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ABSTRACT

We introduce five regression models for the modeling of
expressed emotion in music using data obtained in a two
alternative forced choice listening experiment. The pre-
dictive performance of the proposed models is compared
using learning curves, showing that all models converge to
produce a similar classification error. The predictive rank-
ing of the models is compared using Kendall’s τ rank cor-
relation coefficient which shows a difference despite simi-
lar classification error. The variation in predictions across
subjects and the difference in ranking is investigated vi-
sually in the arousal-valence space and quantified using
Kendall’s τ .

1. INTRODUCTION

The possibility to recommend music which express a cer-
tain mood or emotion has recently gathered increasing at-
tention within the Music Information Retrieval (MIR) com-
munity.

Typically the recommendation is approached using com-
putational methods, where music is represented using struc-
tural features, such as features based on the audio signal
that mimic some functions of the human auditory percep-
tive system, and possibly features representing even higher
aspects of the human cognitive system. Research is on-
going in finding what features can capture aspects in the
music that express or induce emotions see e.g. [1]. Fur-
thermore, it is well known that there is a clear connection
between lyrics and the audio in music [2] and lyrical fea-
tures have equally been shown to produce good results [3].
Even contextual information about music can be utilized
for the prediction of emotions in music using social media
contents [4].

Despite the many meaningful audio features and repre-
sentations, most computational models are supervised and
rely on human participants to rate a given excerpt. These
ratings are mapped using supervised machine learning ap-
proaches under the assumption that the model is the same
for all musical excerpts, thus the projection into feature
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space is based on the same model for all excerpts and typ-
ically also for all participants. Instead of obtaining deci-
sions from subjects, unsupervised methods have recently
been proposed which can be used to find emotional cate-
gories of excerpts [5]. The decision of what machine learn-
ing method to apply is tightly connected to the chosen mu-
sic representation and what emotional representation [6],
and in this work we consider the supervised setting.

Expressed emotions in music are typically rated based on
simple self-reporting listening experiments [7] where the
scales are adapted to quantify for example the categori-
cal [8] or dimensional [9] models of emotion. Although
there is not one simple way of doing this and numerous
different approaches have been made to obtain these rat-
ings e.g. using majority ruling, averaging across ratings,
etc. in both domains even using combinations of the emo-
tional models [10]. Another aspect to take into account
when creating computational models of emotion, is that it
is well known that emotional expression in music changes
over time which could further refine a recommendation
method. Two main direction has been followed in obtain-
ing time depend ratings. The first is based on post rat-
ings of excerpts in the 15-30 s range under the assumption
that within this frame the emotional expression is approx-
imately constant. Machine learning techniques can then
be used to create models making predictions on a smaller
time scale using the post ratings of larger excerpts [11].
The other direction is to continuously measure expressed
emotions in music directly in e.g the arousal and valence
space (AV space) [12] and subsequently model this.

In [13] we proposed an alternative way of quantifying the
expressed emotion in music on the dimensions of valence
and arousal by introducing a two alternative force choice
(2AFC) post rating experimental paradigm. Given the rela-
tive nature of pairwise comparisons they eliminate the need
for an absolute reference anchor, which can be a problem
in direct scaling experiments. Furthermore the relative na-
ture persist the relation to previous excerpts reducing mem-
ory effects. We use 15 s excerpts to minimize any change
in expressed emotion over time, and large enough not to
cause mental strain on subjects. We proposed a proba-
bilistic Gaussian process framework for mapping the ex-
tracted audio features into latent subspaces that is learned
by the comparisons made by participants of musical ex-
cerpts evaluated on the dimensions of valence and arousal.
The underlying assumption is that given the features, the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296182637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jenma@imm.dtu.dk
http://creativecommons.org/licenses/by/3.0/


projection made by the model mimic the cognitive decision
making by participants in making the pairwise compari-
son. We investigated how many comparisons are needed
per excerpt to reach acceptable level of performance by
obtaining all possible unique comparisons for 20 excerpts
and furthermore to investigate the individual subjective dif-
ferences. In [14] they proposed a greedy algorithmic ap-
proach converting pairwise comparisons into a ranking of
excerpts and modeling this using a RBF-ListNet algorithm.
They focused on the case of few comparisons for many ex-
cerpts, using comparisons from multiple participants ag-
gregating to one large dataset, neglecting the individual
differences between subjects. On the other hand, our re-
sults showed a great difference between participants which
the framework and approach accounts for along with noise
on the pairwise judgments.

