERCA2a 469 



 18

rate constant of Ca2+ removal; SERCA2a rate was reduced in TG mice compared to WT, whereas 470 

exercise training increased rate in both TG and WT.** P<0.01 vs. other groups, *P<0.05 vs. WT. Cells 471 

in each group (n=25-30). F, Protein expression of SERCA2a (protein-expressions are presented as 472 

mean ± SEM, (number of mice in each group, N=4, No significant differences was observed between 473 

groups) 474 

 475 

  476 
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Figure 6 477 

A, diastolic SR RyR Ca2+ leak in normal HEPES 1.8 Ca2+ solution in sedentary and exercise trained 478 

transgenic (TG) CaMKIIδC overexpressing mice and WT mice; and B, RyR Ca2+ leak after incubation 479 

by AIP (to inhibit CaMKII) and H-89 (to inhibit PKA) in sedentary TG mice. Note that exercise 480 

training reduced the Ca2+ leak to levels found in WT mice, and inhibiting CaMKII with AIP abolished 481 

Ca2+ leak. PKA inhibition by H-89 had no significant effect on reducing Ca2+ leak. No significant 482 

effects of H-89 or AIP were seen in any of the other groups. C, frequency of spontaneous Ca2+ waves 483 

was higher in sedentary TG compared to WT; exercise training  reduced Ca2+ wave frequency to WT 484 

levels. Number of animals in each group for cardiomyocyte data (N=5), number of cells in each group 485 

(n=25-30). D, phosphorylation of Serine-2814 residues at RyR2; example blots in inset (protein-486 

expressions are presented as mean ± SEM, (number of rats in each group, N=4). ** P<0.01 vs. other 487 

groups and *P<0.05 vs. other groups. # P<0.05 between TG and WT sedentary. 488 

 489 

 490 

491 
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Table 1. Global cardiac left ventricle (LV) function (echocardiography) 

 CaMKIIδC TG Wild type 
 

 Sedentary Exercise Sedentary Exercise 

LV Cardiac output (ml/min) 12.3 ± 2.8 # 17.6 ± 1.1 * 19.0 ± 1.2 *   23.0 ± 3.0 #* 

LV Stroke volume (μl) 25.2 ± 4.6 # 35.2 ± 1.8 * 35.5 ± 2.6 * 42.2 ± 4.9 §* 

LV Ejection fraction (%) 19.4 ± 3.0 # 29.7 ± 5.8 *# 50.7 ± 3.7 * 64.5 ± 4.5 §* 

LV Fractional shortening (%) 8.9 ± 1.4 # 14.0 ± 3.0 *# 25.5 ± 2.2 * 34.8 ± 3.4 §* 

LV Diameter; end systole (mm) 4.7 ± 0.2 # 4.3 ± 0.4 # 3.0 ± 0.2 * 2.5 ± 0.2 §* 

LV Diameter; end diastole (mm) 5.2 ± 0.2 # 5.0 ± 0.3 # 4.0 ± 0.2 * 3.9 ± 0.2 * 

LV Volume; end systole (μl) 105 ± 12.4 # 86.1 ± 17.7 # 35.1 ± 5.8 * 23.5 ± 4.5 §* 

LV Volume; end diastole (μl ) 130.2 ± 14.0 # 121.3 ± 16.1 # 70.6 ± 7.6 * 65.6 ± 8.0*  

Data are mean±SD. CaMKII, Ca2+/calmodulin-dependent kinase II. Difference from 

sedentary CaMKIIδC TG; * P<0.01. Difference from sedentary WT; # P<0.01, § P<0.05.  
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