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Abstract. Soft fibrous solids often consist of a matrix reinforced by fibers that render the

material anisotropic. Recently a fiber dispersion model was proposed on the basis of a weighted

strain-energy function using an angular integration approach for both planar and three-dimensional

fiber dispersions (G.A. Holzapfel and R.W. Ogden: Eur. J. Mech. A/Solids, 49 (2015) 561–

569). This model allows the exclusion of fibers under compression. In the present study com-

putational aspects of the model are documented. In particular, we provide expressions for the

elasticity tensor and the integration boundary that admits only fibers which are extended. In

addition, we give a brief description of the finite element implementation for both 2D and 3D

models which make use of the von Mises distribution to describe the dispersion of the fibers.

The performance and the finite element implementations of the 2D and 3D fiber dispersion

models are illustrated by means of uniaxial extension in the mean fiber direction and more gen-

eral directions, and simple shear with different mean fiber directions. The finite element results

are in perfect agreement with the solutions computed from analytical formulas.

Keywords: Constitutive modeling; soft fibrous solids; finite element method, fiber dispersion;

anisotropy; exclusion of compressed fibers

1 Introduction

In many soft fibrous solids, including biological tissues, there exists a matrix reinforced by

embedded fibers which, in general, induce anisotropy in the material. For some materials the

matrix can be treated as homogeneous and isotropic. The fibers may be distributed within the

†To whom correspondence should be addressed. Email address: holzapfel@tugraz.at



matrix in various ways. Specifically, in human arterial walls the collagen fibers are not perfectly

aligned but are dispersed around a mean direction. Such a fiber dispersion has been observed

in, for example, human arterial walls [1–5], the myocardium [6, 7], corneas [8, 9] and articular

cartilage [10]. In particular, recent extensive experimental results [4] have shown that the col-

lagen fiber dispersion in each of the layers of (healthy) human thoracic and abdominal aortas

and iliac arteries is non-symmetric, in contrast to the rotationally symmetric fiber dispersion

assumed in previous studies; see, for example, [11]. In order to improve understanding of the

mechanical properties of such tissues, constitutive modeling is essential.

Motivated by the specific structural arrangements of collagen fibers, various constitutive

relations have been developed. Fiber dispersion has been represented in such constitutive rela-

tions either by direct incorporation in a strain-energy function via a probability density function

(PDF) or by a generalized structure tensor. Following [12] these two approaches are referred to

as ‘angular integration’ (AI) and ‘generalized structure tensor’ (GST), respectively. For a short

survey of the main existing constitutive models that account for dispersion of collagen fibers

by using either the AI approach (due to Lanir [13]) or the GST approach, as reviewed in [14].

In particular, our group has developed a constitutive relation for the modeling of arterial layers

with a rotationally symmetric fiber dispersion [11]. Recently, this model has been extended to

a more general case [14] for which a non-symmetric fiber dispersion can also be captured.

Generally, the role of the fibers is primarily mechanical, providing the material with in-

creased stiffness and strength. The fibers are elongated when loaded in tension, and it is often

assumed that they do not contribute to the overall mechanical response of the material in com-

pression. The computational implementation of this assumption requires a tension–compression

‘switch’ which eliminates the mechanical contribution of each fiber that is in compression.

However, as pointed out in [15], such a condition has not been interpreted correctly in the

literature and in finite element programs; see, for example, [16].

A Heaviside step function is sometimes introduced to eliminate the mechanical influence

of the compressed fibers; see [17–20]. Theoretically, this method could successfully exclude

the contribution of the compressed fibers from the total strain-energy function. However, as

indicated in [19], the presence of the Heaviside function renders the stress and elasticity tensors

discontinuous. In the recent paper [15] we have proposed a modified fiber dispersion model

which incorporates a weighted strain-energy function that allows the exclusion of fibers under

compression without the need for a Heaviside function. This model, which is based on the

AI approach, was developed for planar and three-dimensional fiber dispersions and enables

the stress and the elasticity tensors to be calculated in a straightforward way. However, the
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computational aspects of this modified model, specifically the form of the elasticity tensor and

the integration boundary that admits only fibers which are extended, are not yet documented.

Therefore, the aim of this study is to further develop this model for the purpose of computational

implementation.

The present study is structured as follows. In Section 2 we present the continuum mechan-

ical framework for the modified fiber dispersion model in a decoupled form suitable for finite

element implementation, including the Cauchy stress and the elasticity tensors for both planar

and three-dimensional fiber distributions. The boundary of the integration domain is also dis-

cussed for different deformation states. In Section 3 we introduce an adaptive finite element

integration scheme for the numerical integration required for the stress and the elasticity tensors

in the appropriate domain. In Section 4 the theory introduced in Section 2 is applied to several

examples using the finite element scheme from Section 3. In particular, six representative nu-

merical simulations are presented with the aim of demonstrating the efficacy of the proposed

computational method. Finally, Section 5 summarizes the developed method and discusses

possible future developments of the present study.

2 Continuum Mechanical Framework

In this section we outline the basic notation and fundamental results of nonlinear continuum me-

chanics in order to establish the mathematical description of fiber dispersion models, including

the corresponding Cauchy stress and elasticity tensors. In particular, the integration boundary

in the deformation space within which fibers are extended is also introduced.

2.1 Kinematics

Let B0 be a (stress-free) reference configuration of a continuum body and B its deformed con-

figuration. The deformation map χ(X) transforms a material point X ∈ B0 into a spatial point

x ∈ B. With this deformation map we define the deformation gradient F(X) = ∂χ(X)/∂X and

its determinant J = det F(X), where J is the local volume ratio; we require J > 0.

Following the multiplicative decomposition of the deformation gradient in [21, 22] we de-

couple F into a spherical (dilatational) part J1/3I and a unimodular (distortional) part F =

J−1/3F, with det F ≡ 1. We define the right Cauchy–Green tensor C = FTF and its modified

counterpart C = FTF, respectively, with the related invariants I1 = trC and Ī1 = trC.
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Figure 1: (a) A fibrous sheet with uniform thickness whose major surfaces are normal to the

direction E3; (b) a planar fiber dispersion described by a unit vector N representing an arbitrary

fiber direction normal to E3 defined by the angle Θ with respect to E1. The mean fiber direction

M makes an angle ΘM with E1.

2.2 Planar Fiber Dispersion Model

The modified fiber dispersion model [15] that accounts only for fibers under extension requires

numerical integration in the sub-domain of a unit sphere for which the fiber stretch is greater

than one. For some soft biological tissues such as arterial walls the fiber dispersion in the

thickness direction is smaller than in the in-plane direction [4], and for our present purposes

we neglect the out-of-plane dispersion. We treat the material as incompressible, elastic and

fiber-reinforced with a locally planar fiber dispersion. Without loss of generality we choose the

thickness direction in such a material as the E3 Cartesian axis. Hence, an arbitrary in-plane fiber

direction within a dispersion about a mean fiber direction M may be described by a unit vector

N in the reference configuration as

N(Θ) = cos ΘE1 + sin ΘE2, (1)

where E1 and E2 are the in-plane unit rectangular Cartesian basis vectors, and Θ is the angle

between the fiber direction N and E1, as shown in Figure 1. Also shown in Figure 1 is the mean

fiber direction M and the angle ΘM that it makes with the E1 direction. Analogously to (1) we
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may write

M = cos ΘME1 + sin ΘME2 (2)

in the reference configuration, where ΘM is a constant.