These individual differences are further investigated in
this paper using the well known arousal and valance scores
in a 2D space. Furthermore, we introduce five models for
the modeling of the pairwise comparisons, where an ex-
tension to the existing framework is made using linear and
squared exponential kernels. Moreover, we compare the
Gaussian process model to three versions of a General-
ized Linear Model (GLM) namely the standard version and
two regularized versions using L1 and L2 norms. Learn-
ing curves are computed as a function of the misclassifi-
cation error and the number of (randomly chosen) pair-
wise comparisons in order to elucidate the difference be-
tween the five models. The differences between models
and the resulting ranking of excerpts is further illustrated
using Kendall’s τ rank correlation learning curves.

2. EXPERIMENT & DATA

2.1 Experiment

A listening experiment was conducted to obtain pairwise
comparisons of expressed emotion in music using a 2AFC
experimental paradigm. 20 different 15 second excerpts
were chosen from the USPOP2002 1 dataset, so that, 5 ex-
cerpts were chosen to be in each quadrant of the AV space.
The selection was performed by a linear regression model
developed in previous work. A subjective evaluation was
performed to verify that the emotional expression of each
excerpt was as constant as possible.

A sound booth provided neutral surroundings for the ex-
periment and the excerpts were played back using head-
phones to the 8 participants (2 female, 6 male). Writ-
ten and verbal instructions were given prior to each ses-
sion to ensure that subjects understood the purpose of the
experiment and to ensure that each subject were familiar
with the two emotional dimensions (valence and arousal).
Each participant compared all 190 possible unique com-
binations. For the arousal dimension, participants were
asked the question Which sound clip was the most excited,
active, awake? For the valence dimension the question was
Which sound clip was the most positive, glad, happy?. The
two dimensions was rated individually and the presentation

1 http://labrosa.ee.columbia.edu/projects/
musicsim/uspop2002.html

No. Song name
1 311 - T and p combo
2 A-Ha - Living a boys adventure
3 Abba - Thats me
4 Acdc - What do you do for money honey
5 Aaliyah - The one i gave my heart to
6 Aerosmith - Mother popcorn
7 Alanis Morissette - These r the thoughts
8 Alice Cooper - Im your gun
9 Alice in Chains - Killer is me

10 Aretha Franklin - A change
11 Moby - Everloving
12 Rammstein - Feuer frei
13 Santana - Maria caracoles
14 Stevie Wonder - Another star
15 Tool - Hooker with a pen..
16 Toto - We made it
17 Tricky - Your name
18 U2 - Babyface
19 UB40 - Version girl
20 ZZ top - Hot blue and righteous

Table 1. List of songs/excerpts.

of the 190 paired excepts was randomized. The details of
the experiment is available in [15].

2.2 Audio Representation & Features

In order to represent the 15 second excerpts in later math-
ematical models, each excerpt is represented by standard
audio features, namely Mel-frequency cepstral coefficients
(MFCC) (30 dimensional), that describes the log trans-
formed short-term power spectrum of the musical signal.
Furthermore a total of 9 features are included namely spectral-
flux, roll-off, slope and variation and 5 features describing
the temporal music signal including zero crossing rate and
statistical shape descriptors.

These features are extracted using the YAAFE toolbox 1

for 512 sample frames with 50% overlap, thus for each ex-
cerpt we obtain a 39x1292 feature matrix X. We create a
vector representation by first standardizing the features and
then estimating the mean, µ(·) and the variance of the ma-
trix var(·) over the frames and then applying the follow-
ing vectorization, x = [µ (X) , var (X)]. This (row) vector
representation can directly be used in standard modeling
tools and serves as a common ground for comparisons.

