

Abstract— Extending the navigational capability of planetary

rovers is essential for increasing the scientific outputs from such

exploratory missions. In this paper a navigation method based

on Inverse Simulation is applied to a four wheel rover. The

method calculates the required control inputs to achieve a

desired, specified response. Here this is a desired trajectory

defined as a series of waypoints. Inverse Simulation considers

the complete system dynamics of the rover to calculate the

control input using an iterative, numerical Newton – Raphson

scheme. The paper provides an insight into the numerical

parameters that affect the performance of the method. Also, the

influence of varying the timestep and the convergence tolerance

is examined in terms of the quality of the calculated control

input and the resulting trajectory, as well as the execution time.

From this analysis a set of parameters and recommendations to

successfully apply Inverse Simulation to a rover is presented.

I. INTRODUCTION

In this study a novel method based on Inverse Simulation
is used for autonomous rover guidance and navigation.
Inverse simulation uses a mathematical model that is
representative of the system and calculates the control inputs
necessary for the rover to produce the desired response. This
desired response is defined in terms of the system's output
variables and represents their time history. Inverse Simulation
is a model based, numerical, iterative process where step
changes in the various controls are applied until the predicted
response matches the desired response [1]. Applied to rover
navigation, the desired response is a trajectory or path to a
goal destination [2], [3].

The operation of a planetary rover presents several
challenges: time delays, terrain uncertainty, limited
communication bandwidth and high latency, inability to
repair hardware, system degradation [4]. To extract the
maximum scientific return, the rover must be able to
efficiently and safely navigate the terrain. The navigation
capabilities are essential to the overall success of the mission
[4], [5] and Inverse Simulation addresses this particular issue.

Applications for Inverse Simulation are predominantly
within the flight dynamics domain and the application to
rotorcraft flight control is a major area. In these particular
cases Inverse Simulation is used to produce the required

Research supported by grant EPSRC/1369575 from the UK Engineering

and Physical Sciences Research Council (EPSRC).

T. Flessa is a PhD Student at the Division of Aerospace Sciences, School

of Engineering, University of Glasgow, Glasgow (e-mail:

t.flessa.1@research.gla.ac.uk).

E. McGookin (e-mail: Euan.McGookin@glasgow.ac.uk) and D.

Thomson (e-mail: Douglas.Thomson@glasgow.ac.uk) are both Senior

Lectures at the Division of Aerospace Sciences, School of Engineering,

University of Glasgow, Glasgow.

control signals for specific flight maneuvers [1, 6, - 8] and [9]
also introduces a predictive element. The method has also
been applied to unmanned aerial vehicles [10] and
autonomous underwater vehicles [11]. Inverse Simulation has
also been used as a model validation method [1], [8].
Previous research has demonstrated the potential for Inverse
Simulation as a guidance and control method for wheeled
rovers [2], [3].

Planetary rover navigation so far has been achieved using
a combination of non-, semi- and fully autonomous methods
[12]. The NASA Mars Exploration Rovers (MER) use a
combination of three main driving modes with varying
degrees of autonomy. The first mode involves the rover
executing a sequence of commands to follow a specified
course of waypoints towards specific goal coordinates. In this
mode the rover only performs basic safety checks [13]. The
second mode is semi-autonomous navigation during which
the rover is given a set of waypoints towards specific goal
coordinates and uses its on-board capabilities for hazard
avoidance and for planning a path towards the goal. A special
case is when the rover drives towards an area that is unknown
to the operators [12], [13]. In this case the rover has to
choose the waypoints for a safe path towards the goal and
then drive along this path; this is fully autonomous navigation
[12], [13]. The third mode is visual odometry: the rover uses
images from the on-board cameras to accurately estimate and
update its position [13], [14]. A similar combination of these
driving modes is used for the Curiosity rover and autonomous
navigation is used to plot a safe path towards an area
unknown to the operators [15]. The fully autonomous and
visual odometry modes are used when the rover moves into
areas that are not visible to the operators [12 - 14]. The
developers of the ExoMars mission have addressed the issue
of navigation and autonomy by including an element of
autonomous control within the guidance system [16] and by
conducting field experiments to test the current long-range
navigation capabilities [17].