Since we are considering elastic materials, we assume that there exists a strain-energy func-

tion Ψ(C, {N}), where {N} implies the dependence on the distribution of N, that depends on

the macroscopic deformation through C, the underlying material structure through each direc-

tion N, and a PDF ρ(Θ) that describes the fiber alignment and dispersion. For computational

purposes, we assume that the strain-energy function can be decoupled as [23]

Ψ(C, {N}) = Ψvol(J) + Ψiso(C, {N}), (3)

where the function Ψvol is a purely volumetric contribution while Ψiso represents the energy

contribution of an isochoric (volume preserving) deformation through C. Suppose now the

total isochoric strain-energy function Ψiso is the superposition of the energies contributed by the

(non-collagenous) ground matrix and the collagen fibers, i.e. [24]

Ψiso = Ψg(C) + Ψf(C, {N}). (4)

Following [15, 24] we model the ground matrix as a neo-Hookean material Ψg(Ī1) = µ(Ī1 −
3)/2, where the parameter µ is the shear modulus in the reference configuration. The isochoric

strain energy contributed by the fibers per unit reference volume associated with the direction

N is assumed to be a function of the fiber stretch only. Thus, we adopt a modified form of the

standard fiber reinforcing model [25] for the contribution of a fiber along N in which Ī4 is used

instead of I4. This is given by

Ψn(Ī4(N)) =
ν

2
(Ī4(N)− 1)2, (5)

where ν is a non-negative material constant with the dimension of stress and the modified fourth

invariant is Ī4(N) = C : N⊗N = J−2/3I4(N), with I4(N) = C : N⊗N. Note here that ν is the

stiffness of the fiber in the direction of N. The invariant I4(N) is the square of the fiber stretch

in the direction N; see, for example, [23]. Note that (5) is entirely appropriate to describe the

behavior of single collagen fibers, as exemplified in [26]. Now we write the isochoric part of the

strain-energy function of the fiber dispersion, per unit reference area of the considered plane,

weighted with ρ(Θ) as

Ψf =
1

π

∫
Σ

ρ(Θ)Ψn(Ī4(Θ)) dΘ, (6)

where Σ ∈ {Θ ∈ [−π/2, π/2]|I4(Θ) > 1} defines the region in which fibers are extended,

and Θ is the angle of an arbitrary fiber orientation N, as shown in Figure 1(b). Note that
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we are restricting attention to the half circle Θ ∈ [−π/2, π/2] since N and −N represent the

same ‘fiber’. The PDF ρ(Θ) represents the probability density of fibers at orientation N in the

reference configuration. It satisfies the normalization condition

1

π

π/2∫
−π/2

ρ(Θ) dΘ = 1, (7)

The total isochoric strain-energy function Ψiso of the material now reads

Ψiso = Ψg(Ī1) +
1

π

∫
Σ

ρ(Θ)Ψn(Ī4(Θ)) dΘ. (8)

For fibrous solids with two or more fiber families, the strain energy of additional fiber fami-

lies can be included additively in (8) in a similar way. Here we confine attention to materials

reinforced with one family of dispersed fibers.

Note that the strain-energy function Ψf in (6) depends not only on C and {N} but also on

the fiber dispersion parameters which are included in ρ(Θ).

2.2.1 Stress Tensors

The second Piola–Kirchhoff stress tensor is given by S = 2∂Ψ/∂C. With the decoupled form

of Ψ we can identify two stress contributions: S = Svol + Siso. The volumetric contribution Svol

for the proposed model has been well documented; see [23]. Thus, here we focus only on the

isochoric part, i.e.

Siso = J−2/3DevS, S = 2
∂Ψiso

∂C
, (9)

where S denotes the so-called fictitious isochoric second Piola–Kirchhoff stress tensor [23]. The

deviator in the Lagrangian configuration is defined by Dev(•) = P : (•), where P = I− 1
3
C−1⊗

C is a projection tensor that furnishes the correct deviatoric operator in the Lagrangian setting,

and (I)ABCD = 1
2
(δACδBD+δADδBC) is the symmetric Lagrangian fourth-order identity tensor.

With the specific isochoric strain-energy function (8), we obtain from (9)2 that

S = 2ψ′g(Ī1)I +
2

π

∫
Σ

ρ(Θ)ψ′n
(
Ī4(Θ)

)
N⊗ N dΘ, (10)

where I is the second–order identity tensor and ψ′g(Ī1) = ∂Ψg(Ī1)/∂Ī1, ψ′n = ∂Ψn(Ī4)/∂Ī4,

and, from (1),

N⊗ N = cos2 ΘE1 ⊗ E1 + sin2 ΘE2 ⊗ E2 + sin Θ cos Θ(E1 ⊗ E2 + E2 ⊗ E1). (11)
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Substituting (11) into (10), we have

S = 2ψ′g(Ī1)I + αE1 ⊗ E1 + βE2 ⊗ E2 + γ(E1 ⊗ E2 + E2 ⊗ E1), (12)

where

α =
2

π

∫
Σ

ρ(Θ)ψ′n
(
Ī4(Θ)

)
cos2 Θ dΘ, (13)

β =
2

π

∫
Σ

ρ(Θ)ψ′n
(
Ī4(Θ)

)
sin2 Θ dΘ, (14)

γ =
2

π

∫
Σ

ρ(Θ)ψ′n
(
Ī4(Θ)

)
sin Θ cos Θ dΘ. (15)

The Cauchy stress tensor σ = J−1FSFT is defined as the push-forward of the second Piola–

Kirchhoff stress tensor S, and its fictitious isochoric part is given by

σ = J−1F S FT
= J−1

[
2ψ′gb + αe1 ⊗ e1 + βe2 ⊗ e2 + γ(e1 ⊗ e2 + e2 ⊗ e1)

]
, (16)

where ei = FEi, i = 1, 2, and b = F FT
is the modified left Cauchy–Green tensor. The

isochoric Cauchy stress tensor σiso is given by

σiso = P : σ, (17)

where P = I − 1
3
I ⊗ I is the fourth–order projection tensor in the Eulerian description and I is

the symmetric Eulerian fourth-order identity tensor.

2.2.2 Elasticity Tensor

In a similar way to the decoupling of the stress, the decoupled form of the elasticity tensor C in

the Eulerian description is given by [23], p. 265,

C = Cvol + Ciso. (18)

Again, since the volumetric part Cvol of the elasticity tensor C has been well documented, here

we confine attention only to the isochoric part, i.e. [23]

Ciso = J−1P : C̄ : P +
2

3
tr(σ̄)P− 2

3
(σiso ⊗ I + I⊗ σiso), (19)

where C̄ is the fourth–order fictitious elasticity tensor in the Eulerian description which is ob-

tained by a push–forward operation of its Lagrangian form

C = 2J−4/3 ∂S
∂C

= 2J−4/3 ∂S
∂Ī1

⊗ I + 2J−4/3 ∂S
∂Ī4

⊗ (N⊗ N). (20)
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Substituting S from (10) into (20), we obtain,

C = 4J−4/3ψ′′g(Ī1)I⊗ I + J−4/3 4

π

∫
Σ

ρ(Θ)ψ′′n
(
Ī4(Θ)

)
N⊗ N⊗ N⊗ N dΘ, (21)

where we have used the definitions

ψ′′g(Ī1) =
∂2Ψg(Ī1)

∂Ī1∂Ī1

, ψ′′n
(
Ī4(Θ)

)
=
∂2Ψn

(
Ī4(Θ)

)
∂Ī4∂Ī4

. (22)

For the neo-Hookean strain-energy function and the standard fiber reinforcing model (5), we

have

C = J−4/3 4ν

π

∫
Σ

ρ(Θ) N⊗ N⊗ N⊗ N dΘ. (23)

A push-forward operation yields the Eulerian fourth–order fictitious elasticity tensor as

C =
4ν

π

∫
Σ

ρ(Θ)n̄⊗ n̄⊗ n̄⊗ n̄ dΘ, (24)

where n̄ = FN.