3. MODELS FOR PAIRWISE COMPARISONS

The pairwise observations presented in Section 2 poses a
special challenge since each output now depends on two
inputs and standard regression and classification tools do
not immediately apply since they are typically formulated
in a one to one relationship between inputs and outputs.
The modeling aspect will thus necessarily play an integral
part of this section, and we will initially outline the general
framework.

1 http://yaafe.sourceforge.net/
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The audio excerpts presented in Section 2 are assembled
in the set X = {xi|i = 1, ..., n} with n = 20 distinct ex-
cerpts, each described by the feature input vector xi. For
each of the test subjects the dataset comprises of all unique
m = 190 combinations of pairwise comparisons between
any two distinct excerpts, u and v, where xu ∈ X and
xv ∈ X . Formally, we denote the output set as

Y = {(yk;uk, vk)|k = 1, ...,m} ,

where yk ∈ {−1, 1} indicates which of the two excerpts
that had the highest valence or arousal. yk = −1 means
that the uk’th excerpt is picked over the vk’th and visa
versa when yk = 1.

The main assumption in our setup is that the pairwise
choice, yk, between the two distinct excerpts, u and v,
can be modeled as a function of the difference between
two functional values, f(xu) and f(xv). The function
f : X → R hereby defines an internal, but latent abso-
lute reference of e.g. valence or arousal as a function of the
excerpt represented by the audio features.

In order to model noise on the decision process we con-
sider the logistic likelihood of the functional difference.
The likelihood of observing a discrete choice thus becomes:

p (yk|fk) ≡
1

1 + e−yk(f(xuk)−f(xvk))
, (1)

where fk = [f(xuk
), f(xvk)]

T . The remaining question is
how the function is modeled and how we in turn regard the
problem as a special regression problem. In the following
we consider two different frameworks, namely General-
ized Linear Models (GLM) and a flexible Bayesian non-
parametric approach based on the Gaussian process (GP).
In all cases we assume that the likelihood factorizes over
the observations i.e., p (Y|f) =

∏m
k=1 p (yk|fk).

3.1 Generalized Linear Models

Generalized Linear Models are powerful and widely used
extensions of standard least squares regression which can
accommodate many types of observed variables and noise
models. The canonical example in this family is indeed lo-
gistic regression, and here we extend the treatment to the
pairwise case. The underlying model is a linear and para-
metric model of the form fi = xiw

>, where xi may be
extended in a different basis but the base model is still lin-
ear in w.

If we now consider the likelihood defined in Eq. (1) and
reasonably assume that the model, i.e. w, is the same for
the first and second input i.e. xuk

and xvk . Which results
in a projection from the audio features x into the cognitive
dimensions of valence and arousal given by w which is the
same for all excerpts. We can then write

p (yk|w,xuk
,xvk) =

1

1 + e−yk((xuk
−xvk)w

>)
. (2)

The resulting cost function, ψ(·), is given by the log likeli-
hood

ψGLM (w) =

m∑
k=1

log p
(
yk|xuk

,xvk
,w
)
.

Thus, the problem reduces to a standard logistic regression
problem only working on the difference in input space as
opposed to the standard absolute input. This means that
standard optimization techniques can be used to find the
maximum likelihood solution, such as Iterated Reweighed
Least Squares (IRLS) or other more general non-linear op-
timization method.

3.1.1 Regularized Extensions

The basic GLM formulation in Eq. (2) does work quite
well for many problems, however has a tendency to be-
come unstable with very few pairwise comparisons. We
therefore suggest to regularize the basic GLM cost with
L1 and L2 which are of course similar to standard regular-
ized logistic regression (see [16]). The L2 regularized cost
is as usual given by

ψGLM−L2 (w) =

m∑
k=1

log p
(
yk|xuk

,xvk
,w
)
− λ ‖w‖22 ,

where the regularization parameter λ is to be found by
cross-validation. This cost is still continuous and is solved
with a standard Newton method. The L1 regularized cost
is

ψGLM−L1 (w) =

m∑
k=1

log p
(
yk|xuk

,xvk
,w
)
− λ ‖w‖1 .

