
  

  

Abstract— Extending the navigational capability of planetary 

rovers is essential for increasing the scientific outputs from such 

exploratory missions. In this paper a navigation method based 

on Inverse Simulation is applied to a four wheel rover. The 

method calculates the required control inputs to achieve a 

desired, specified response. Here this is a desired trajectory 

defined as a series of waypoints. Inverse Simulation considers 

the complete system dynamics of the rover to calculate the 

control input using an iterative, numerical Newton – Raphson 

scheme. The paper provides an insight into the numerical 

parameters that affect the performance of the method. Also, the 

influence of varying the timestep and the convergence tolerance 

is examined in terms of the quality of the calculated control 

input and the resulting trajectory, as well as the execution time. 

From this analysis a set of parameters and recommendations to 

successfully apply Inverse Simulation to a rover is presented. 

I. INTRODUCTION 

In this study a novel method based on Inverse Simulation 
is used for autonomous rover guidance and navigation. 
Inverse simulation uses a mathematical model that is 
representative of the system and calculates the control inputs 
necessary for the rover to produce the desired response. This 
desired response is defined in terms of the system's output 
variables and represents their time history. Inverse Simulation 
is a model based, numerical, iterative process where step 
changes in the various controls are applied until the predicted 
response matches the desired response [1]. Applied to rover 
navigation, the desired response is a trajectory or path to a 
goal destination [2], [3].  

The operation of a planetary rover presents several 
challenges: time delays, terrain uncertainty, limited 
communication bandwidth and high latency, inability to 
repair hardware, system degradation [4]. To extract the 
maximum scientific return, the rover must be able to 
efficiently and safely navigate the terrain. The navigation 
capabilities are essential to the overall success of the mission 
[4], [5] and Inverse Simulation addresses this particular issue. 

Applications for Inverse Simulation are predominantly 
within the flight dynamics domain and the application to 
rotorcraft flight control is a major area. In these particular 
cases Inverse Simulation is used to produce the required 

 
Research supported by grant EPSRC/1369575 from the UK Engineering 

and Physical Sciences Research Council (EPSRC). 

T. Flessa is a PhD Student at the Division of Aerospace Sciences, School 

of Engineering, University of Glasgow, Glasgow (e-mail: 

t.flessa.1@research.gla.ac.uk).  

E. McGookin (e-mail: Euan.McGookin@glasgow.ac.uk) and D. 

Thomson (e-mail: Douglas.Thomson@glasgow.ac.uk) are both Senior 

Lectures at the Division of Aerospace Sciences, School of Engineering, 

University of Glasgow, Glasgow. 

control signals for specific flight maneuvers [1, 6, - 8] and [9] 
also introduces a predictive element. The method has also 
been applied to unmanned aerial vehicles [10] and 
autonomous underwater vehicles [11]. Inverse Simulation has 
also been used as a model validation method [1], [8]. 
Previous research has demonstrated the potential for Inverse 
Simulation as a guidance and control method for wheeled 
rovers [2], [3]. 

Planetary rover navigation so far has been achieved using 
a combination of non-, semi- and fully autonomous methods 
[12]. The NASA Mars Exploration Rovers (MER) use a 
combination of three main driving modes with varying 
degrees of autonomy. The first mode involves the rover 
executing a sequence of commands to follow a specified 
course of waypoints towards specific goal coordinates. In this 
mode the rover only performs basic safety checks [13]. The 
second mode is semi-autonomous navigation during which 
the rover is given a set of waypoints towards specific goal 
coordinates and uses its on-board capabilities for hazard 
avoidance and for planning a path towards the goal. A special 
case is when the rover drives towards an area that is unknown 
to the operators [12], [13]. In this case the rover has to 
choose the waypoints for a safe path towards the goal and 
then drive along this path; this is fully autonomous navigation 
[12], [13]. The third mode is visual odometry: the rover uses 
images from the on-board cameras to accurately estimate and 
update its position [13], [14]. A similar combination of these 
driving modes is used for the Curiosity rover and autonomous 
navigation is used to plot a safe path towards an area 
unknown to the operators [15]. The fully autonomous and 
visual odometry modes are used when the rover moves into 
areas that are not visible to the operators [12 - 14]. The 
developers of the ExoMars mission have addressed the issue 
of navigation and autonomy by including an element of 
autonomous control within the guidance system [16] and by 
conducting field experiments to test the current long-range 
navigation capabilities [17]. 