2.2.3 Boundary of the Integration Domain

In this section we outline the formulation for the integration domain Σ appearing in the isochoric

Cauchy stress tensor (17) via (10) and (16), and the elasticity tensor (24). Generally, for an

arbitrary planar fiber orientation N, I4 is given by [15]

I4(Θ) = C11 cos2 Θ + C22 sin2 Θ + C12 sin 2Θ, (25)

where Cij are the components of C. The integration domain Σ is the range of the angle Θ for

which

C11 cos2 Θ + C22 sin2 Θ + C12 sin 2Θ > 1. (26)

This can be rearranged in various forms and will be used explicitly in the examples that follow

in Section 4 and, in particular, it is resolved numerically with a modified Newton method, as is

described on Section 2.2.

2.3 3D Fiber Dispersion Model

In general the fiber dispersion is not planar so that a 3D fiber dispersion should be considered

[4]. Collagen fibers may be dispersed around a mean direction, either rotationally symmetrically
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Figure 2: Arbitrary fiber orientation N (unit vector) within a 3D fiber dispersion described in

the local coordinate system constructed by the eigenvectors Vi, i = 1, 2, 3, of the right Cauchy–

Green tensor C. The components of N with respect to the global Cartesian basis Ei, i = 1, 2, 3,

are determined by a rotation tensor R such that Vi = REi, i = 1, 2, 3, and N is given in terms

of the eigenvectors by (27), where Θ and Φ are spherical polar angles.

or non-symmetrically, in the 3D space [14]. In this section, however, we assume for purposes

of illustration that the fiber dispersion is rotationally symmetric. An arbitrary fiber direction N
can be described by two angles (Θ,Φ) as

N = sin Θ cos ΦV1 + sin Θ sin ΦV2 + cos ΘV3, (27)

where Vi, i = 1, 2, 3, are the unit eigenvectors of C, which for a given C, define a unique local

coordinate system, as depicted in Figure 2, where the two angles have the ranges Θ ∈ [0, π]

and Φ ∈ [−π/2, π/2] which define a half sphere, denoted S. The components of N in a global

Cartesian coordinate system may be described by the basis vectors Ei, i = 1, 2, 3. Here we

write N in terms of the eigenvectors of C instead of the global basis vectors because this makes

it convenient for describing the integration boundary discussed in Section 2.3.3. Since the right

Cauchy–Green tensor C is a Lagrangian deformation measure its eigenvectors are expressed

as Vi = REi, i = 1, 2, 3, where R is a rotation tensor (which depends on C). Similar to the

planar fiber dispersion model, we assume that the strain energy associated with the fiber in the

direction N is a function of the fiber stretch in that direction, say Ψn(Ī4(Θ,Φ)). Now, in a

slightly more general form than in [15], we write the total isochoric strain-energy function Ψf

per unit volume in the reference configuration due to all the fibers using a PDF ρ(Θ,Φ). We
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then obtain

Ψf =
1

2π

∫∫
Ω

ρ(Θ,Φ)Ψn(Ī4(Θ,Φ)) sin Θ dΘ dΦ. (28)

In (28) we define Ī4(Θ,Φ) = C : N⊗ N = J−2/3I4, with I4 = C : N⊗ N and Ω = {(Θ,Φ) ∈
S|I4(Θ,Φ) > 1} defines the region in which fibers are extended. In particular, for a rotationally

symmetric fiber distribution ρ is a function of the angle between N and the mean fiber direction

which, as in Section 2.2, we denote by the unit vector M. For a 3D fiber dispersion, ρ must

satisfy the normalization condition

1

2π

∫∫
S

ρ(Θ,Φ) sin Θ dΘ dΦ = 1. (29)

Thus, the total isochoric strain-energy function of the material reads

Ψiso = Ψg(Ī1) +
1

2π

∫∫
Ω

ρ(Θ,Φ)Ψn(Ī4(Θ,Φ)) sin Θ dΘ dΦ. (30)

Note that it is straightforward to extend the current formulation to a non-symmetric dispersion

model [14].

2.3.1 Stress Tensors

For a 3D fiber dispersion, the fictitious isochoric second Piola–Kirchhoff stress tensor, the coun-

terpart of (10), becomes

S = 2ψ′gI +
1

π

∫∫
Ω

ρ(Θ,Φ)ψ′n
(
Ī4(Θ,Φ)

)
sin Θ N⊗ N dΘ dΦ, (31)

where

N⊗ N = cos2 ΘV3 ⊗ V3 + sin2 Θ(cos2 ΦV1 ⊗ V1 + sin2 ΦV2 ⊗ V2)

+ sin Θ cos Θ[V3 ⊗ (V1 cos Φ + V2 sin Φ) + (V1 cos Φ + V2 sin Φ)⊗ V3]

+ sin2 Θ sin Φ cos Φ(V1 ⊗ V2 + V2 ⊗ V1). (32)

Substituting (32) into (31), we obtain

S = ψ′g(Ī1)I + αV3 ⊗ V3 + βV1 ⊗ V1 + β′V2 ⊗ V2 + γ(V3 ⊗ V1 + V1 ⊗ V3)

+γ′(V2 ⊗ V3 + V3 ⊗ V2) + δ(V1 ⊗ V2 + V2 ⊗ V1), (33)
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where

α =
1

π

∫∫
Ω

ρ(Θ,Φ)ψ′n
(
Ī4(Θ,Φ)

)
cos2 Θ sin Θ dΘ dΦ, (34)

β =
1

π

∫∫
Ω

ρ(Θ,Φ)ψ′n
(
Ī4(Θ,Φ)

)
sin3 Θ cos2 Φ dΘ dΦ, (35)

β′ =
1

π

∫∫
Ω

ρ(Θ,Φ)ψ′n
(
Ī4(Θ,Φ)

)
sin3 Θ sin2 Φ dΘ dΦ, (36)

γ =
1

π

∫∫
Ω

ρ(Θ,Φ)ψ′n
(
Ī4(Θ,Φ)

)
cos Θ sin2 Θ cos Φ dΘ dΦ, (37)

γ′ =
1

π

∫∫
Ω

ρ(Θ,Φ)ψ′n
(
Ī4(Θ,Φ)

)
cos Θ sin2 Θ sin Φ dΘ dΦ, (38)

δ =
1

π

∫∫
Ω

ρ(Θ,Φ)ψ′n
(
Ī4(Θ,Φ)

)
sin3 Θ sin Φ cos Φ dΘ dΦ. (39)

Note that α, β and γ are different here from those defined in (13) to (15). Note also that

the formulas (37) to (39) correct the formulas (98) to (100) in [15] which contain typos in the

exponent of sin Θ. A push-forward operation yields the fictitious isochoric Cauchy stress tensor

σ = J−1F S FT
, which gives

σ = J−1[2ψ′gb + αv3 ⊗ v3 + βv1 ⊗ v1 + β′v2 ⊗ v2 + γ(v3 ⊗ v1 + v1 ⊗ v3)

+γ′(v2 ⊗ v3 + v3 ⊗ v2) + δ(v1 ⊗ v2 + v2 ⊗ v1)], (40)

where vi = FVi, i = 1, 2, 3, are modified eigenvectors of the left Cauchy–Green tensor b
(but not in general unit vectors). We then obtain the isochoric Cauchy stress tensor σiso =

P : σ, which has the same structure as in (17) but is now three dimensional rather than two

dimensional.