This discontinuous cost function (in wi = 0) is solved us-
ing the active set method presented in [17]. The L1 regular-
ization effectively results in a sparse model where certain
features are potentially switched off. We will not interpret
this property in detail but simply use the models as a refer-
ence.

3.2 Gaussian Process Framework

The GLM framework represents the simplest - but often
effective - models for many regression and classification
problems. An obvious extension is to treat the problem and
the likelihood in a Bayesian setting which is presented in
this section and further adhere to a non-parametric princi-
ple in which we model the f directly such that the posterior
over f ’s can be written

p (f |Y,X ) = p (Y|f) p(f |X )/p (Y|X ) . (3)

While many relevant priors, p(f |X ), may be applied we
will consider a specific prior, namely a Gaussian Process
(GP) prior. A GP is typically defined as ”a collection of
random variables, any finite number of which have a joint
Gaussian distribution” [18]. By f (x) ∼ GP (0, k(x,x′))
we denote that the function f(x) is modeled by a zero-
mean GP with covariance function k(x,x′). The conse-
quence of this formulation is that the GP can be considered
a distribution over functions, i.e., p (f |X ) = N (0,K),
where [K]i,j = k(xi,xj).

Bayes relation leads directly to the posterior distribution
over f , which is not analytically tractable. Instead, we use
the Laplace Approximation to approximate the posterior



with a multivariate Gaussian distribution 2 . The GP was
first considered with a pairwise, Probit based likelihood
in [20], whereas we consider the logistic likelihood func-
tion.

3.2.1 Predictions

To predict the pairwise choice yt on an unseen comparison
between excerpts r and s, where xr,xs ∈ X , we first con-
sider the predictive distribution of f(xr) and f(xs) which
is given as p (ft|Y,X ) =

∫
p (ft|f) p (f |Y,X ) df , and with

the posterior approximated with the Gaussian from the Laplace
approximation then p (ft|Y,X ) will also be Gaussian given
by N (ft|µ∗,K∗) where µ∗ = kTt K

−1f̂ and K∗ = Kt −
kTt (I+WK)kt, where f̂ and W are obtained from the
Laplace approximation (see [19]) and kt is a matrix with
elements [kt]i,2 = k(xi,xs) and [kt]i,1 = k(xi,xr) with
xi being a training input.

In this paper we are only interested in the binary choice
yt, which is determined by which of f(xr) or f(xs) that
dominates 3 .

3.2.2 Covariance Functions

The zero-mean GP is fully defined by the covariance func-
tion, k(x,x′). In the emotion dataset each input instance
is an excerpt described by the vector x representing the
mean and variance of the audio features. A standard co-
variance function for this type of input is the squared ex-
ponential (SE) covariance function defined as k (x,x′) =

σ2
f exp

(
− 1
σ2
l
‖x− x′‖22

)
, where σf is a variance term and

σl is the length scale, in effect defining the scale of the
correlation in the input space. As a reference we also con-
sider the linear covariance function given as k (x,x′) =(
x′x> + 1

)
/σ2.

3.2.3 Hyper-parameters

An advantage of the Bayesian approach is that the hyper
parameters may be found in a principled way namely by
evidence maximization or maximum likelihood II estima-
tion. The hyper-parameters collected in θ can thus be found
by θ̂ = argmaxθ

∫
p (Y|f) p(f |θ)df .

There is therefore in principle no need to use cross-vali-
dation to find the parameters. As with the posterior over f ,
the evidence also requires an approximation and we reuse
the Laplace approximation to obtain the hyper-parameter
estimate. We furthermore allow for a regularizing prior
on the hyper-parameters which is similar in spirit to the
regularized Expectation Maximization (EM) algorithm.