This paper focuses on the application of Inverse 
Simulation to a four wheeled rover as a method of guidance 
and navigation and investigates the parameters that affect its 
successful application. In Section II, the Inverse Simulation 
method is presented and in Section III the mathematical 
model of the rover and the trajectory generation are shown. 
Section IV presents the results of the method applied to the 
rover and a discussion of the parameters that affect its 
application. Finally, the conclusions are in Section V. 

II. INVERSE SIMULATION METHODOLOGY 

There are two main approaches in implementing Inverse 
Simulation: Differentiation [1, 6 - 8, 10] and Integration [1 - 

Numerical Stability of Inverse Simulation Algorithms Applied to 

Planetary Rover Navigation 

Thaleia Flessa, Student Member, IEEE, Euan McGookin, Member, IEEE, and Douglas Thomson 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296182264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

3, 6 - 8, 9]. The basic framework for each is similar and both 
use a numerical Newton – Raphson algorithm; what differs is 
the method of convergence to the control signal. In 
Differentiation, a numerical differentiation scheme is used 
and the convergence is based on the system's state and output 
equations. In Integration, a numerical integration scheme is 
used and the convergence is based on whether the system's 
output matches the desired. Both methods use a Jacobian and 
care must be taken when trying to find its inverse or a 
suitable factorization. For this reason systems where the 
number of inputs is equal to or greater than the number of 
outputs are preferred candidates, as these result in square or 
over-actuated systems [1, 6 - 8]. An alternative involves 
derivative – free methods, such as [11], [18] which employ 
Nedler – Mead optimization. However this is outside the 
scope of this paper. 

A. Implementation of Inverse Simulation 

A general non-linear system is used where f∈Rm are the 
state equations, g∈Rp are the output equations, u∈Rq is the 

control input vector, x∈Rm is the state variable vector and y∈ 
Rp is the output vector. The desired output is gd∈Rp. 

 ( ) ( ),  =x f x,u y = g x,uɺ  (1) 

For the Differentiation method, (1) is discretized N times 
over a time interval Τ into the form shown in (2), where dt is 
the discretization step. 
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The unknowns in (2) are the states x and the input u at ti. 

The known variables are the desired output gd and the states, 
control and output from the previous discretization step ti-1. 

The functions F1 and F2 in (3) are defined to find the 
values of input u and the states x for the given output gd. The 
system in (3) is solved using the Newton - Raphson method 

until the values of u and x are such that F1 and F2 are both 
equal to zero within a certain tolerance. The updated 

equations are in (4) and J is the Jacobian of the system in (3). 
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For the Integration approach the state and output 
equations from (1) are again discretized and dt is the 
discretization step. The state equations are integrated at ti. 
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An error function between the current output and the 
desired gd is defined in (6). 

 ( ) ( )( ) ( )1,i i it t t−= −e df g x u g   (6) 

Equation (6) is solved for u using the Newton – Raphson 
method and the iterative relationship (7), where Je is the 
Jacobian of the error function fe or equivalently the Jacobian 
of the system outputs when perturbing the inputs.  

 ( ) ( ) ( )1
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B. Numerical Properties of Inverse Simulation 

Each approach has advantages and disadvantages, which 
are usually identified as the following [1, 6 - 8, 18]: (a) The 
Integration method can use any representative model of the 
system as long as the outputs and inputs remain the same. 
Differentiation requires both the states and the outputs and 
any change in the model results in a reformulation of the 
algorithm. Therefore, the Differentiation method is more time 
consuming to set up and maintain, whereas for Integration the 
model can be modified more easily, (b) The Integration 
method has a convergence rate that is up to an order of 
magnitude larger than that of the Differentiation method but 
it is generally more stable; what is gained in flexibility and 
stability, is lost in computing time. 