2.3.2 Elasticity Tensor

A further differentiation of the fictitious second Piola–Kirchhoff stress tensor (31) with respect

to C yields the fourth-order fictitious elasticity tensor C in the Lagrangian description as [23]

C = 4J−4/3ψ′′g(Ī1)I⊗ I +J−4/3 2

π

∫
Ω

ρ(Θ,Φ)ψ′′n
(
Ī4(Θ,Φ)

)
N⊗N⊗N⊗N sin ΘdΘdΦ, (41)

where we have used the definition (2.3)1 and

ψ′′n
(
Ī4(Θ,Φ)

)
=
∂2Ψn

(
Ī4(Θ,Φ)

)
∂Ī4∂Ī4

. (42)
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For the neo-Hookean strain-energy function and the reinforcing model (5), we have

C = J−4/3 2ν

π

∫∫
Ω

ρ(Θ,Φ)N⊗ N⊗ N⊗ N sin Θ dΘ dΦ. (43)

A push-forward operation gives the Eulerian fourth-order fictitious elasticity tensor

C =
2ν

π

∫∫
Ω

ρ(Θ,Φ)n⊗ n⊗ n⊗ n sin Θ dΘ dΦ. (44)

On substitution of (44) into (19) the complete form of the isochoric part of the elasticity tensor

in the Eulerian description can be obtained but is not written explicitly here.

2.3.3 Boundary of the Integration Domain

With respect to its eigenvectors, C can be decomposed in the spectral form

C = λ2
1V1 ⊗ V1 + λ2

2V2 ⊗ V2 + λ2
3V3 ⊗ V3, (45)

where the squared principal stretches λ2
i , i = 1, 2, 3, are the eigenvalues of C. Then, the

invariant I4 is given by [15]

I4(Θ,Φ) = sin2 Θ(λ2
1 cos2 Φ + λ2

2 sin2 Φ) + λ2
3 cos2 Θ. (46)

Generally, for any given deformation, we can label the principal stretches so that they are or-

dered as λ1 ≥ λ2 ≥ λ3. For an incompressible material (λ1λ2λ3 = 1), the case λ1 = λ2 = λ3

represents the reference configuration so that in general only two of the three principal stretches

may be equal to each other. The integration domain Ω for the (3D) isochoric Cauchy stress ten-

sor (17) with (34)–(39) and the Eulerian elasticity tensor (44) is the part of the half unit sphere

S for which I4 > 1, i.e.

sin2 Θ(λ2
1 cos2 Φ + λ2

2 sin2 Φ) + λ2
3 cos2 Θ > 1. (47)

Because of the assumed ordering of the stretches, λ3 is always smaller than 1 for incompressible

materials, and λ1 must be greater than 1. By rearranging (47), we have the inequalities[
(λ2

1 − λ2
3)− (λ2

1 − λ2
2) sin2 Φ

]
sin2 Θ > 1− λ2

3 > 0. (48)

It follows that sin2 Θ 6= 0 and Θ 6= nπ, n = 0, 1, and also

(λ2
1 − λ2

3)− (λ2
1 − λ2

2) sin2 Φ > 0. (49)

We now evaluate (49) for the cases λ1 = λ2 and λ1 > λ2.
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Figure 3: Plot of the function sin2 Θ between Θ = 0 and π. For a given value of t = t0 ∈ (0, 1),

sin2 Θ > t0 above the dotted line, and Θ = ε or π − ε where sin2 ε = t0.

• If λ1 = λ2, then (49) is satisfied for any Φ. In addition, from (48) we have

sin2 Θ >
1− λ2

3

λ2
1 − λ2

3

= t, 0 < t < 1, (50)

which indicates that Θ ∈ (ε, π − ε) for some ε ∈ (0, π/2); see Figure 3.

• If λ1 > λ2, we have
λ2

1 − λ2
3

λ2
1 − λ2

2

> sin2 Φ. (51)

If λ2 > λ3, then (51) and (49) are satisfied for any Φ. However, if λ3 = λ2, then

Φ 6= nπ/2, n = −1, 1.

From (48), we can also conclude that the integration domain Ω is symmetric about Θ = π/2

because sin2 Θ = sin2(π −Θ). Now if we let Θ = π/2, then sin2 Θ = 1 and (48) becomes

λ2
1 − (λ2

1 − λ2
2) sin2 Φ > 1. (52)

If λ1 = λ2, then (52) is satisfied for any Φ. If λ1 > λ2, then

sin2 Φ <
λ2

1 − 1

λ2
1 − λ2

2

= u, u > 0. (53)

Because u is positive, there always exists a range of values of Φ for which (53) is satisfied and

I4 > 1 when Θ = π/2. Based on this observation, we can always calculate the values of Φ at

the boundary of the integration domain when Θ = π/2, as illustrated in Figure 4. Indeed, from

13
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Figure 4: Illustration of the five cases of the integration domain within the (Θ,Φ)-space for the

3D fiber dispersion model with the following principal stretches. Case 1: λ1 = 1.35, λ2 = 0.88,

λ3 = 0.8417; Case 2: λ1 = 2.2, λ2 = 1.0, λ3 = 0.4545; Case 3: λ1 = 5.0, λ2 = 4.0,

λ3 = 0.005; Case 4: λ1 = 3.0, λ2 = 3.0, λ3 = 0.1111; Case 5: λ1 = 1.001, λ2 = 0.9995,

λ3 = 0.9995.

(48), it is easy to show that Φ has its peak values, say ±Φc, when Θ = π/2. Moreover, as well

as the integration domain Ω being symmetric about Θ = π/2, it is symmetric about Φ = 0.

There is always a range of Φ ∈ [−Φc,Φc] when Θ = π/2 for which I4 > 1. For any given value

of Φ within the integration domain there exist at most two angles of Θ on the boundary of Ω.

Here it is only necessary to search the integration domain Ω within one half of the sphere,

because the directions N and −N represent the same fiber. Note that the fiber directions for

which Θ = 0 and Θ = π are always outside the integration domain. In summary, there are five

cases to consider depending on the relative distributions of the stretches λi, i = 1, 2, 3:

• Case 1: λ1 > 1 > λ2 > λ3

When Θ = π/2, the two values of Φ on the boundary of the integration domain can be

determined from

sin2 Φ =
λ2

1 − 1

λ2
1 − λ2

2

= u, 0 < u < 1, (54)

so that Φ ∈ [−Φc,Φc], where

Φc = arcsin(u1/2) <
π

2
. (55)
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When Θ 6= π/2, then for each Φ ∈ [−Φc,Φc], we can determine the values of Θ on the

integration boundary by using (48)1 with the inequality replaced by equailty.

• Case 2: λ1 > 1 = λ2 > λ3

Similar to Case 1 except that Φc = π/2.

• Case 3: λ1 > λ2 > 1 > λ3

This is similar to Case 1, except that Φc = π/2, because attention is restricted to the

range Φ ∈ [−π/2, π/2].

• Case 4: λ1 = λ2 > 1 > λ3

Now (48) is satisfied for any Φ ∈ [−π/2, π/2] and reduces to

sin2 Θ >
1− λ2

3

λ2
1 − λ2

3

= t, 0 < t < 1, (56)

so that Θ ∈ [Θc, π −Θc], where

Θc = arcsin(t1/2) <
π

2
. (57)

For this special case the integration domain becomes a rectangle, as shown in Figure 4.

• Case 5: λ1 > 1 > λ2 = λ3

Now (48) becomes

(λ2
1 − λ2

3) cos2 Φ sin2 Θ > 1− λ2
3 > 0. (58)

When Θ = π/2, the boundary of the integration domain is given by

cos2 Φ =
1− λ2

3

λ2
1 − λ2

3

= t, 0 < t < 1, (59)

so that Φ ∈ [−Φc,Φc], as exemplified in Figure 5, where

Φc = arccos(t1/2) <
π

2
. (60)

For each Φ ∈ [−Φc,Φc] the values of Θ on the integration boundary are determined from

(58)1 with the inequality replaced by equality.