3.3 Alternative Models

The two modeling frameworks considered above are not
the only options for modeling the pairwise relations. An
obvious intermediate model is the GLM put in a Bayesian
setting with (hierarchical) (sparsity) priors on w which we
consider an intermediate step towards the full non-para-
metric GP model. Also Neural Networks can easily be

2 More details can be found in e.g. [19].
3 With the pairwise GP model the predictive distribution of yt can also

be estimated (see [19]) and used to express the uncertainty in the predic-
tion relevant for e.g. sequential designs, reject regions etc.

adapted to handle the pairwise situation, such as [21]; how-
ever, the GP will again provide a even more flexible and
principled model.

4. EXPERIMENTAL RESULTS

4.1 Learning Curves

We use learning curves to compare the five models de-
scribed in Section 3, namely the Logistic Regression model
and two regularized version using the L1 and L2 norms
and finally the Gaussian Process model using a linear and
a squared exponential kernel. The learning curves are eval-
uated for individual subjects using 10-fold cross valida-
tion (CV) in which a fraction (90%) of the total number
of pairwise comparisons constitutes the complete training
set. Testing all possible combinations of e.g. 17 compar-
isons out of 171 when using 10% of the training set is ex-
hausting. Therefore each point on the learning curve is
an average over 10 randomly chosen equally-sized subsets
from the complete training set, to obtain robust learning
curves. Three different baseline error measures have been
introduced, corresponding to a random choice of either of
the two classes in each fold and two obtained by choos-
ing either class constantly. Thus taking into account that
the data set is not balanced between the two outcomes of
[−1; 1]. In Figure 1 we show the learning curves as an aver-
age across all subjects. Using the entire dataset the models
converge to similar classification errors of 0.14 and 0.15
for valence and arousal, respectively. On the valence di-
mension we see that using a fraction of the training data,
the GP-SE model shows a clear advantage over the other
models at e.g. 30% of the training data, producing a clas-
sification error of 0.21 whereas the GLM models produce
around 0.23 and the GP-Lin at 0.29. The learning curves
for the arousal dimension show a slightly different picture
when comparing the different models. It is clear that us-
ing regularization on the GLM model greatly improves the
classification error when training with up to 30% of the
training data by as much as 0.10. The two GP models per-
form similar up to the 30% point on the learning curve but
converges at a lower classification error than that of the
GP-SE. Since all models converge to a similar classifica-
tion errorrate we want to test whether they are the same
on a classification level. We use the McNemar’s paired
test [22] with the Null hypothesis that two models are the
same, if p < 0.05 then the models can be rejected as equal
on a 5% significance level. We test the GP-SE against the
other four models pooling data across repetitions and folds
for each point on the learning curve. For the valence data
the GP-SE model is different in all points on the learn-
ing curve besides when using the entire trainingset for the
GLM, GLM-L1 and GP-Lin model. For arousal data the
GP-Lin model and the GP-SE cannot be rejected as be-
ing different when training on 2% and 5% of the training
data and for the GLM model trained on 90% of the training
data.
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Figure 1. Classification error learning curves as an average across all subjects for 10-fold CV on comparisons comparing
five models. A Gaussian Process model using a linear kernel (GP -Lin) and a squared exponential kernel GP -SE, logistic
regression model (GLM ) and two regularized versions using the L1 (GLM -L1) and L2-norms (GLM -L2). Three different
baseline error measures have been introduced, corresponding to a random choice of either of the two classes in each fold
denoted Basernd and two obtained by choosing either class constantly denoted Base1 and Base−1. The circles below the
figure show the McNemar’s paired test with the Null hypothesis that two models are the same, if p < 0.05 then the models
can be rejected as equal on a 5% significance level. The test is performed between the GP -SE model and the GLM ,
GLM -L2, GLM -L1 and GP -Lin. Non-filled circles indicate p < 0.05, and filled cirlces indicate p > 0.05.