The numerical properties of Inverse Simulation have been 
examined mostly when the method is applied to flight 
dynamics [1, 6, 7, 18]. The authors of [1] examine the 
stability properties of the method in this context. When using 
the Differentiation method, it has been observed that there are 
oscillations in the response of the uncontrolled states 
(constraint oscillations) [1]. However, these oscillations 
depend more on the dynamical properties of the system and 
its uncontrollable states and zero dynamics rather than the 
method used and its numerical properties [18].  

Also from [1] it has been observed that there are low 
amplitude, high frequency oscillations superimposed on the 
calculated control input when using the Integration method. 
Overall, the high frequency, low amplitude oscillations in the 
control are due to several reasons [1, 6 - 8, 18]: redundancy 
issues, non-square Jacobian and multiple solutions, several 
local minima of the error function from (7). These low 
amplitude, high frequency oscillations are increased when the 
discretization step dt is too small, as it could excite the 
uncontrollable states [18]. Nonetheless, a relatively small dt 
can have a positive effect because it captures the changes in 
the system dynamics [18] and this may reduce or even 
remove them [7], [18]. It is a case of compromising between 
adequately following the system as it evolves over time and 
possibly exciting the uncontrollable states. A different 
approach uses the two timescale method [1], [18].  

III. ROVER MODEL AND TRAJECTORY GENERATION 

Inverse Simulation used for rover navigation requires a 
mathematical model of the system and a desired response, 
which is a trajectory. First, a path to the destination is 
determined as a series of waypoints. This information 



  

provides the desired trajectory for the Inverse Simulation, 
which in turn generates the required guidance commands 
(control inputs) to follow the trajectory [2], [3]. The method 
can be applied in situ: given a series of waypoints or a 
defined trajectory, the rover can calculate the necessary 
control inputs or offline: operators define the trajectory, the 
control inputs are calculated and then sent to the rover.  

A. Rover Model 

The model of the rover has been presented in [2, 3, 19] 
and has been experimentally validated [19]. It is briefly 
described here for completeness. Each side has two wheels 
and the wheels at each side provide the same torque input. 
The dynamics are described by (8), where v is the state 
velocity vector (9) in the local body frame, η is the velocity 

vector in the global frame and τ is the input vector (10). 
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In (9) u, v, w are the surge, sway and heave velocities 
respectively and p, q, r are the roll, pitch and yaw rates 
respectively. In (10) X is the surge, Y is the sway and Z is the 
heave force, K is the roll, M is the pitch and N is the yaw 
moment. X and N are controllable, the remaining forces and 
moments are the unmatched dynamics. 

B. Trajectory Generation 

The trajectory is represented as a series of waypoints, 
each defined by an x-y coordinate with a common origin. A 
path between each waypoint and the next is calculated, with 
the robot stopping at each waypoint to turn on the spot to 
achieve the desired orientation and then move again. 

The distance and time to travel between each waypoint is 
calculated assuming a constant velocity between stages with 
initial and final acceleration and deceleration transients: the 
constant forward speed is 0.1 m/s, analogous to that of 
operating rovers [5], and the rotational velocity is 0.1 rad/s. 
At each waypoint a check is made to determine if the rover is 
at the correct angle for the next traversal forward. If not, then 
the rover is commanded to turn on the spot until the desired 
angle is achieved. The path from one waypoint to the next is 
defined by specifying the acceleration as a 7th order 
polynomial function of time and is based on that presented in 
[1], [3]. A 7th order polynomial has the benefit of producing 
smooth trajectory profiles with high order, continuous 
derivatives. The output is the acceleration time history, which 
is then integrated to provide the velocities and the 
displacements. The result is a continuous time history of 
acceleration, speed and distance between each successive 
waypoint that fully describes the rover’s position and 
orientation; namely the elements of vector v and η. 