3 Finite Element Implementation

The proposed 2D and 3D fiber dispersion models have been implemented in the general purpose

finite element analysis program FEAP [27] at the integration point level. In this section, we

present the details of the computational implementation for both 2D and 3D models.
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Figure 5: Plot of the function cos2 Φ for Φ between −π/2 and π/2. For a given value t = t0 ∈
(0, 1), cos2 Φ > t0 above the dotted line and Φ = ±Φc, where cos Φc =

√
t0.

3.1 Planar Fiber Dispersion Model

To implement the planar fiber dispersion model, for example, we can choose a von Mises dis-

tribution [15] as the PDF, i.e.

ρ(Θ) = 4

√
b

2π

exp[2b cos2(Θ−ΘM)]

erfi(
√

2b)
, (61)

where b is a constant concentration parameter and erfi(x) = −i erf(i x) denotes the imaginary

error function in which the error function erf(x) is defined by

erf(x) =
2√
π

x∫
0

exp(−ξ2)dξ. (62)

Substituting (61) into the scalar coefficients of the isochoric Cauchy stress tensor (17), with

(13)–(16) for the standard reinforcing model, and the Eulerian fictitious elasticity tensor (24)

and, by further expanding the term n̄ ⊗ n̄ ⊗ n̄ ⊗ n̄ in (24), we find that the scalar coefficients

therein involve integrals of the form

4

√
b

2π

1

erfi(
√

2b)

∫
Σ

exp[2b cos2(Θ−ΘM)] sini Θ cosj Θ dΘ, (63)

where i, j ∈ {0, 1, 2, 3, 4}. This integration will be evaluated numerically using a regular

Gauss–Kronrod quadrature rule. A summary of the algorithm used to determine the integra-

tion domain for the planar fiber dispersion is shown in the accompanying box (Algorithm 1). It
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Algorithm 1: Search boundaries of the integration domain for planar fiber dispersion

Data: C at each integration point, ε←− 1.0−12

Result: number n ∈ {1, 2} and boundaries ai, bi, (1 ≤ i ≤ n) of integration segments
begin

f(Θ)←− I4(Θ)− 1 = 1
2
(C11 + C22) + 1

2
(C11 − C22) cos 2Θ + C12 sin 2Θ− 1

if |C11 − C22| < ε and |C12| < ε then
if C11 > 1 then

n←− 1, a1 ←− −π/2, b1 ←− π/2
else

no fiber contribution, return

compute the roots (Θ1,Θ2) of f ′(Θ) = 0 within [−π/2, π/2), note Θ1 6= Θ2

fmax ←− f(Θ1), fmin ←− f(Θ2), f1 ←− f(−π/2)
if fmax < fmin then swap fmax and fmin, swap Θ1 and Θ2

if fmax ≤ 0 then no fiber contribution, return
if fmin > 0 then

n←− 1, a1 ←− −π/2, b1 ←− π/2
else if |fmin| < ε then

n←− 2, a1 ←− −π/2, b1 ←− Θ2, a2 ←− Θ2, b2 ←− π/2
else

if Θ1 > Θ2 then
if f1 < 0 then

n←− 1, compute roots r1 ∈ [Θ2,Θ1] and r2 ∈ [Θ1, π/2] of f(Θ) = 0
a1 ←− r1, b1 ←− r2

else if |f1| < ε then
n←− 1, compute root r1 ∈ [Θ2,Θ1] of f(Θ) = 0
a1 ←− r1, b1 ←− π/2

else
n←− 2, compute roots r1 ∈ [−π/2,Θ2] and r2 ∈ [Θ2,Θ1] of f(Θ) = 0
a1 ←− −π/2, b1 ←− r1, a2 ←− r2, b2 ←− π/2

else
if f1 < 0 then

n←− 1, compute roots r1 ∈ [−π/2,Θ1] and r2 ∈ [Θ1,Θ2] of f(Θ) = 0
a1 ←− r1, b1 ←− r2

else if |f1| < ε then
n←− 1, compute root r1 ∈ [Θ1,Θ2] of f(Θ) = 0
a1 ←− −π/2, b1 ←− r1

else
n←− 2, compute roots r1 ∈ [Θ1,Θ2] and r2 ∈ [Θ2, π/2] of f(Θ) = 0
a1 ←− −π/2, b1 ←− r1, a2 ←− r2, b2 ←− π/2

is necessary to use this procedure before applying Newton’s method to find the roots of I4 = 1.
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A

B

Figure 6: Representative example of an integration domain (one quarter shown) meshed with

square, triangular and general quadrilateral elements. The major and minor axes are divided

into equal segments except for the two adjacent to the boundary labeled A and B.

3.2 3D Fiber Dispersion Model

For the 3D fiber dispersion model, we can use the same PDF as in (61) but in a slightly different

form, namely

ρ(Θ,Φ) = 4

√
b

2π

exp[2b(N ·M)2]

erfi(
√

2b)
. (64)

Similarly to Section 3.1, we substitute (64) into the scalar coefficients of the (3D) isochoric

Cauchy stress tensor (17) and the Eulerian fictitious elasticity tensor (44) with (34) to (40). The

coefficients obtained by expanding the term n̄⊗ n̄⊗ n̄⊗ n̄ in (44) involve the integrals

4

√
b

2π

1

erfi(
√

2b)

∫∫
Ω

exp[2b(N ·M)2] sini Θ cosj Θ sink Φ cosl Φ dΘ dΦ, (65)

where each of indices i, j, k, l can be any one of the numbers in {0, 1, 2, 3, 4, 5}. These inte-

grals are evaluated numerically using an adaptive finite element integration scheme. Firstly, the

integration domain determined in Section 2.3.3 for each integration point is discretized with

square, triangular and general quadrilateral elements. Briefly, because of the symmetry, the in-

tegration domain is divided into four equal quarters. One quarter of the domain is discretized as

follows: half of the major and minor axes of the domain are divided into equal segments except

the two segments adjacent to the boundary (labeled A and B in Figure 6). The number of the

segments is controlled by an internal parameter. Next all the nodes of the internal elements are

determined and assembled into square elements. Then the rest of the nodes for the triangular

and quadrilateral elements near the boundary are calculated. The resultant mesh, as shown in

Figure 6 as a representative example, is mirrored in the other three quarters.
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Algorithm 2: Implementation of the 3D fiber dispersion model

Data: input data M and b; F at each integration point
Result: isochoric Cauchy stress tensor σiso, Eulerian elasticity tensor Ciso

begin
F←− J−1/3F
compute the eigenvalues λ2

i and eigenvectors Vi, i = 1, 2, 3, of C
compute vi = FVi, i = 1, 2, 3
compute vi ⊗ vj ⊗ vk ⊗ vl, i, j, k, l ∈ {1, 2, 3}
transfer M to the local coordinate system defined by Vi

determine the integration domain Ω according to Section 2.3.3
mesh the integration domain with square, triangle and quadrilateral elements
evaluate

∫∫
exp[2b(N ·M)2] sini Θ cosj Θ sink Φ cosl Φ dΘ dΦ for each element:

if triangle element then
compute the integral by the symmetric quadrature rule

else if square element then
compute the integral by the adaptive multidimensional integration rule

else
scale the general quadrilateral element to a generic square element
compute the integral by the adaptive multidimensional integration rule

end
sum over the domain Ω to obtain the integral∫∫

Ω

exp[2b(N ·M)2] sini Θ cosj Θ sink Φ cosl Φ dΘ dΦ

assemble the coefficients α, β, β′, γ, γ′, δ
compute the neo-Hookean contribution to σiso and Ciso

compute isochoric Cauchy stress tensor σiso, isochoric Eulerian elasticity tensor Ciso

end

Secondly, we apply a global adaptive multidimensional integration rule [28, 29] on the

square and quadrilateral elements, and a symmetric quadrature rule [30] on the triangular el-

ements. Finally, a summation over all the elements yields the total integration (65) in the target

domain. A general guideline to implement the proposed 3D fiber dispersion model is shown in

the accompanying box (Algorithm 2).