4.2 AV Space

The learning curves show the performance of the models
when predicting unseen comparisons. However, it may be
difficult to interpret in terms of the typical AV space as one
know from direct scaling experiments. To address this we
show that both the GLM and the GP models can provide an
internal, but unit free representation of the AV scores using
the latent regression function f(xt) in the case of the GP
model, and by f(xt) = xtw

> for the GLM models.
We first consider a model using all comparisons from all

participants, thus obtaining a global mean model illustrated
in Figure 2 with squares. In order to evaluate the variation
across subjects, we train individual models on all compar-
isons from a given participant. The deviation from the
global mean model is now calculated per comparison by
comparing the latent difference in the global mean model
with the latent difference in the individual model. The sub-
jects deviation for a single excerpt is now evaluated as the
average over all changes in latent differences for the 19
possible comparisons in which the excerpt is present. Fi-
nally, we take the variation across subjects and visualize it
in Figure 2 as dashed and solid lines around each excerpt
indicating the 50% and the 5% percentiles, respectively.

While the GLM and GP-SE models may seem quite dif-
ferent at first sight, we should focus on the relative location
of the excerpts and not the absolute location in the unit
free space. Comparing the relative placement of the ex-
cerpts (the center points) we see that the models are quite
similar, also indicated by the averaged learning curves. In
both models the relatively small variation over the subjects
suggest that there despite minor subjective differences is a

general consensus about the overall location of the given
excerpts and the models have actually learned a meaning-
ful representation.

4.3 Ranking Analysis

The learning curves only show the predictive classifica-
tion power and does not give a clear picture as to the re-
sulting ranking of the excerpts in the AV space. Two or
more models can have the exact same classification error,
but result in very different ranking of excerpts in the AV
space. To quantify this difference in the ranking in the AV
space we use Kendall’s τ rank correlation coefficient. It is
a measure of correlation between rankings and is defined
as τ = (Ns−Nd)/Nt, whereNs is the number of correctly
ranked pairs, Nd is the number of incorrectly ranked pairs
and Nt is the total number of pairs. When two rankings
are exactly the same the Kendall’s τ results τ = 1, if the
order of items are exactly opposite then τ = −1 and when
τ = 0 they are completely different. In Figure 3 we notice
that the linear models produce very similar rankings when
trained on 1% with a Kendall’s τ above 0.95. Between
the GLM and the regularized models the Kendall’s τ de-
creases to 0.7 at 10% of training data and increasing to 0.9
when using 50% for valence data. The largest difference in
ranking lies between the GP models and both the regular-
ized and unregularized GLM models for both valence and
arousal. Using 10% of training data the comparison be-
tween the ranking of the GP-SE and GLM models produce
a Kendall’s τ rank correlation of 0.47 ending at 0.9 when
using the entire training set for valence. Both the GLM and
GLM-L2 when compared with the GP-SE lie below 0.9 us-



1

2

3
4

5

6

7

8

9

10

11

12
13

14

15 16

17

18
19

20

Excited
Active
Awake

Positive
Glad
Happy

Valence

A
ro

us
al

(a) GLM

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15 16

17

18

19

20

Excited
Active
Awake

Positive
Glad
Happy

Valence

A
ro

us
al

(b) GP

Figure 2. Predictions using the latent regression function for the Gaussian Process model and model parameters for the
logistic regression model. The squares indicate the latent regression function values from a global mean model which is
trained using all comparisons from all participants. The dashed and solid lines around each excerpt indicates the 50%
and the 5% percentiles for the deviation from the global mean model calculated per comparison by comparing the latent
difference in the global mean model with the latent difference in the individual model. The subjects deviation for a single
excerpt is evaluated as the average over all changes in latent differences for the 19 possible comparisons.

ing the entire training set for arousal. It is noteworthy that
between the 5% and 30% points on the learning curve, is
where all models produce the most different rankings and
as more comparisons are used they converge to similar but
not same rankings.

We have established that there is a difference in ranking
of excerpts on the dimensions of valence and arousal given
which models is chosen. As was shown in Figure 2 there is
also a large difference in ranking across subjects, alterna-
tively these individual differences can be quantified using
the rank correlation. Using the GP-SE model trained on all
the dataset, the Kendall’s τ is computed between the pre-
dicted rankings between all subjects, which are shown in
Figure 4. The ranking along the valence dimension shows
a grouping of subjects where subject eight and three have
the lowest Kendall’s τ in average compared to all other
subjects. This suggests a fundamentally different subject
dependent understanding of the expressed emotion in mu-
sic. Subject eight seem especially to disagree with subjects
three, five, six and seven given the predicted latent regres-
sion function values. On the valence dimension subject six
is very much in disagreement with other subjects, whereas
subject four is in high agreement with most subjects.