IV. INVERSE SIMULATION RESULTS 

A series of waypoints is first defined and then a trajectory 
between them is generated as in Section III. Inverse 
Simulation calculates the control inputs for each trajectory. 
Then these inputs are applied to the system and it is checked 
whether the resulting trajectory matches the desired. The 
following test trajectories were selected. The Forward (11s) 
and Rotate on the Spot (12s) tests are the basic movements. 
The Long Distance test (Fig. 1, 400s) involves several pose 
changes and will be used as a benchmark to show how the 
errors built up over time and to compare the different 
parameters.  
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Figure 1.  Long Distance test trajectory 

For the Integration method [2, 3] the outputs to control 
are the surge velocity u and the rotational velocity r. There 
are two inputs and two outputs and so the Jacobian of the 
error (7) has a size of 2x2 and its rank is 2. For the 
Differentiation method, it was observed during the initial 
simulations that including as an additional output to control 
the sway velocity, the overall results are improved. There are 
three desired outputs: ud, rd as before and vd, which is set to 
zero. The sway velocity v is strongly coupled to u and r [19] 
and adding it as a desired output that is set to zero acts as an 
additional constraint for u and r. For the Jacobian (4), only 
the controllable states u, r and additionally v are taken into 
account and so its size is 6x5 and its rank is 5. The remaining 
states for (4) are estimated after the scheme has converged at 
each ti. This is an over-determined system and to ensure that 
the solution is always a least square solution a suitable 

factorization method is used to find the pseudo-inverse of J 
and solve (4) [20]. 

For each method the following parameters need to be 
assigned values: dt, the tolerance for the convergence of 
Newton-Raphson, the initial starting values for the control 
inputs and the maximum number of iterations. The dt and the 
tolerance are varied, as these have the greatest effect on the 
results. Their influence on the time required to generate the 
control inputs is also examined. For dt, the physical 
properties of the system must also be taken into account. 
Here, this is the timestep of the motors that provide the 
torque input and dt should be in the range of 0.05s [3]. When 
changing dt, the trajectory generation between the waypoint 
changes, to adapt to the different timestep and generate an 
appropriate time history. The convergence tolerance affects 
the overall quality of the calculated input: too small and 
equations (4), (7) do not converge, too large and the 



  

accumulated error increases. The other parameters will be the 
same throughout for both methods. The rover starts from rest, 
i.e. the motor torque is zero. Here a very small value is 
assumed for the initial torque estimate: 2.5×10-7 Nm for each 
side. The maximum number of iterations is 30, sufficient to 
converge but not big enough to overly increase the execution 
time. Both methods are tested on a Core 2 Duo T9300, 2.50 
GHz, 4 GB RAM system running MATLAB 2014b, 64 bit,  

A. Baseline Simulation 

The initial parameters are dt = 0.01s and a tolerance of 
5×10-7. Table I shows the errors accumulated for the Long 
Distance test. The main difference is the calculation time. 
Fig. 1 shows the control inputs generated for Differentiation 
and Fig. 2 for Integration. The left side control is signified by 
the solid line and the right side by the dashed line (same for 
Fig. 4, 5). The right side control signals are symmetrical to 
those of the left when the rover is moving forward (e.g. at 
100s), which is expected since each side is controlled by one 
input. When the heading changes there is a momentary spike 
in the input. The control inputs from Integration are 
smoother, e.g. around 150, 250s in Fig. 1, 2. The oscillations 
from Differentiation have a small magnitude and high 
frequency and are due to the fact that scheme uses a 
redundant system which may have multiple solutions, in line 
with previous observations discussed in Section II.  