4 Representative Examples

In this section we demonstrate the performance and the finite element implementation of the

proposed continuum mechanical framework by means of representative numerical examples,

specifically uniaxial extension and simple shear. Incompressible hyperelastic materials are as-

sumed for all these examples. To enforce incompressibility, we have adopted the augmented

Lagrangian method in FEAP [31]. In each example, the model geometry was discretized with 8–
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Θ

Figure 7: Cross-section of a unit cube element normal to E3 containing a planar fiber dispersion

with mean fiber direction M where the loading direction is aligned along E1. An arbitrary fiber

direction within the dispersion is given by N = cos ΘE1 + sin ΘE2. The dashed outline shows

the deformed configuration.

node hexahedral Q1/P0 elements, and the problems were solved by using the Newton–Raphson

method. Related analytical solutions obtained by using MATLAB or MATHEMATICA are pre-

sented to verify the simulation results.

4.1 Planar Fiber Dispersion Model

We start with a uniaxial extension example with loading in the mean fiber direction such that the

deformation is homogeneous and the deformation gradient is diagonal. Then, we investigate a

more general example in which the mean fiber direction is aligned in an arbitrary direction rel-

ative to the loading direction, which leads to a non-homogeneous deformation. Finally, simple

shear examples with three different mean fiber orientations are presented.

4.1.1 Uniaxial Extension in the Mean Fiber Direction

In this first example we illustrate the efficacy of the planar fiber dispersion model by using a

uniaxial extension test in the mean fiber direction. The model geometry (discretized by one

hexahedral element) is 1 × 1 × 1 mm aligned with the axes E1, E2 and E3. One family of
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fibers is embedded in each cross-section of the cube normal to the E3 direction and assumed

to be dispersed symmetrically about the mean fiber direction E1. The sample is subjected to

unconfined uniaxial extension in the E1 direction such that the deformation is homogeneous.

Thus, we have assumed that the mean fiber direction M and the loading direction are aligned

with E1, as depicted in Figure 7.

The deformation gradient and the right Cauchy–Green tensor in matrix form are given by

[F] = diag[λ1, λ2, λ3], [C] = diag[λ2
1, λ

2
2, λ

2
3], (66)

where λi, i = 1, 2, 3, is the stretch of the material in the direction Ei. Hence, in the Eulerian

description, the push-forwards of E1, E2 and E3, denoted e1, e2 and e3, have components

[e1] = [F][E1] = [λ1, 0, 0], [e2] = [F][E2] = [0, λ2, 0], [e3] = [F][E3] = [0, 0, λ3]. (67)

For an arbitrary (in-plane) fiber direction, I4(Θ) is given by

I4(Θ) = λ2
1 cos2 Θ + λ2

2 sin2 Θ. (68)

For an incompressible material the Cauchy stress tensor σ, the counterpart of the fictitious

isochoric Cauchy stress (16), is

σ = −pI + µb + αe1 ⊗ e1 + βe2 ⊗ e2 + γ(e1 ⊗ e2 + e2 ⊗ e1), (69)

where p is the Lagrange multiplier and

α =
2ν

π

∫
Σ

ρ(Θ)(I4(Θ)− 1) cos2 Θ dΘ, (70)

β =
2ν

π

∫
Σ

ρ(Θ)(I4(Θ)− 1) sin2 Θ dΘ, (71)

γ =
2ν

π

∫
Σ

ρ(Θ)(I4(Θ)− 1) cos Θ sin Θ dΘ, (72)

in which the standard reinforcing model (5) has been adopted with Ī4 = I4. From (69) the

component of the Cauchy stress tensor in the mean fiber direction, denoted σ, is

σ = −p+ (µ+ α)λ2, (73)

where λ = λ1 is the corresponding stretch. For this uniaxial extension test we take σ22 = σ33 =

0, and hence p = (µ+ β)λ2
2 = µλ2

3. From the incompressibility condition λ1λ2λ3 = 1 we then

have

λ2
2 =

√
µ

µ+ β
λ−1, (74)
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Figure 8: Comparison of FEAP results and the analytical solutions obtained using MATLAB

for the uniaxial extension of a cube in the mean fiber direction (ΘM = 0), together with the

analytical result in the absence of fibers (ν = 0). The results for the angle ΘM = 60◦ refer to

the example in Section 4.1.2.

so that from (73) we obtain

σ = (µ+ α)λ2 −
√
µ(µ+ β)λ−1. (75)

The numerical integrations of the coefficients α, β and γ given by (70)–(72) were simplified

using the expression (68) and then evaluated in MATLAB R2010b (The MathWorks Inc., Natick,

MA, USA) with the adaptive Gauss–Kronrod quadrature method (quadgk). Note that α, β and γ

depend on λ. For comparison between the numerical computation obtained using FEAP and the

analytical solutions obtained using MATLAB, we have used the material parameters µ = 5 kPa,

ν = 10 kPa and b = 2.9. Figure 8 shows the results from FEAP together with the corresponding

analytical results for which the stretches λ and λ2 are determined using FEAP at each load step.

Also shown are the analytical and numerical results for ν = 0 (no fiber contribution). Here

λ2, given by (74), is also needed to compute the coefficients α and β in (75). In Section 4.1.2

we consider a more general uniaxial extension case in which ΘM is not equal to zero, and the

deformation is inhomogeneous. In particular, the result for ΘM = 60◦ is also shown in Figure 8,

where in this case σ = σ11, which is calculated as described in the following section.
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Figure 9: Cross-section of a unit cube element normal to E3 containing a planar fiber dispersion

which is symmetric about the mean fiber direction M = cos ΘME1 + sin ΘME2. The loading

direction is aligned along E1. An arbitrary fiber direction within the dispersion is given by

N = cos ΘE1 + sin ΘE2.

4.1.2 Planar Uniaxial Extension in a General Direction

This is a similar example to that in the previous section except that we now consider a plane

strain deformation in the (E1, E2) plane with the mean fiber direction M aligned at an angle

ΘM = 60◦ to the E1 direction, as illustrated by a representative unit cube element in Fig-

ure 9. The dispersion is assumed to be symmetric about M. As a result the deformation is

non-homogeneous and a 10 × 4 × 1 mm rectangular strip is considered for this example. The

model geometry, as shown by the solid frame in Figure 10 is discretized by 20 × 8 × 2 = 320

hexahedral elements (each element has dimensions of 0.5× 0.5× 0.5 mm). Because the defor-

mation is plane strain the front and back faces of the strip are fixed in the E3 direction. We also

constrained all nodes of the bottom face of the model in the E1 direction and additionally the

center node of the bottom face in the E2 and E3 directions. The node A of the left edge on the

bottom face shown in Figure 10(a) is also constrained in the E3 direction to prevent rigid body

rotation about E1.