4.4 Discussion

Five different regression models were introduced to model
the expressed emotions in music directly by pairwise com-
parisons, as previously shown in [13] the results clearly
show this is possible. Common for all models is the con-
vergence to similar classification errors, indicating that given

this limited dataset, that the underlying problem is linear
and thus does not benefit from the flexibility of the non-
linear GP-SE model, when using all available comparisons.
But having all possible unique comparisons is an unlikely
scenario when constructing larger datasets. This is the
strength of the GP-SE model using only a fraction of train-
ing data for valence it is evident that it is improving predic-
tive performance of around 0.08 comparing to a linear GP
model using 30% of the training data. Which shows that it
is not necessary to let participants evaluate all comparisons
when quantifying the expressed emotion in music. For
arousal data the GLM model benefits greatly with regular-
ization when training with up to 40% percent of the train-
ing data with as much as 0.10 classification error. Whereas
for valence all GLM models produce very similar results.

In previous work the predictions from the latent regres-
sion function was shown as a mean across subjects, here
we emphasize the differences between subjects with the
predictions by the model. Both the GLM and GP-SE model
can produce results which show the relative position of ex-
cerpts in the AV space, and between models produce vi-
sually similar results. These differences are quantified be-
tween the ranking of the different models using Kendall’s
rank correlation coefficient emphasizing the fact that not
only is there a difference in ranking amongst participants
but also between models. This links the difference between
models producing a given classification error and the re-
sulting ranking produced by the model. Even though two
models produce the same classification error they can end
up with a different ranking of excerpts in the AV space.

Identifying differences between participants and their in-
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Figure 3. Comparison of the ranking of the internal regression function predictions for different models using Kendall’s
τ rank correlation coefficient. Curves are an average of the Kendall’s τ computed for each individual subjects predicted
ranking across folds and repetitions.

ternal ranking of excerpts in the AV space can become a
challenge when using a pairwise experimental paradigm to
quantify the expressed emotion in music. We remedy this
by using Kendall’s τ computed between all users rankings
provided by the GP-SE model. The results show that there
is a great difference between users individual ranking pro-
ducing a difference in Kendall’s τ of as much as 0.55 for
arousal and 0.35 for valence. Given the fact that the pre-
dictions by the models are so different for each subject this
stresses the importance to distinguish between subjects.
Currently we investigate individual user models which are
linked/coordinated in a hierarchical Bayesian modeling frame-
work in order both to obtain individual models and the pos-
sibility to learn from a limited set of pairwise data. In par-
ticular we see these models as a required tool in the exam-
ination of the difference between direct scaling methods
and the pairwise paradigm presented in the current work.
Future models will furthermore provide a principled ap-
proach for combining pairwise and direct scaling obser-
vations, thus allowing for optimal learning and absolute
grounding.

5. CONCLUSION

In this paper we outlined a paradigm for obtaining robust
evaluation of expressed emotion in music based on a two
alternative forced choice approach. We examined five dif-
ferent regression models for modeling these observations
all based on the logistic likelihood function extended to
pairwise observations. The models ranged from a rela-
tively simple GLM model and two regularized GLMs us-
ing the L1 and L2 norms to non-parametric Bayesian mod-
els, yet the predictive performance showed that all pro-
posed models produce similar classification errors based
on the entire training set. The true strength of the non-
parametric Bayesian model comes into play when using
a fraction of the dataset leaving good opportunities in con-
structing larger datasets where subjects do not need to eval-

uate all possible unique comparisons. It is left for future
work to further analyze the detailed difference between the
models. Furthermore we illustrated a significant difference
between models and subjects in both AV space and quanti-
fied it using Kendall’s τ with the conclusion that it is criti-
cal to model subjects individually.
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