This paper focuses on the application of Inverse
Simulation to a four wheeled rover as a method of guidance
and navigation and investigates the parameters that affect its
successful application. In Section II, the Inverse Simulation
method is presented and in Section III the mathematical
model of the rover and the trajectory generation are shown.
Section IV presents the results of the method applied to the
rover and a discussion of the parameters that affect its
application. Finally, the conclusions are in Section V.

II. INVERSE SIMULATION METHODOLOGY

There are two main approaches in implementing Inverse
Simulation: Differentiation [1, 6 - 8, 10] and Integration [1 -

Numerical Stability of Inverse Simulation Algorithms Applied to

Planetary Rover Navigation

Thaleia Flessa, Student Member, IEEE, Euan McGookin, Member, IEEE, and Douglas Thomson

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296182264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3, 6 - 8, 9]. The basic framework for each is similar and both
use a numerical Newton – Raphson algorithm; what differs is
the method of convergence to the control signal. In
Differentiation, a numerical differentiation scheme is used
and the convergence is based on the system's state and output
equations. In Integration, a numerical integration scheme is
used and the convergence is based on whether the system's
output matches the desired. Both methods use a Jacobian and
care must be taken when trying to find its inverse or a
suitable factorization. For this reason systems where the
number of inputs is equal to or greater than the number of
outputs are preferred candidates, as these result in square or
over-actuated systems [1, 6 - 8]. An alternative involves
derivative – free methods, such as [11], [18] which employ
Nedler – Mead optimization. However this is outside the
scope of this paper.

A. Implementation of Inverse Simulation

A general non-linear system is used where f∈Rm are the
state equations, g∈Rp are the output equations, u∈Rq is the

control input vector, x∈Rm is the state variable vector and y∈
Rp is the output vector. The desired output is gd∈Rp.

 () (), =x f x,u y = g x,uɺ (1)

For the Differentiation method, (1) is discretized N times
over a time interval Τ into the form shown in (2), where dt is
the discretization step.

() ()
() ()()

() () ()()

1

1, ,

,

i i

i i i i

i i i

t t
t t dt t t

dt

t t t

−

−

−
= = −

=

x x
f x u

y g x u

 (2)

The unknowns in (2) are the states x and the input u at ti.

The known variables are the desired output gd and the states,
control and output from the previous discretization step ti-1.

The functions F1 and F2 in (3) are defined to find the
values of input u and the states x for the given output gd. The
system in (3) is solved using the Newton - Raphson method

until the values of u and x are such that F1 and F2 are both
equal to zero within a certain tolerance. The updated

equations are in (4) and J is the Jacobian of the system in (3).

() ()()

() ()

() ()() ()

1

1

2

,

,

i i

i i

i i d i

t t
t t

t

t t t

δ

−−
= −

= −

x x
F f x u

F g x u g

 (3)

 ()
()
()

()1 1 1 11

1 2 1 1

,

,

n n n n

i i

n n n n

t t
− − −−

− − −

= − ⋅

x x F x u
J

u u F x u
 (4)

For the Integration approach the state and output
equations from (1) are again discretized and dt is the
discretization step. The state equations are integrated at ti.

() () ()

() () ()()
1

1

1,

i

i

t

i i i

t

i i i

t d t

t t t

τ τ

−

−

−

= +

=

∫x x x

y g x u

ɺ

 (5)

An error function between the current output and the
desired gd is defined in (6).

 () ()() ()1,i i it t t−= −e df g x u g (6)

Equation (6) is solved for u using the Newton – Raphson
method and the iterative relationship (7), where Je is the
Jacobian of the error function fe or equivalently the Jacobian
of the system outputs when perturbing the inputs.

 () () ()1

1 1 1 1 1 1, ,n i n e n n n nt −

− − − − − −= − ⋅ eu u J x u f x u (7)

B. Numerical Properties of Inverse Simulation

Each approach has advantages and disadvantages, which
are usually identified as the following [1, 6 - 8, 18]: (a) The
Integration method can use any representative model of the
system as long as the outputs and inputs remain the same.
Differentiation requires both the states and the outputs and
any change in the model results in a reformulation of the
algorithm. Therefore, the Differentiation method is more time
consuming to set up and maintain, whereas for Integration the
model can be modified more easily, (b) The Integration
method has a convergence rate that is up to an order of
magnitude larger than that of the Differentiation method but
it is generally more stable; what is gained in flexibility and
stability, is lost in computing time.