The strip is subjected to a uniaxial stretch of λ = 1.4 in the E1 direction applied on the

top face. Because the fiber dispersion is non-symmetric about the loading direction and the

deformation is plane strain the deformation gradient and the right Cauchy–Green tensor have
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Figure 10: FEAP computation results for the uniaxial extension of a rectangular strip with the

planar fiber dispersion model and a mean fiber angle ΘM = 60◦. The Cauchy stress distributions

σ11, σ22, σ12 in (a), (b), (c), respectively, are plotted for an axial stretch of λ = 1.4 with

parameters µ = 5 kPa, ν = 10 kPa and b = 2.9.

the matrix forms

[F] =


F11 F12 0

F21 F22 0

0 0 1

 , [C] =


C11 C12 0

C12 C22 0

0 0 1

 . (76)

The incompressibility condition yields F11F22 − F12F21 = 1. Then, e1, e2 and e3 have compo-

nents

[e1] = [F][E1] = [F11, F21, 0], [e2] = [F][E2] = [F12, F22, 0], [e3] = [F][E3] = [0, 0, 1],

(77)

while I4 is given by (68). From (69) the non-zero components of the Cauchy stress tensor are

σ11 = −p+ (µ+ α)F 2
11 + (µ+ β)F 2

12 + 2γF11F12, (78)

σ22 = −p+ (µ+ α)F 2
21 + (µ+ β)F 2

22 + 2γF21F22, (79)

σ33 = −p+ µ, (80)

σ12 = (µ+ α)F11F21 + (µ+ β)F12F22 + γ(F11F22 + F12F21). (81)
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Because the center node of the bottom face is fixed, the lateral stress component σ22 is not zero

near the top and bottom faces, but is approximately zero in the central region. Hence, we take

σ22 = 0 there, and then p = (µ+ α)F 2
21 + (µ+ β)F 2

22 + 2γF21F22, so that σ11 and σ33 become

σ11 = (µ+ α)(F 2
11 − F 2

21) + (µ+ β)(F 2
12 − F 2

22) + 2γ(F11F12 − F21F22), (82)

σ33 = µ− (µ+ α)F 2
21 − (µ+ β)F 2

22 − 2γF21F22. (83)

With the same material parameters as in Section 4.1.1, we now take ΘM = 60◦ (see also

Figure 10(a).) Instead of the stretch λ we output the components F11, F12, F21 and F22 of the

deformation gradient from FEAP at one integration point of the central element identified by the

red frame in Figure 10(a) for each increment, and then we performed an analytical calculation

in MATLAB with the same numerical integration scheme used to evaluate α, β and γ. Because

the deformation is non-homogeneous, we only verified the numerical results in the element in-

dicated in the red frame. The boundary of the integration domain (26) was determined by using

the fzero function in MATLAB. For the applied stretch at each increment the element stress

in the loading direction output from FEAP is then compared with the corresponding MATLAB

computation (82) and shown in Figure 8. As can be seen, and as expected, when the fibers are

aligned away from the loading direction, the stress is reduced significantly.

For this non-homogeneous problem the spatial distributions of the stress components σ11,

σ22 and σ12 are shown in Figure 10. Due to the realignment of fibers towards the loading

direction, the top face of the strip moves in the −E2 direction. The Cauchy stress component

σ11 in the upper left and lower right corners is larger than in the other regions, and that is

similarly the case for the shear stress component σ12. We emphasize that the lateral stress σ22

is non-zero near the top and bottom faces but near the center of the strip it is almost zero, as

can be seen in Figure 10(b). This allows us to verify the finite element analysis results with the

assumption σ22 = 0 for the specific element in the red frame shown in Figure 10(a). That is

also the reason why we chose this particular element for the analytical calculation. As a result

we obtained an exact match between the analytical solution and the FEAP computation.

4.1.3 Simple Shear

In the present example we test the capability of the proposed planar fiber dispersion model by

subjecting a unit cube (hexahedral element) to a simple shear deformation. The bottom surface

of the cube is fixed, and then we apply a horizontal displacement on the top surface, as shown

in Figure 11. The mean fiber direction M is taken to be at an angle of ΘM relative to the E1

direction with values 0◦, 45◦ or 90◦.
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Figure 11: Simple shear of a unit cube in the (E1,E2)-plane. The mean fiber direction M in

the reference configuration is shown with a symmetric dispersion and a general fiber direction

N; ΘM and Θ are the angles between M and N and the E1 direction, respectively. The dashed

outline shows the deformed configuration, while c denotes the amount of shear.

Thus, the deformation gradient and the right Cauchy–Green tensor in matrix form are given

by

[F] =


1 c 0

0 1 0

0 0 1

 , [C] =


1 c 0

c (1 + c2) 0

0 0 1

 , (84)

where c denotes the amount of shear. Hence, the components of e1, e2, e3 are

[e1] = [F][E1] = [1, 0, 0], [e2] = [F][E2] = [c, 1, 0], [e3] = [F][E3] = [0, 0, 1]. (85)

For an arbitrary in-plane fiber direction N(Θ) = cos ΘE1 + sin ΘE2 the invariant I4 is given by

I4 = 1 + c sin 2Θ + c2 sin2 Θ. (86)

From (69) the shear stress is

σ12 = (µ+ β)c+ γ, (87)

and the normal stresses are

σ11 = −p+ µ+ α + (µ+ β)c2 + 2γc, σ22 = −p+ µ+ β. (88)

26



0 0.2 0.4 0.6 0.8 1
0

20

40

60

ΘM
= 0

◦

Θ M
=

90
◦

Θ M
=

45
◦

Amount of shear c (–)

C
au

ch
y

sh
ea

rs
tr

es
s
σ

1
2

(k
Pa

)

Analytical
FEAP

No fibers: ν = 0

Figure 12: Comparison of the analytical expression (87) for the Cauchy shear stress σ12 with

the numerical results obtained from FEAP for the three mean fiber angles ΘM = 0◦, 45◦ and

90◦ (ν = 5 kPa, µ = 10 kPa, b = 2.9), and the corresponding results in the absence of fibers

(ν = 0).

Comparison between the analytical formulae (87) and the numerical results obtained from FEAP

for three different mean fiber directions using the same material parameters as in Section 4.1.1

are shown in Figure 12.

To determine the Lagrange multiplier several options are possible. First, following [32],

if the normal component of the surface traction on the inclined faces of the deformed cube is

assumed to be zero, then

σ11 + c2σ22 − 2cσ12 = 0. (89)

Substituting (87) and (88) into (89) yields the Lagrange multiplier p = (α+µ)/(1+c2). Hence,

we obtain the normal stresses

σ11 = µ(1 + c2) + α + βc2 + 2γc− α + µ

1 + c2 , σ22 = µ+ β − α + µ

1 + c2 . (90)

A second possibility for determining p is to set σ33 = 0, which yields

σ11 = α + 2γc+ (µ+ β)c2, σ22 = β. (91)

Note that the shear stress σ12 is independent of p.
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4.2 3D Fiber Dispersion Model

Similarly to Section 4.1, we begin with a uniaxial extension test in the mean fiber direction of

the specimen and then we present results for uniaxial extension in a direction other than the

mean fiber direction. Finally we consider the simple shear deformation. But here, instead of

a planar PDF (61), we consider the 3D fiber dispersion rotationally symmetric about the mean

fiber direction according to (64). Now we can use (64) with M · N = cosϑ to obtain

ρ(ϑ) = 4

√
b

2π

exp(2b cos2 ϑ)

erfi(
√

2b)
, (92)

where ϑ ∈ [0, π].

4.2.1 Uniaxial Extension

In this example, as in Section 4.1.1, we assume that the mean fiber direction M and the loading

direction are aligned with E1. Because the dispersion is rotationally symmetric and the material

is incompressible the deformation gradient and the Cauchy–Green tensors have matrices

[F] = diag[λ, λ−1/2, λ−1/2], [b] = [C] = diag[λ2, λ−1, λ−1], (93)

where λ is the stretch in the E1 direction. For this special case the Cartesian basis vectors

Ei = Vi, i = 1, 2, 3, are the eigenvectors of C. Then,

[e1] = [F][E1] = [λ, 0, 0], [e2] = [F][E2] = [0, λ−1/2, 0], [e3] = [F][E3] = [0, 0, λ−1/2].