50 100 150 200 250 300 350 400

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

time, s

T
o

rq
u

e
, 
N

m

 

Figure 2.  Differentiation: Control Input, Long Distance (0.01s, 5×10-7) 
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Figure 3.  Integration: Control Input, Long Distance (0.01s, 5×10-7) 

TABLE I.  LONG DISTANCE (1) 

Long Distance: dt 0.01, tolerance 5×10-7 

 Differentiation Integration 

mean position error (m) -0.0009 0.0008 

σ position error 0.0008 0.0004 

mean heading error (rad) 0.0003 0.0003 

σ heading error 0.0007 0.0015 

execution time (s) 57.33 117.08 

B. Effect of varying the time increment dt 

For the Long Distance test, between dt = 0.001 and dt = 
0.01 the results are very similar in terms of error, with the 
Integration performing slightly better. The main difference is 
an increase in execution time, the Integration requires now 
1788.79s, which is more than three times that of 
Differentiation at 501.45s and a scale of magnitude larger 
compared to Table I. For dt = 0.05 the results are in Table II, 
there are slightly bigger errors than in Table I but still small. 

TABLE II.  LONG DISTANCE (2) 

Long Distance: dt 0.05, tolerance 5×10-7 

 Differentiation Integration 

mean position error (m) -0.0058 0.0044 

σ position error 0.0038 0.0023 

mean heading error (rad) -0.0002 0.0038 

σ heading error 0.0035 0.0093 

execution time (s) 11.65 15.45 

 
In Table II, the execution time is much reduced, which is 

important for using the method on-line. Integration performs 
better in terms of the position error and Differentiation 
slightly belter for the heading error. The position error for 
Integration is in both cases in the range of 10-3 while for 
Differentiation this changes from 10-4 to 10-3. Moreover, the 
standard deviation of both the position and the heading error 
is larger, which means that during the movement, the rover 
has some sharper deviations for the desired position and 
heading than before (Table I). By increasing dt to 0.05 the 
high frequency, low amplitude oscillations in the control 
input decrease for both methods, Fig. 4, 5. The effect of the 
excitation of the uncontrollable states is reduced and the 
rover follows the desired trajectory accurately.  
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Figure 4.  Differentiation: Control Input, Long Distance (0.05s, 5×10-7) 
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Figure 5.  Integration: Control Input, Long Distance (0.05s, 5×10-7) 

C. Effect of varying the tolerance 

For tolerance 5×10-5 and 5×10-4, the Integration method 
produces results only for the Forward test and fails for the 
Rotate on the Spot and Long Distance tests. The errors 
between the actual and desired u and r are too big and in an 
attempt to correct the errors the calculated control increases 
greatly and Je in (7) becomes singular. This can be seen from 
the condition number of Je for the Rotate on the Spot test 
(total time 12.0s). For tolerance 5×10-5 it starts from 8, by 
1.19s the condition number is 1484387.11 and by 1.2s the 

condition number is infinite. The condition number of Je for 
5×10-4 starts from 8, by 0.76s is 3062065.29 and by 0.77s it 
is infinite. For both cases, Je becomes ill-conditioned. Table 
III shows the results for 5×10-5, Forward test.  

TABLE III.  FORWARD 1M 

Forward: dt 0.01, tolerance 5×10-5 

 Differentiation Integration 

mean position error (m) -0.00003 0.0009 

σ position error 0.00001 0.0003 

mean heading error (rad) -0.00001 -0.0002 

σ heading error 0.000008 0.00004 

execution time (s) 1.68 3.21 

 
Fig. 6 and 7 show the errors of surge velocity u, sway 

velocity v and rotational velocity r after (3) and (6) have 
converged respectively. The desired values of v and r are 
zero. For Integration, the v error is not used for the scheme’s 
convergence; Differentiation uses v as an additional output. 
For Differentiation the r error deviates about 10-18 rad/s from 
zero, whereas for Integration it deviates about 10-3 rad/s from 
zero. The v error deviates 10-6 m/s from zero and the u error 
deviates 10-6 m/s from zero for Differentiation. For 
Integration the v error deviates 10-5 m/s from zero and the u 