The numerical properties of Inverse Simulation have been
examined mostly when the method is applied to flight
dynamics [1, 6, 7, 18]. The authors of [1] examine the
stability properties of the method in this context. When using
the Differentiation method, it has been observed that there are
oscillations in the response of the uncontrolled states
(constraint oscillations) [1]. However, these oscillations
depend more on the dynamical properties of the system and
its uncontrollable states and zero dynamics rather than the
method used and its numerical properties [18].

Also from [1] it has been observed that there are low
amplitude, high frequency oscillations superimposed on the
calculated control input when using the Integration method.
Overall, the high frequency, low amplitude oscillations in the
control are due to several reasons [1, 6 - 8, 18]: redundancy
issues, non-square Jacobian and multiple solutions, several
local minima of the error function from (7). These low
amplitude, high frequency oscillations are increased when the
discretization step dt is too small, as it could excite the
uncontrollable states [18]. Nonetheless, a relatively small dt
can have a positive effect because it captures the changes in
the system dynamics [18] and this may reduce or even
remove them [7], [18]. It is a case of compromising between
adequately following the system as it evolves over time and
possibly exciting the uncontrollable states. A different
approach uses the two timescale method [1], [18].

III. ROVER MODEL AND TRAJECTORY GENERATION

Inverse Simulation used for rover navigation requires a
mathematical model of the system and a desired response,
which is a trajectory. First, a path to the destination is
determined as a series of waypoints. This information

provides the desired trajectory for the Inverse Simulation,
which in turn generates the required guidance commands
(control inputs) to follow the trajectory [2], [3]. The method
can be applied in situ: given a series of waypoints or a
defined trajectory, the rover can calculate the necessary
control inputs or offline: operators define the trajectory, the
control inputs are calculated and then sent to the rover.

A. Rover Model

The model of the rover has been presented in [2, 3, 19]
and has been experimentally validated [19]. It is briefly
described here for completeness. Each side has two wheels
and the wheels at each side provide the same torque input.
The dynamics are described by (8), where v is the state
velocity vector (9) in the local body frame, η is the velocity

vector in the global frame and τ is the input vector (10).

() () (){ }

()

1−
=

M τ - C v v + D v v - g ηv

η J η v

ɺ

ɺ
 (8)

 []
T

u v w p q r=v (9)

 []
T

X Y Z K M N=τ (10)

In (9) u, v, w are the surge, sway and heave velocities
respectively and p, q, r are the roll, pitch and yaw rates
respectively. In (10) X is the surge, Y is the sway and Z is the
heave force, K is the roll, M is the pitch and N is the yaw
moment. X and N are controllable, the remaining forces and
moments are the unmatched dynamics.

B. Trajectory Generation

The trajectory is represented as a series of waypoints,
each defined by an x-y coordinate with a common origin. A
path between each waypoint and the next is calculated, with
the robot stopping at each waypoint to turn on the spot to
achieve the desired orientation and then move again.

The distance and time to travel between each waypoint is
calculated assuming a constant velocity between stages with
initial and final acceleration and deceleration transients: the
constant forward speed is 0.1 m/s, analogous to that of
operating rovers [5], and the rotational velocity is 0.1 rad/s.
At each waypoint a check is made to determine if the rover is
at the correct angle for the next traversal forward. If not, then
the rover is commanded to turn on the spot until the desired
angle is achieved. The path from one waypoint to the next is
defined by specifying the acceleration as a 7th order
polynomial function of time and is based on that presented in
[1], [3]. A 7th order polynomial has the benefit of producing
smooth trajectory profiles with high order, continuous
derivatives. The output is the acceleration time history, which
is then integrated to provide the velocities and the
displacements. The result is a continuous time history of
acceleration, speed and distance between each successive
waypoint that fully describes the rover’s position and
orientation; namely the elements of vector v and η.

IV. INVERSE SIMULATION RESULTS

A series of waypoints is first defined and then a trajectory
between them is generated as in Section III. Inverse
Simulation calculates the control inputs for each trajectory.
Then these inputs are applied to the system and it is checked
whether the resulting trajectory matches the desired. The
following test trajectories were selected. The Forward (11s)
and Rotate on the Spot (12s) tests are the basic movements.
The Long Distance test (Fig. 1, 400s) involves several pose
changes and will be used as a benchmark to show how the
errors built up over time and to compare the different
parameters.