(94)

Given the decoupled form of the Cauchy stress tensor in (40) and the 3D isochoric Cauchy

stress tensor (17) based on (40), the corresponding Cauchy stress tensor σ for an incompressible

material is

σ = −pI + µb + αe3 ⊗ e3 + βe1 ⊗ e1 + β′e2 ⊗ e2 + γ(e3 ⊗ e1 + e1 ⊗ e3)

+γ′(e3 ⊗ e2 + e2 ⊗ e3) + δ(e1 ⊗ e2 + e2 ⊗ e1), (95)

where we have adopted the neo-Hookean model for the matrix material, and where α, β, β′, γ,

γ′ and δ are given by (34)–(39) specialized to rotational symmetry. When we use the standard

reinforcing model (5) for the collagen fibers, the coefficients can be simplified by using ψ′n =

ν(I4 − 1). For example, from (34), α gives

α = ν

ϑc∫
0

ρ(ϑ)(I4(ϑ)− 1) cos2 ϑ sinϑ dϑ, (96)
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Figure 13: Comparison of the analytical solution obtained by using MATLAB and the FEAP

computation for a uniaxial extension test in the mean fiber direction M = E1 (and ν = 10 kPa),

together with the MATLAB results for the absence of fibers (ν = 0); µ = 2 kPa in each case.

where I4 = λ2 cos2 ϑ + λ−1 sin2 ϑ and tanϑc =
√
λ(λ+ 1) with 0 < ϑc < π/2. Substituting

(93) and (94) into (95), we obtain the Cauchy stress σ in the E1 direction as

σ = −p+ (µ+ β)λ2. (97)

By using the boundary condition σ22 = σ33 = 0, we find the Lagrange multiplier p = (µ +

β′)λ−1, and σ becomes

σ = (µ+ β)λ2 − (µ+ β′)λ−1. (98)

Comparison between the FEAP computation and the analytical solution obtained with MATLAB

is presented in Figure 13, with the material parameters µ = 2 kPa, ν = 10 kPa and b = 2.9, and

compared with the result for ν = 0.

Similarly to Section 4.1.2, we have analyzed the uniaxial extension of a strip but with the

general 3D fiber dispersion model and with mean fiber angles ΘM = 90◦ and ΦM = 60◦, where

M = sin ΘM cos ΦME1 + sin ΘM sin ΦME2 + cos ΘME3. (99)

Unlike the plane strain deformation considered in Section 4.1.2 the deformation is 3D so that

there is a movement in the E3 direction of the front and back faces. With the same material
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Figure 14: FEAP computation results for the uniaxial extension of a rectangular strip with the

3D fiber dispersion model and for the mean fiber direction M given by (99) with ΘM = 90◦

and ΦM = 60◦. The Cauchy stress distributions (a), (b), (c) are plotted for an axial stretch of

λ = 1.4 with parameters µ = 5 kPa, ν = 10 kPa and b = 2.9.

parameters as in Section 4.1.2, we observe similar patterns for the Cauchy stress distributions in

Figure 14 compared with those in Figure 10. However, the magnitudes of the stresses are much

lower than for the planar case because the fiber density (92) is distributed in three dimensions

rather than two, and without restriction to plane strain. Note, in particular, that there is a small

contraction in the thickness direction.

4.2.2 Simple Shear

In this section, similarly to Section 4.1.3, we present results for a unit cube (hexahedral element)

under simple shear but now with the rotationally symmetric 3D fiber dispersion model. We

assume that the mean fiber direction is oriented at an angle 135◦ from the E3 direction in the

(1, 3)-plane in the reference configuration, as illustrated in Figure 15. The bottom face of the

cube in the (1, 2)-plane is fixed, and we then apply a horizontal displacement on the top surface,

as shown in Figure 15. The deformation gradient and the right Cauchy–Green tensor have the
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Figure 15: Simple shear of a unit cube in the (E1,E3)-plane. The mean fiber direction M in the

reference configuration lies in the (E1,E3)-plane. The fiber dispersion is rotationally symmetric

about M, and N is a general fiber direction in this dispersion. The dashed outline shows the

deformed configuration, where c is the amount of shear.

matrix representations

[F] =


1 0 c

0 1 0

0 0 1

 , [C] =


1 0 c

0 1 0

c 0 (1 + c2)

 . (100)

Thus, the vectors ei = FEi, i = 1, 2, 3, have components

[e1] = [F][E1] = [1, 0, 0], [e2] = [F][E2] = [0, 0, 1], [e3] = [F][E3] = [c, 0, 1]. (101)

Instead of using eigenvectors of C, as in (27), for this particular example we represent N with

respect to the Cartesian basis vectors Ei, i = 1, 2, 3:

N = sin Θ cos ΦE1 + sin Θ sin ΦE2 + cos ΘE3. (102)

Then I4(N) = C : N⊗ N reads

I4 = 1 + c2 cos2 Θ + c sin 2Θ cos Φ. (103)

Because c is always positive in this example, the integration domain Ω is now defined by

c cos2 Θ + sin 2Θ cos Φ > 0, (104)
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Figure 16: Comparison of the predictions of FEAP and the analytical solutions based on (105)

and MATLAB with α and γ determined by integration over the relevant domain, which is either

I4 > 1 or the half sphere (µ = 2 kPa, ν = 50 kPa).

for Θ ∈ [0, π], Φ ∈ [−π/2, π/2]. Based on the general form of the Cauchy stress tensor (95),

the shear stress in the (1, 2)-plane is

σ12 = (µ+ α)c+ γ. (105)

The normal stresses can be determined by the same method as in Section 4.1.3, but note that in

this case the shear stresses σ13 and σ23 are non-zero. The coefficients α and γ in (105), which

depend on c, should be integrated in the domain defined by (104), which may be achieved

by using the Boole operation and the NIntegrate function in MATHEMATICA (Wolfram Re-

search, Champaign, IL, USA). Comparison between the FEAP computation and the analytical

solution obtained by using (105) and MATHEMATICA with the material parameters µ = 2 kPa,

ν = 50 kPa and b = 2.9 is presented in Figure 16. Note that in the FEAP implementation the

formulation presented in Section 2.3 with N described in terms of the eigenvectors of C is used.

In Figure 16 we have also shown the analytical and FEAP simulation results for the Cauchy

shear stress σ12 versus the amount of shear c for the case in which the coefficients α and γ in

(105) are obtained by integration over the half sphere defined by Θ ∈ [0, π], Φ ∈ [−π/2, π/2].

As shown, the difference between the shear stresses from the two methods increases with the

amount of shear but then gradually reduces as the shear increases. This can be explained by
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the fact that as the shear increases more fibers becomes stretched and fewer fibers are excluded

from the integration domain.

Note that if N = M, with Φ = 0 and Θ = 135◦, then I4(M) = 1 − c + c2/2 from (103)

which is always less than one for any c ∈ (0, 1). Thus, with the original model in [11] no fiber

contribution would be considered and the material would be simply neo-Hookean. However,

with the current model the fiber contribution is accounted for even if the stretch in the mean

fiber direction is always less than one.

5 Concluding Remarks

In the paper [15] we have introduced a dispersed fiber model expressed as a weighted strain-

energy function that allows the contribution of fibers that are shortened to be excluded from

the energy function. The model was developed for planar and for general three-dimensional

deformations. This model uses the angular integration (AI) approach in contrast to a general-

ized structure tensor (GST) approach. It identifies theoretically the boundary of the integration

domain for which the fibers are extended. In the present paper we focus on the computational

implementation of the dispersion model proposed in [15]. In particular, the analytical expres-

sion of the elasticity tensor and the integration boundary in the deformation space within which

fibers are extended is provided. We have proposed an adaptive finite element integration scheme

which allows the stress and the elasticity tensors to be obtained numerically by integration over

the appropriate domain. We have illustrated the computational method with several examples,

indicating the efficacy of the dispersion model. In addition, we have shown that the exclu-

sion of the compressed fibers makes a significant difference to the elastic response compared

with the situation where they are not excluded. This method is suitable for solving more general

boundary-value problems, and it can also be applied within the framework of the GST approach,

work on which is in progress and the results of which will be reported separately.
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