error 10-4 m/s, both at the trajectory’s start and end. Since v is 
strongly coupled with u and r, including it as an output has a 
corrective effect on the actually controllable states. This 
effect is particularly evident in the rotational velocity r and 
looking back at Table I, II and III Integration exhibits bigger 
errors for the heading when dt is increased and a bigger 
standard deviation overall. When the tolerance is low enough 
or when there are no changes in the orientation, this small 
difference is negligible. As the tolerance increases and the 
trajectory requires pose changes, it becomes more important 
to accurately follow the desired outputs. 
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Figure 6.  Differentiation: NR Errors, Forward (0.01s, 5×10-5) 
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Figure 7.  Integration, NR Errors, Forward (0.01s, 5×10-5) 

D. Combined effect of dt and tolerance 

Increasing the tolerance to 5×10-5 and the dt to 0.05s 
affects positively the Inverse Simulation: Integration 
produces results for the Turn and Long Distance tests for 
tolerance 5×10-5 (Table IV) and 5×10-4. This behavior is due 
to the fact that if dt is too small and the tolerance increases, 
the errors add up to quickly between the waypoints and are 
not corrected. By increasing the dt while also increasing the 
tolerance, the errors are corrected. Referring back to Section 
II, it is a case of compromising between adequately following 
the system (a small dt), possibly exciting the uncontrollable 
states and selecting a tolerance that matches the speed by 
which the system evolves over time. Moreover, the execution 
time is now comparable between the two methods and the 
Differentiation method continues to exhibit smaller errors for 
r, due to the corrective effect of v. Fig.8 shows the trajectory 
followed by the rover for the case of dt = 0.05s, tolerance 
5×10-5. Both methods match the desired very well. 

TABLE IV.  LONG DISTANCE (3) 

Long Distance: dt 0.05, tolerance 5×10-5 

 Differentiation Integration 

mean position error (m) -0.0047 0.0042 

σ position error 0.0032 0.0023 

mean heading error (rad) -0.0006 0.0046 

σ heading error 0.0036 0.0094 

execution time (s) 11.64 12.78 



  

Comparing Table I, II and IV the errors are larger in 
Table II. Integration exhibits similar errors in Table I, II, IV 
whereas Differentiation varies, for example the mean position 
error is -0.0009m in Table I and -0.0047m in Table IV. 
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Figure 8.  Long Distance Test (0.05s, 5×10-5) 

V. CONCLUSION 

Inverse Simulation has been successfully applied to a 
rover and the parameters that affect its application were 
investigated. These results show that Inverse Simulation can 
now be extended to rovers, which indicates that the method 
behaves consistently amongst a number of different systems. 
The discretization step dt and tolerance significantly affect 
the method’s numerical properties and were examined here. 
A small dt results in high frequency, low amplitude 
oscillations in the control input. These oscillations are also 
due to the presence of uncontrollable states but are more 
evident if the system is over-determined, as is here for 
Differentiation. A compromise between a dt that can 
adequately follow the system as it evolves without exciting 
the uncontrollable states is needed. Moreover, if the dt is too 
small, it introduces numerical errors which are not corrected 
if there is a large tolerance. This was seen when the tolerance 
was increased: Integration failed but Differentiation produced 
results. This is due to the fact that Differentiation uses as an 
additional output the sway velocity v, an uncontrollable state 
that is strongly coupled with the controllable states u, r. This 
benefit results in an over-determined system that requires 
special handling when solving the Newton – Raphson 
equations. For the rover, a dt of 0.01s and a tolerance of 
5×10-7 produce the best results, however the calculation time 
is large particularly for Integration A dt of 0.05 and a 
tolerance of 5×10-5 produces good results with position errors 
in the mm range, heading errors of less than 0.004 rad and the 
execution time is significantly reduced. Overall, the 
Differentiating method is faster than Integration and produces 
good results, at the expense of slightly larger position errors 
and the usage of an over-determined system. The Integration 
method is slower but the associated errors are more 
consistent. Finally, for both cases the calculated control 
inputs where within the rover’s operational limits. 
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