−12 −10 −8 −6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

14

16

X, m

Y
,

m

Figure 1. Long Distance test trajectory

For the Integration method [2, 3] the outputs to control
are the surge velocity u and the rotational velocity r. There
are two inputs and two outputs and so the Jacobian of the
error (7) has a size of 2x2 and its rank is 2. For the
Differentiation method, it was observed during the initial
simulations that including as an additional output to control
the sway velocity, the overall results are improved. There are
three desired outputs: ud, rd as before and vd, which is set to
zero. The sway velocity v is strongly coupled to u and r [19]
and adding it as a desired output that is set to zero acts as an
additional constraint for u and r. For the Jacobian (4), only
the controllable states u, r and additionally v are taken into
account and so its size is 6x5 and its rank is 5. The remaining
states for (4) are estimated after the scheme has converged at
each ti. This is an over-determined system and to ensure that
the solution is always a least square solution a suitable

factorization method is used to find the pseudo-inverse of J
and solve (4) [20].

For each method the following parameters need to be
assigned values: dt, the tolerance for the convergence of
Newton-Raphson, the initial starting values for the control
inputs and the maximum number of iterations. The dt and the
tolerance are varied, as these have the greatest effect on the
results. Their influence on the time required to generate the
control inputs is also examined. For dt, the physical
properties of the system must also be taken into account.
Here, this is the timestep of the motors that provide the
torque input and dt should be in the range of 0.05s [3]. When
changing dt, the trajectory generation between the waypoint
changes, to adapt to the different timestep and generate an
appropriate time history. The convergence tolerance affects
the overall quality of the calculated input: too small and
equations (4), (7) do not converge, too large and the

accumulated error increases. The other parameters will be the
same throughout for both methods. The rover starts from rest,
i.e. the motor torque is zero. Here a very small value is
assumed for the initial torque estimate: 2.5×10-7 Nm for each
side. The maximum number of iterations is 30, sufficient to
converge but not big enough to overly increase the execution
time. Both methods are tested on a Core 2 Duo T9300, 2.50
GHz, 4 GB RAM system running MATLAB 2014b, 64 bit,

A. Baseline Simulation

The initial parameters are dt = 0.01s and a tolerance of
5×10-7. Table I shows the errors accumulated for the Long
Distance test. The main difference is the calculation time.
Fig. 1 shows the control inputs generated for Differentiation
and Fig. 2 for Integration. The left side control is signified by
the solid line and the right side by the dashed line (same for
Fig. 4, 5). The right side control signals are symmetrical to
those of the left when the rover is moving forward (e.g. at
100s), which is expected since each side is controlled by one
input. When the heading changes there is a momentary spike
in the input. The control inputs from Integration are
smoother, e.g. around 150, 250s in Fig. 1, 2. The oscillations
from Differentiation have a small magnitude and high
frequency and are due to the fact that scheme uses a
redundant system which may have multiple solutions, in line
with previous observations discussed in Section II.

50 100 150 200 250 300 350 400

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

time, s

T
o

rq
u

e
,
N

m

Figure 2. Differentiation: Control Input, Long Distance (0.01s, 5×10-7)

50 100 150 200 250 300 350 400

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

time, s

T
o

rq
u

e
,
N

m

Figure 3. Integration: Control Input, Long Distance (0.01s, 5×10-7)

TABLE I. LONG DISTANCE (1)

Long Distance: dt 0.01, tolerance 5×10-7

 Differentiation Integration

mean position error (m) -0.0009 0.0008

σ position error 0.0008 0.0004

mean heading error (rad) 0.0003 0.0003

σ heading error 0.0007 0.0015

execution time (s) 57.33 117.08

B. Effect of varying the time increment dt

For the Long Distance test, between dt = 0.001 and dt =
0.01 the results are very similar in terms of error, with the
Integration performing slightly better. The main difference is
an increase in execution time, the Integration requires now
1788.79s, which is more than three times that of
Differentiation at 501.45s and a scale of magnitude larger
compared to Table I. For dt = 0.05 the results are in Table II,
there are slightly bigger errors than in Table I but still small.

TABLE II. LONG DISTANCE (2)

Long Distance: dt 0.05, tolerance 5×10-7

 Differentiation Integration

mean position error (m) -0.0058 0.0044

σ position error 0.0038 0.0023

mean heading error (rad) -0.0002 0.0038

σ heading error 0.0035 0.0093

execution time (s) 11.65 15.45

In Table II, the execution time is much reduced, which is

important for using the method on-line. Integration performs
better in terms of the position error and Differentiation
slightly belter for the heading error. The position error for
Integration is in both cases in the range of 10-3 while for
Differentiation this changes from 10-4 to 10-3. Moreover, the
standard deviation of both the position and the heading error
is larger, which means that during the movement, the rover
has some sharper deviations for the desired position and
heading than before (Table I). By increasing dt to 0.05 the
high frequency, low amplitude oscillations in the control
input decrease for both methods, Fig. 4, 5. The effect of the
excitation of the uncontrollable states is reduced and the
rover follows the desired trajectory accurately.

50 100 150 200 250 300 350 400

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

time, s

T
o

rq
u

e
,

N
m

Figure 4. Differentiation: Control Input, Long Distance (0.05s, 5×10-7)

50 100 150 200 250 300 350 400

−0.01

−0.005

0

0.005

0.01

time, s

T
o

rq
u

e
,
N

m

Figure 5. Integration: Control Input, Long Distance (0.05s, 5×10-7)

C. Effect of varying the tolerance

For tolerance 5×10-5 and 5×10-4, the Integration method
produces results only for the Forward test and fails for the
Rotate on the Spot and Long Distance tests. The errors
between the actual and desired u and r are too big and in an
attempt to correct the errors the calculated control increases
greatly and Je in (7) becomes singular. This can be seen from
the condition number of Je for the Rotate on the Spot test
(total time 12.0s). For tolerance 5×10-5 it starts from 8, by
1.19s the condition number is 1484387.11 and by 1.2s the

condition number is infinite. The condition number of Je for
5×10-4 starts from 8, by 0.76s is 3062065.29 and by 0.77s it
is infinite. For both cases, Je becomes ill-conditioned. Table
III shows the results for 5×10-5, Forward test.

TABLE III. FORWARD 1M

Forward: dt 0.01, tolerance 5×10-5

 Differentiation Integration

mean position error (m) -0.00003 0.0009

σ position error 0.00001 0.0003

mean heading error (rad) -0.00001 -0.0002

σ heading error 0.000008 0.00004

execution time (s) 1.68 3.21

Fig. 6 and 7 show the errors of surge velocity u, sway

velocity v and rotational velocity r after (3) and (6) have
converged respectively. The desired values of v and r are
zero. For Integration, the v error is not used for the scheme’s
convergence; Differentiation uses v as an additional output.
For Differentiation the r error deviates about 10-18 rad/s from
zero, whereas for Integration it deviates about 10-3 rad/s from
zero. The v error deviates 10-6 m/s from zero and the u error
deviates 10-6 m/s from zero for Differentiation. For
Integration the v error deviates 10-5 m/s from zero and the u

error 10-4 m/s, both at the trajectory’s start and end. Since v is
strongly coupled with u and r, including it as an output has a
corrective effect on the actually controllable states. This
effect is particularly evident in the rotational velocity r and
looking back at Table I, II and III Integration exhibits bigger
errors for the heading when dt is increased and a bigger
standard deviation overall. When the tolerance is low enough
or when there are no changes in the orientation, this small
difference is negligible. As the tolerance increases and the
trajectory requires pose changes, it becomes more important
to accurately follow the desired outputs.

1 2 3 4 5 6 7 8 9 10 11

2

4

x 10
−6

time, s

e
rr

o
r,

 m
/s

Surge velocity NR error

1 2 3 4 5 6 7 8 9 10 11

2

4

6

x 10
−6

time, s

e
rr

o
r,

 m
/s

 Sway velocity NR error

1 2 3 4 5 6 7 8 9 10 11

2

4
x 10

−18

time, s

e
rr

o
r,

 r
a
d

/s

Rotational velocity NR error

Figure 6. Differentiation: NR Errors, Forward (0.01s, 5×10-5)

1 2 3 4 5 6 7 8 9 10 11

−1

0

1

x 10
−4

time, s

e
rr

o
r,

 m
/s

Surge velocity NR error

1 2 3 4 5 6 7 8 9 10 11
0

5

x 10
−6

time, s

e
rr

o
r,

 m
/s

Sway velocity NR error

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

x 10
−3

time, s

e
rr

o
r,

 r
a
d

/s

Rotational velocity NR error

Figure 7. Integration, NR Errors, Forward (0.01s, 5×10-5)

D. Combined effect of dt and tolerance

Increasing the tolerance to 5×10-5 and the dt to 0.05s
affects positively the Inverse Simulation: Integration
produces results for the Turn and Long Distance tests for
tolerance 5×10-5 (Table IV) and 5×10-4. This behavior is due
to the fact that if dt is too small and the tolerance increases,
the errors add up to quickly between the waypoints and are
not corrected. By increasing the dt while also increasing the
tolerance, the errors are corrected. Referring back to Section
II, it is a case of compromising between adequately following
the system (a small dt), possibly exciting the uncontrollable
states and selecting a tolerance that matches the speed by
which the system evolves over time. Moreover, the execution
time is now comparable between the two methods and the
Differentiation method continues to exhibit smaller errors for
r, due to the corrective effect of v. Fig.8 shows the trajectory
followed by the rover for the case of dt = 0.05s, tolerance
5×10-5. Both methods match the desired very well.

TABLE IV. LONG DISTANCE (3)

Long Distance: dt 0.05, tolerance 5×10-5

 Differentiation Integration

mean position error (m) -0.0047 0.0042

σ position error 0.0032 0.0023

mean heading error (rad) -0.0006 0.0046

σ heading error 0.0036 0.0094

execution time (s) 11.64 12.78

Comparing Table I, II and IV the errors are larger in
Table II. Integration exhibits similar errors in Table I, II, IV
whereas Differentiation varies, for example the mean position
error is -0.0009m in Table I and -0.0047m in Table IV.

−12 −10 −8 −6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

14

16

Rover Trajectory

X, m

Y
,
m

Differentiation

Integration

Desired

Figure 8. Long Distance Test (0.05s, 5×10-5)

V. CONCLUSION

Inverse Simulation has been successfully applied to a
rover and the parameters that affect its application were
investigated. These results show that Inverse Simulation can
now be extended to rovers, which indicates that the method
behaves consistently amongst a number of different systems.
The discretization step dt and tolerance significantly affect
the method’s numerical properties and were examined here.
A small dt results in high frequency, low amplitude
oscillations in the control input. These oscillations are also
due to the presence of uncontrollable states but are more
evident if the system is over-determined, as is here for
Differentiation. A compromise between a dt that can
adequately follow the system as it evolves without exciting
the uncontrollable states is needed. Moreover, if the dt is too
small, it introduces numerical errors which are not corrected
if there is a large tolerance. This was seen when the tolerance
was increased: Integration failed but Differentiation produced
results. This is due to the fact that Differentiation uses as an
additional output the sway velocity v, an uncontrollable state
that is strongly coupled with the controllable states u, r. This
benefit results in an over-determined system that requires
special handling when solving the Newton – Raphson
equations. For the rover, a dt of 0.01s and a tolerance of
5×10-7 produce the best results, however the calculation time
is large particularly for Integration A dt of 0.05 and a
tolerance of 5×10-5 produces good results with position errors
in the mm range, heading errors of less than 0.004 rad and the
execution time is significantly reduced. Overall, the
Differentiating method is faster than Integration and produces
good results, at the expense of slightly larger position errors
and the usage of an over-determined system. The Integration
method is slower but the associated errors are more
consistent. Finally, for both cases the calculated control
inputs where within the rover’s operational limits.

REFERENCES

[1] D. G. Thomson, R. Bradley, “Inverse simulation as a tool for flight

dynamics research—Principles and applications,” Prog. in Aerospace

Sci., vol. 42, no. 3, pp. 174-210, May 2006.

[2] K. Worrall, D. G. Thomson, and E. W. McGookin, “Application of

Inverse Simulation to a Wheeled Mobile Robot,” 6th Int. Conf. on

Automation, Robotics and Applicat. (ICARA), Queenstown, New

Zealand, 2015, pp. 155 – 160.

[3] K. Worrall, D. G. Thomson, E. W. McGookin, and T. Flessa.,

“Autonomous Planetary Rover Control Using Inverse Simulation,”

13th Symp. on Advanced Space Technologies in Robotics and

Automation (ASTRA), Noordwijk, The Netherlands, May 2015.

[4] M. B. Quadrelli, et al., “Guidance, Navigation, and Control

Technology Assessment for Future Planetary Science Missions,”

Journal of Guidance, Control, and Dynamics, vol. 38, no. 7, pp.

1165-1186, 2015.

[5] T. Flessa, E. W. McGookin, and D. G. Thomson, “Taxonomy, Systems

Review and Performance Metrics of Planetary Exploration Rovers”,

13th Int. Conf. on Control, Automation, Robotics and Vision

(ICARCV), Marina Bay Sands, Singapore, Dec. 2014, pp. 1554-1559.

[6] R.A. Hess, and C. Gao, “A generalized algorithm for inverse

simulation applied to helicopter manoeuvring flight,” Journal of the

American Helicopter Society, vol. 38, no. 4, pp. 3-15, 1993.

[7] S. Rutherford, and D. G. Thomson, “Improved methodology for

inverse simulation,” Aeronautical Journal, vol. 100, no. 2149, pp. 79–

86, 1996.

[8] D. J. Murray-Smith, “The inverse simulation approach: a focused

review of methods and applications,” Mathematics and Computers in

Simulation, vol. 53, no. 4 – 6, pp. 239-247, 2000.

[9] G. Avanzini, D. G. Thomson, and A. Torasso. “Model Predictive

Control Architecture for Rotorcraft Inverse Simulation,” Journal of

Guidance, Control, and Dynamics, vol. 36, no. 1, pp. 207-217, 2013.

[10] D. J. Murray-Smith, and E. W. McGookin, “A case study involving

continuous system methods of inverse simulation for an unmanned

aerial vehicle application,” Proc. of the Institution of Mechanical

Engineers, Part G: Journal of Aerospace Engineering, vol. 229, no.

14, pp. 2700-2717, 2015.

[11] D. J. Murray-Smith, L. Lu, and E. W. McGookin, “Applications of

inverse simulation to a nonlinear model of an underwater vehicle,”

Summer Simulation Multi-Conference 2008 - Grand Challenges in

Modelling & Simulation, Edinburgh, Scotland, 2008.

[12] M. Bajracharya, M. W. Maimone, and D. Helmick, “Autonomy for

Mars Rovers: Past, Present and Future,” IEEE Computer, vol.41,

no.12, pp. 44-50, Dec. 2008

[13] J. J. Biesiadecki, C. Leger, M. W. Maimone , “Tradeoffs Between

Directed and Autonomous Driving on the Mars Exploration Rovers,”

Int. Journal of Robotics Research, vol. 26, no 1, pp. 91-104, 2007.

[14] Y. Cheng, M. W. Maimone, and L. Matthies, “Visual odometry on the

Mars exploration rovers - a tool to ensure accurate driving and science

imaging,” IEEE Robot. Automat. Mag., vol.13, no.2, pp.54-62, June

2006

[15] G. Webster. (2012, Aug. 27). NASA's Mars Curiosity Debuts

Autonomous Navigation [Online]. Available:

http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=S

howNews&NewsID=1514.

[16] N. Silva, R. Lancaster, and J. Clemmet, “ExoMars Rover Vehicle

Mobility Functional Architecture and Key Design Drivers”, 12th

Symp. on Advanced Space Technologies in Robotics and Automation

(ASTRA), Noordwijk, The Netherlands, May 2013

[17] M. Woods, et al., “Seeker - Autonomous Long-range Rover

Navigation for Remote Exploration,” Journal of Field Robotics, vol.

31, no. 6, pp. 940–968, 2014.

[18] L. Lu, D. J. Murray-Smith, and D. G. Thomson, D. G., “Issues of

numerical accuracy and stability in inverse simulation,” Simulation

Modelling Practice and Theory, vol. 16, no. 9, pp. 1350–1364. 2008.

[19] K. Worrall, “Guidance and Search Algorithms for Mobile Robots:

Application and Analysis within the Context of Urban Search and

Rescue,” Ph.D. dissertation, Dept. of Electronics and Electrical

Engineering, University of Glasgow, Glasgow, UK, 2008.

[20] T. A. Davis, “Algorithm 930: FACTORIZE: an object-oriented linear

system solver for MATLAB,” ACM Transactions on Mathematical

Software, vol. 39, no. 4, pp. 28:1 – 28:18, 2013.

